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Chapter 1

Introduction

In this chapter an introduction is given to the role and use of (measurement)
signals in science and engineering. The choice for probabilistic or deterministic
signal models is discussed and an overview is given of different signal analysis
and estimation problems.

1.1 Introduction

Signal analysis and estimation are two important subjects that are closely tied to many
problems of measurement that occur in almost all areas of science and engineering. Mea-
surements of physical quantities lead to observations or signals and in most cases it is our
aim to extract particular information from the measurement data. In this respect signals
are considered to be observed quantities that are sequenced most often in time, but possi-
ble also in other domains as e.g. the spatial domain. The characterization and analysis of
signals is the first step in retrieving the necessary physical information that is present (or
hidden) in the measurements.

• Consider for instance the radial position of the laser spot on the track of a Compact
Disc in a CD-player, as schematically depicted in figure 1.1. An example of a time
sequenced signal of the distance of the center of the spot to the track is given in figure
1.2. It is indirectly measured by measuring the intensity of the reflected spot in the
so-called OPU (optical pick-up unit). It is important to characterize the principal
properties of this signal, e.g. in order to control the actuator that positions the laser
spot on the Compact Disc so as to attenuate the track following error as much as
possible.

• In microscopy the several pixels of a still image can be considered a signal that is
indexed over space rather than over time. To every pixel in the image a (real-valued)
light intensity is connected, which is ordered either row- or column-wise into a se-
quenced signal. In figure 1.3 an image is shown from transmission electron microscopy
(TEM) where the atomic structure of some material is investigated. In other image
processing applications, sequences of timed images will occur, introducing an im-
portant time dependency also. In the example of TEM data, the image contains
information on the atomic structure of the material, but this information is not ex-
act, but rather “noise disturbed”. The image (signal) needs to be processed in such a

1
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Figure 1.1: A CD player track (left) and a block diagram of the radial error (right).
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Figure 1.2: Radial position error signal of the laser spot in a CD-player, as a function of
time.

way that the underlying physical information is retrieved with optimal accuracy and
precision.

In order to quantify physical variables one generally has to measure. To find out the
temperature in a particular reactor, the heartbeat of a phoetus, the position of a star in
space, or the position of a laser beam when it “writes” an electronic circuit map on a
silicon wafer, measurement systems are developed and installed to measure the respective
quantities. However in most of these situations the measurements that the equipment
deliver are not “exact”. There are several underlying reasons for this:

• The measurement can be contaminated by noise. Due to all kinds of disturbing phe-

Figure 1.3: Image from transmission electron microscopy.
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nomena, measurements are affected by perturbations that are considered not relevant
for the problem at hand. The instruments will have finite precision and so they will
introduce measurement noise. However there are also effects of other noisy pertur-
bations. For a communication system for either speech, images or general type of
data, the several noise sources that occur in coding and decoding the signals are
schematically depicted in figure 1.4.

transducer
signal

conditioning
A-D

conversion
coding /

compression

storage
transmission

analysissource

environment
noise; echo

amplifier
noise coding loss

roundoff
noise

decoding /
decompress

D-A
conversion

signal
conditionin

g
actuator

storage
transmission

synthesis

processing
noise

amplifier
noise

environment
noise; echo

listener

quantization
noise

Figure 1.4: Sequence of coding and decoding operations in a communication channel for
speech, images or data in general.

• Quantum noise, i.e. noise attributable to the intrinsic discrete and probabilistic nature
of physical phenomena and their interactions. One can distinguish photon noise1 in
optical systems and shot noise 2 in electrical (semi)conductors.

Besides signals that are disturbed by noise, there are also many signals that show “noisy”
behaviour by nature. When measuring the voltage between two locations on the human
skull, a noisy-like signal will be measured. However this signal includes important informa-
tion on the functionality of the human brain.

Indirect measurements

It is not only disturbance effects and noises that limit the possibility of making exact mea-
surements and that complicate the handling of measurement data. In many measurement
systems it is not possible to measure the exact quantity that one is interested in, but in-
direct measurements are used, i.e. physical variables are measured that are related to the
variable of interest (in a particular way), but they are not the same. E.g. one measures
the number of photons that hit a detector plate, but one is interested in an image, and
maybe even in structural information on the object that is studied, e.g. in microscopy. Or:
one is interested in the temperature, and one measures the volume of a certain amount of
mercury. In these situations a model of the measurement system will have to determine the
relation between the measured variables and the variables to be determined or estimated.

1attributable to the statistical nature of optical quanta.
2Noise caused by random fluctuations in the motion of charge carriers in a conductor.
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1.2 Signals as source of information

Example 1.1 (EEG) In analysis of electroencephalographic (EEG) signals voltages are
measured between well-defined locations on the human skull. Typical measurements are
indicated in the right upper part of figure 1.5. EEG is a practically useful tool for studying
the functional states of the brain (e.g. sleep-stage analysis) and for diagnosing functional
brain malfunctions as e.g. epilepsy. For an assessment of the EEG, the on-average power
spectrum of these signals, depicted in the lower part of figure 1.5, is essential. This power
spectrum is a important tool in diagnosing particular diseases, e.g. by evaluating the
relative importance of the several frequency regions.

Figure 1.5: EEG signal recordings.

Example 1.2 (Radar) In radar a transmit pulse is transmitted and reflected by an object
to be detected. The received waveform contains a reflection of the transmitted signal,
contaminated with noise, due to all kind of disturbance effects e.g. from the atmosphere,
see Figure 1.6. A detection of the time delay between transmission and reception has to be
done in order to quantify the distance to the target.

Example 1.3 (Adaptive Optics) In adaptive optics, the light that is received from a
star on a (large scale) telescope will be contaminated with all kind of disturbance effects,
e.g. due to atmospheric turbulence. The optical signals are filtered and corrected by way of
a deformable mirror that changes the orientation of each separate element of the deformable
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mirror, so as to compensate for the disturbance effects on the optical signals. The control
system is steered by a measured signal that is deflected by the wavefront sensor. In order
to control the system appropriately, the control system will need to use (prior) knowledge
of the type of disturbances that affect the signals. Therefore a characterization of these
disturbance signals is required. A typical example of the effect of an adaptive control system
on the image received from a triple star is given in figure 1.7.

Figure 1.6: Radar signal recordings.

Figure 1.7: Adaptive Optics system (left), and images of a triple star received by a telescope
without (middle) and with (right) a correction by an adaptive optics control system.

Example 1.4 (Production Technology) Acoustic emission (AE) is a sound wave or,
more properly, a stress wave that travels through a material as the result of some sudden
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release of strain energy. When measured such waves can be employed for quality control in
manufacturing operations such as turning, grinding and milling.
In these applications, AE signals have a highly random nature, which is related to the
complexity of the underlying cutting process. There are multiple AE sources that can
be identified, such as deformation and fracture of the workpiece material, chip breakage,
rubbing between tool and the material and between the tool and the chips, vibrations of the
machine, etc. (see Figure 1.8). All these sources generate sound waves that when measured
at some position in the machine result in a signal that understandably has a highly random
nature. Nonetheless, the properties of this AE signal appear to change when the cutting
conditions change, in particular when the cutting tool wears. Tool condition monitoring
systems have been developed that use these changing characteristics of the AE signal to
estimate the tool wear. This improves the overall quality of the production, as in general
worn tools adversely affect the surface finish of the workpiece. By means of a tool wear
condition monitoring system, the operator of the machine can be alerted to the state of
tool, thereby avoiding undesirable consequences.

Figure 1.8: Cutting process (left), and example of a generated sound wave signal (right).

1.3 Deterministic or probabilistic signals models

The common feature of the signals presented in the previous section, is that they do not
appear to very regular, i.e. they include components that seem to vary when experiments
are repeated, giving the signals an “erratic” type of behaviour.
For smooth analytical signals, Fourier analysis is available to analyze the signals’ properties,
such as power/energy density over frequency, and/or decomposition in terms of frequency
components (sine/cosine). However for “erratic” behaving signals, this analysis doe not
seem to be the most appropriate, particularly in situations where experiment repetition is
leading to different signals.
Consider for instance three measurements of the vertical acceleration of a car when it is
driving over a particular road track. In Figure 1.9 three (repeated) experimental signals
are shown of the same track.
The measurements are taken from the same physical variable, but due to all kind of ir-
regularities the time realizations are different. Nevertheless the mechanical and physical
mechanism behind the measured signals is considered to be the same.
When analyzing the three different time realizations, Fourier analysis will lead to different
results for the several signals. The purpose of random signal analysis is to determine and
to characterize the underlying principles and characteristic properties of the collection of
signals.
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Figure 1.9: Three measurement signals obtained after experiment repetition.

As remarked above, for some physical phenomena we know that there is an intrinsic stochas-
tic or probabilistic behaviour, as e.g. witnessed by Heisenberg’s relation. From a macro-
scopic point of view, many physical phenomena can be modelled in different ways.

What is the probabilistic principle behind tossing a die?

If we toss a die, and we would be able to exactly specify the position, orientation and velocity
of the die when it leaves our hand, and we would know exactly its material properties, the
material properties of the surface on which we toss it, possibly also determine air movements
that the die faces, then one could construct a first principles model that would exactly model
the number of eyes that would be thrown in a particular nature. In this process there is
nothing intrinsically stochastic or probabilistic! However, the detailed modelling of this
situation would be extremely complex. And there is an alternative. By simply repeating
the experiment a large number of times a probabilistic law can be empirically determined
that also predicts the outcome of an experiment, just as the first principles model. However
this prediction will not be a 100% sure prediction, but will have a probabilistic nature.

The example of tossing a die, can be replaced by any complex physical process or exper-
iment, where one realizes that at a certain level one limits the modelling of the observed
variables to a particular level of abstraction, and consequently some phenomena are dis-
carded. Operational conditions are simplified, objects (as e.g. lenses) are considered to be
ideal, temperatures are assumed to be constant, flow regimes are supposed to be known
and fixed, etcetera. In all situations that the real physical world deviates from our model
assumptions, perturbations will be involved, and will be measured, and these perturbations
will generally have a non-structured format. I.e. they will not simply be periodic signals
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or signals of any other reproducible form. They will typically be non-reproducible, in the
sense that if the experiment or measurement is repeated, a different signal will result, from
which it is nontrivial to determine in which sense it is related to the first measurement.

One of the examples to be mentioned here is the radial error signal of the CD optical
unit, as depicted in figure 1.2. If the measurement is repeated some time later, under the
same experimental conditions (in the eyes of the experimenter), then a different signal will
appear.

For the modelling of non-reproducible signals a signals framework and modelling tool is
needed that goes beyond the signal analysis tools treated in a basic (deterministic) signals
and systems course, such as Fourier analysis (valid for periodic and finite-energy signals).
A probabilistic model for signals will appear attractive, leading to stochastic processes. In
this model exact representations of signals are replaced by “on average” properties, leading
to a more rough description.

It has to be noted, that in many instances the deterministic or probabilistic character
of signals is simply in the eye of the beholder. It is the modeler that determines how
to interpret a particular measured signal. From the signal in figure 1.2 alone, there is no
objective conclusion that the signal has a probabilistic nature. If the experiment is repeated,
exactly the same signal could be possible, or something completely different could happen.
However, in most cases a probabilistic model will appear attractive in modelling signals
that deviate essentially when repeating experiments under the same conditions.

1.4 A global framework for signal analysis and estimation

1.4.1 Introduction

In order to put all different aspects of signal analysis and estimation in one picture, we
consider a framework as schematically depicted in Figure 1.10. In this scheme the following
notions are considered:

• y is the signal that is available from direct measurement with a sensor, resulting from
some kind of physical/chemical/electrical process; it may be a voltage, a current, a
temperature, a pressure, a number of photons, etcetera.

• v is a disturbance signal that affects y in some way. It causes y to be not exactly
equivalent to the underlying phenomenon that one is interested in; it may be a mea-
surement error, external disturbances that influence the measurement, but also (as is
the case with the EEG signals) some unknown (non-controllable) source signal that
generates the measurements y.

• u is the experiment design variable; it is a possible excitation signal that is under
control of an experimenter (it can be designed and applied to the real-world set-up).
It may be the acoustic source signal that is used in acoustic imaging problems (the
pulse signal or sinewave that is transmitted), or the electric current that steers the
position of the actuator moving the position of the laser spot on a track of a DVD
player.

• M(θ) is a set of (differential) equations that describes how the measurements y result
from a particular excitation signal u, under influence of disturbances v. It is, what
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Figure 1.10: Framework for signal analysis and estimation.

is often called the “physical model” that underlies the observations y. The variable θ
reflects possible physical quantities (variables or parameters) that govern the physical
model. E.g. in an acoustic imaging problem M(θ) reflects the differential equations
that describe the reflection wave behavior of the object under test. M(θ) can be
either known completely, or known in structure, while some variables (parameters) θ
that govern M are unknown.

• x is the desired process variable; it is the signal that the user actually is interested
in. It can be measured indirectly through the observation of y, which is related to x
through the physical model M .

For this general setup, a number of particular cases can be distinguished that will be
discussed in more detail in particular parts of this course.

1.4.2 Situation 1: Detection of (known) signals in noise

In this case x = s, and the goal is to reconstruct a known signal s from noisy observations
y, see figure 1.11.

y

v

s
+

+

Figure 1.11: Detection of known signal in noise.

Example: transmitted and received radar signal.
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Figure 1.12: Signal reconstruction / filter problem.

1.4.3 Situation 2: Signal reconstruction / filter problem

In this situation, which is sketched in Figure 1.12, an information carrying signal x = s
that cannot directly be observed, is measured through a measurement variable y and the
objective is to reconstruct/estimate of s on the basis of y.

• Model G determines a (dynamical) relation between the (unknown) information car-
rying signal s and the noisy measurement variable y.

• Objective is to determine an optimal estimation/reconstruction of s on the basis of
measurement y (and knowledge of G)

• Required information may include a priori knowledge of the relation between v and
s.

Example: Noise cancellation in the cockpit of an airplane, as depicted in figure 1.13. The
speech signal s of the captain is transmitted to the control tower under the influence of
noise disturbance v1. By measuring, with a second sensor, a signal v2 that is related to the
disturbance v1, an optimal filter can estimate v1 and correct the original signal y so as to
reduce the noise level.

signal
source

noise
source

sensor1

sensor2

W iener
filter

+s(n) 1( ) ( ) ( )y n s n v n� �
2 ( )v n 1̂( )v n

Figure 1.13: Noise cancellation.

The problem is most simple if s and v have their essential contributions in different fre-
quency regions, because in that case a simple high-pass or low-pass filter could be applied.
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Figure 1.14: State reconstruction / filter problem
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Figure 1.15: Signal modelling (left) as e.g. in EEG signals and in measurement prob-
lems with multiple (redundant) equipment; System modelling (right) as e.g. in dynamical
systems as e.g. servo systems.

1.4.4 Situation 3: State reconstruction / filter problem

See figure 1.14.

• A known model M determines the relation between observation y and desired process
variable x;

• Determine an optimal estimate/reconstruction of x on the basis of observations y
(and possibly u)

• Required: knowledge of basic properties of disturbance v.

Example: Construct a weather chart on the basis of pressure/temperature measurements
at a restricted number of stations in Europe.

1.4.5 Situation 4: Parameter estimation / Identification

See figure 1.15.

• y is the result of a physical process that is not exactly known, i.e. there are unknown
parameters

• Estimate θ on the basis of measurements y possibly in dedicated experiments intro-
duced by exciting u
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1.4.6 Situation 5: Control design

In a feedback control system (figure 1.16) the influence of v on x needs to be reduced by way
of feedback control, i.e. the actuation of the system through an input u that is constructed
on the basis of measurements y. In control system design this is called disturbance rejection.

y

v

u M

x

C

Figure 1.16: Control system design

In all these problems it may be evident that knowledge on the characteristic properties of
the disturbance signal v plays a crucial role in the solutions. In this course the disturbance
signal v will be modelled as a stochastic noise source. Note also that there is likely to be
a clear relation between the problem of estimating x and that of estimating θ. In other
words: there is some redundancy whether one wants to consider an unknown quantity as a
process variables x, or as a physical parameter θ.

1.5 Summary

Signals occur in very many engineering domains. Deterministic signal analysis tools as
Fourier analysis are attractive to apply to deterministic signals, i.e. signals that typically
are invariant under experiment repetition. When signals vary under experiment repetition,
an alternative signal analysis framework may be more attractive, addressing the random
nature of the measurements.
Several signal estimation, parameter estimation and reconstruction problems have been
sketched in brief; they will be further explored and analyzed in subsequent chapters.
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Modeling of deterministic signals
and systems

This chapter contains a brief review of discrete-time signals and systems anal-
ysis, including the formulation of Discrete Time Fourier Transforms, DFT and
the representation of discrete-time linear systems/filters.

2.1 Introduction

In almost all situations of applied signal analysis and signal processing one will be dealing
with sampled signals. These signals are easily treated by modern microprocessor-based
equipment. The analysis of signals will particularly address questions as: ”what is the
frequency content of a signal?”, and ”how is the energy or power of a signal distributed over
frequency?”. (Frequency) transforms of signals play an important role in these questions.
They will provide the necessary insight, but even more. For particular type of signals the
frequency (Fourier) transform has a particular interpretation. The Fourier transform of the
pulse response of a linear dynamical system is known to be equal to the frequency response
of the system, and plays a crucial role in systems analysis and filtering.

The representation of signal properties, and the analysis of corresponding frequency trans-
forms is the basic content of this chapter.

The treatment of the material will be done in a summarizing style rather than on an
introductory level. It is assumed that the reader has a basic knowledge of signals and
systems theory.

2.2 Discrete-time signals

For discrete-time signals the notation ud(k) := u(kTs) will be adopted. In this expression
u is the continuous-time signal that possibly underlies the discrete-time signal, and Ts is
the sampling period. k is the (discrete) time variable that is an integer running index:
k = 1, 2, · · · . The sample frequency ωs is defined by ωs = 2π

Ts
.

Deterministic signals appear in several different forms. As an illustration of this difference
three different types of signals are depicted in Figure 2.1.

13
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In specifying relevant signal properties we denote the energy of the signal ud by

Eu :=

∞∑

k=−∞

u2
d(k)

and the power of the signal by

Pu := lim
N→∞

1

N

N−1∑

k=0

u2
d(k).

Signals that have finite energy are referred to as energy signals , while signals with finite
power are called power signals . In this way it can be verified that the signal in Figure
2.1(a) is an energy-signal, while the signals in (b) and (c) are power-signals.
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Figure 2.1: Three different types of signals: (a) finite-energy signal, (b) periodic finite-power
signal, and (c) realization of a stationary stochastic process.

The basic tool for analyzing the frequency content of a signal is the Fourier analysis, i.e.
the Fourier series and the Fourier transform. The Fourier series refers to periodic signals,
showing that any periodic signal can be written as a summation of harmonic functions
(sinusoids). The Fourier transform is a generalization that can also handle non-periodic
signals.
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Periodic signals

For a periodic signal with period N0, which means that ud(k + N0) = ud(k) for all k ∈ Z,
the Discrete-Time Fourier Series of the signal ud is given by1:

ud(k) =

N0−1∑

ℓ=0

aℓe
i 2π

N0
ℓk

(2.1)

where the Fourier coefficients are given by

aℓ =
1

N0

N0−1∑

k=0

ud(k)e
−i 2π

N0
ℓk

. (2.2)

The power of periodic signals can again be written directly as a function of the Fourier
coefficients:

Pu =
1

N0

N0−1∑

k=0

u2
d(k) =

N0−1∑

ℓ=0

|aℓ|2.

This shows that every exponential function in u has an independent contribution to the
power of the signal, which is simply a summation of the contributions of each separate
frequency. As the Fourier coefficients aℓ are periodic with period N0, the sum on the right
hand side can be taken over any N0 consecutive values of ℓ.

2.3 Discrete-time Fourier Transform

The Discrete-Time Fourier Transform for sampled (discrete-time) signals is given by the
transform pair:

Us(ω) :=
∞∑

k=−∞

ud(k)e−iωkTs (2.3)

ud(k) =
Ts

2π

∫

2π/Ts

Us(ω)eiωkTsdω. (2.4)

Note that the discrete-time Fourier transform (DTFT) transforms a discrete sequence of
time-domain samples, into a function Us(ω) that takes its values continuously over ω’s.
By construction (since k is integer valued) the transform Us(ω) is a periodic function with
period 2π/Ts = ωs. Corresponding to this, the integral in (2.4) is taken over any range of
ω with length 2π/Ts, being the period length of the integrand.

Finite-time signals

When considering discrete time signals over a finite time, the corresponding Fourier trans-
form is denoted by:

UN (ω) :=

N−1∑

k=0

ud(k)e−iωkTs . (2.5)

1The given expression for ud(k) actually has resulted from u(kTs) =
∑N0−1

ℓ=0 aℓe
i

ωs

N0
·ℓ·kTs , which shows

that the effect of the sampling interval Ts is cancelled out in the exponent.
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Periodic signals
For a periodic signal with period N0 the coefficients of the Fourier series can be directly
related to a finite-time Fourier transform taken over one period of the periodic signal.
Directly from (2.2) it follows that

aℓ =
1

N0
UN0(ℓω0). (2.6)

Additionally the expressions for the Fourier transform can be shown to be directly related
to the Fourier series coefficients. Equating the Fourier series (2.1) with the inverse Fourier
transform (2.4) it follows that for this periodic signal u the Fourier transform satisfies

Us(ω) =
2π

Ts

∞∑

k=−∞

akδc(ω − kω0) (2.7)

with ω0 = 2π
N0Ts

. In this expression the δ-functions serve to replace the integral expression
in (2.4).

Example 2.1 (Discrete-time Fourier transform of a sinusoid) Consider the signal

u(k) = A · cos(ω0(kTs))

with ω0 = 2π/(N0Ts), i.e. there are N0 samples in a single period of the signal. We consider
N to be a multiple of N0, N = rN0, with r ∈ N. Then

UN (ω) =
N−1∑

k=0

A

2

[
ei(ω0−ω)kTs + e−i(ω0+ω)kTs

]
.

Using lemma 2A.1 it follows that

UN (ω) =

{
N · A

2 for ω = ±ω0 = ± 2π
N0Ts

,

0 for ω = 2πℓ
NTs

, ℓ ∈ Z, ℓ 6= r.
(2.8)

2

For a more extensive explanation see also example 2A.2.

Spectral densities of energy and power signals
Again, similar to the situation of continuous-time signals we can consider the distribution
of energy and/or power of a signal over frequency.

Proposition 2.2 (Energy Spectral Density Function.) Let ud(k) be a finite-energy
sampled-data signal, sampled with a sampling interval Ts. Then

Eu =
Ts

2π

∫

2π/Ts

Ψu(ω)dω

where the Energy Spectral Density Ψu(ω) is given by

Ψu(ω) = |Us(ω)|2.
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Proposition 2.3 (Power Spectral Density Function.) Let ud(k) be a finite-power sampled-
data signal, i.e. 1

N

∑N−1
k=0 |ud(k)|2 = Pu < ∞, sampled with a sampling interval Ts. Then

Pu =
Ts

2π

∫

2π/Ts

Φu(ω)dω (2.9)

where the Power Spectral Density Φu(ω) is given by

Φu(ω) =
1

N
|UN (ω)|2

The proof is added in the appendix.
As in the case of continuous-time signals, the (discrete-time) Fourier transform of sampled-
data signals constitutes a way to characterize the distribution of energy and/or power of
the corresponding signals over the different frequencies.

For finite power signals the quantity 1
N |UN (ω)|2 is referred to as the periodogram of the

(finite-time) discrete-time signal. This periodogram determines the distribution of power
over frequencies.

For periodic signals the power spectral density can again be computed directly on the basis
of the discrete-time Fourier coefficients of the signals. Since in this case Pu =

∑N0−1
ℓ=0 |aℓ|2

it follows from combination of (2.6) and (2.9) that

Φu(ω) =
2π

Ts

∞∑

k=−∞

|ak|2δc(ω − kω0).

Sampled-data signals and discrete-time signals

It is quite important to remark that discrete-time signals can be considered to be either
originated from sampling continuous-time signals or simply as just a discrete-time sequence
of numbers. In this section the first interpretation is followed, leading to the use of the
sampling interval Ts in all expressions for Fourier transforms and the like. As a result,
DTFT and spectral densities are formulated as functions of the continuous-time radial
frequency ω. This allows a direct analysis of frequency properties of signals stated in terms
that relate to their continuous-time equivalents.

However, in most situations of discrete-time signal analysis, the connection with a sampling
mechanism is simply discarded, and indeed this is very well possible without loosing any
information. When interpreting discrete-time signals just as discrete sequences of numbers,
all results and notions introduced here still apply. This situation is best dealt with by
introducing the variable transformation

ωTs → ω

which is actually equivalent to inserting Ts = 1.

Under this variable transformation all expressions for Fourier transforms and spectral densi-
ties are given in terms of the ”discrete” radial frequency and the considered notions become
periodic with a period length of 2π.
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2.4 Discrete Fourier Transform

We now restrict attention for a moment to the situation of finite-time signals. For finite-time
signals we have already mentioned the notation UN (ω) as given in (2.5).

Actually this finite-time DTFT concerns the following transform pair:

UN (ω) =
N−1∑

k=0

ud(k)e−iωkTs . (2.10)

ud(k) =
1

N

N−1∑

ℓ=0

UN (
ℓ

N
ωs)e

i 2πℓ
N

k. (2.11)

A verification of the validity of this transform pair is added in the appendix. Considering
this transform pair, a few remarks have to be made.

• Note that while UN (ω) takes its values on a continuous domain of ω, only N discrete
values of UN are necessary for reconstructing the original signal ud. These N discrete
values are N points within one period of the periodic function UN (ω).

• The DTFT is periodic with period 2π/Ts.

• The sequence {UN (ω), ω = ℓ
N ωs, ℓ = 0, · · ·N − 1} is defined as the Discrete Fourier

Transform (DFT) of the signal ud(k), k = 0, · · ·N − 1. It is given by

UN (
ℓωs

N
) =

N−1∑

k=0

ud(k)e−i 2πℓ
N

k, ℓ = 0, · · ·N − 1.

• The DFT constitutes a one-to-one mapping from an N -length sequence of time-
domain samples to an N -length sequence of frequency-domain samples, where the
frequency domain samples are taken equidistantly in the frequency.

• The inverse DFT, defined by (2.11), also defines a time-domain sequence outside the
interval [0, N − 1]. Actually it induces a periodic extension of the original time-
sequence ud(k), as the reconstructed signal (2.11) is periodic with period N .

• Because of reasons of symmetry, the DTFT (and also the DFT) satisfies

UN (−ω) = UN (ω)∗.

As a result the DTFT is completely determined by UN (ω) for ω in the interval ω ∈
[0, π/Ts]. For the DFT this implies that the one-to-one mapping between time- and
frequency domain actually takes place between N real-valued time-domain samples,
and N/2 complex-valued frequency domain samples.

In very many situations discrete-time signals are being analyzed without taking account of
the fact that they originate from sampled continuous-time signals. Similar to the situation
of the previous section, this implies that in that case the expressions for the DTFT are used
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for Ts = 1:

UN (ω) =
N−1∑

k=0

ud(k)e−iωk. (2.12)

ud(k) =
1

N

N−1∑

ℓ=0

UN (
2πℓ

N
)ei 2πℓ

N
k. (2.13)

In many books on discrete-time signal processing this is the only situation that is con-
sidered. Discrete-time Fourier transforms, spectral densities, periodograms will then be
considered generally over the frequency interval ω ∈ [0, π], being half of a single period
of the corresponding periodic function in the frequency domain. Whenever we connect a
sampling time to the discrete-time signal, then ω = π gets the interpretation of being equal
to half of the (radial) sampling frequency.

Spectral properties of finite-time sampled signals
Similar to the situation of infinite-time signals, we can exploit Parsseval’s relation for quan-
tifying the energy and power of finite-time (deterministic) sampled signals.
Consider the Discrete Fourier Transform as discussed above. Then

N−1∑

k=0

ud(k)2 =
1

N

N−1∑

k=0

|UN (
kωs

N
)|2 (2.14)

1

N

N−1∑

k=0

ud(k)2 =
1

N

N−1∑

k=0

| 1√
N

UN (
kωs

N
)|2. (2.15)

It may be clear that the first expression is used for signals having the character of having
finite energy, while the second expression is specially used for finite power signals. Note
that over a finite time-interval this distinction is not really relevant as the operation of
dividing by a finite N is just a matter of scaling. The main difference has to be found in the
corresponding asymptotic analysis, when N → ∞. Note that the expressions above actually
are alternatives for the integral expressions for signal power as presented in Proposition 2.3.
For finite time signals, there is no need to take the integral over the power spectral density
as in (2.9); the power also results from summing the squared magnitude of the DFT over
an equidistant frequency grid.

2.5 Discrete-time systems analysis

General notation

Linear time-invariant (LTI) discrete-time dynamical systems specify (dynamical) relations
between input and output signals. They can be represented in several forms, one of which
is the convolutional representation:

y(k) =

∞∑

ℓ=−∞

g(ℓ)u(k − ℓ), (2.16)

where the sequence {g(k)}ℓ=−∞,··· ,∞ is the pulse response of the system, and y(k) and u(k)
are the discrete-time output and input signal of the system, i.e. k ∈ Z.
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To facilitate this description, two shift operators will be used; the forward shift operator q:

qu(k) = u(k + 1)

and the backward shift operator q−1:

q−1u(k) = u(k − 1)

Using these operators it follows that

y(k) =

∞∑

ℓ=−∞

g(ℓ)(q−ℓu(k)) = G(q)u(k)

with

G(q) =
∞∑

ℓ=−∞

g(ℓ)q−ℓ.

With slight abuse of notation, we will also refer to G(q) as the transfer function of the
system. Strictly speaking, however, the transfer function is defined by the complex function
G(z):

G(z) =
∞∑

ℓ=−∞

g(ℓ)z−ℓ (2.17)

where z is a complex indeterminate.

A system is called bounded-input bounded-output stable (BIBO-stable) if every input
signal with bounded amplitude generates an output signal with bounded amplitude. This
property is reflected by the condition that the pulse response is absolutely summable, that
is

∞∑

k=−∞

|g(k)| < ∞. (2.18)

It implies that the series expansion (2.17) is convergent for |z| = 1 (on the unit circle).

In this book, attention will be restricted to linear time-invariant systems having a rational
transfer function. That is, G(z) can be written as a rational of polynomials in z. We note
in particular that the transfer function of a system satisfying a linear constant-coefficient
difference equation is always rational. As a result G(z) can be written as a fraction of

polynomials in z: G(z) = b(z)
a(z) and the transfer function can be characterized by the zeros

zi, determined by b(zi) = 0, and the poles pi, determined by a(pi) = 0.

Causal systems

Usually attention will be restricted to causal systems, i.e. systems for which holds that
g(ℓ) = 0, ℓ < 0, so that the transfer function satisfies

G(z) =

∞∑

ℓ=0

g(ℓ)z−ℓ. (2.19)

Causal systems are stable if the poles of the related transfer function are located strictly
inside the unit circle. This implies that the series expansion (2.19) converges on the domain
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|z| ≥ 1, i.e. on and outside the unit circle in the complex plane. Causality of a stable system
can therefore also be checked by verifying that lim|z|→∞ G(z) exists and is bounded.

Additionally the transfer function of a causal system will be called monic if g(0) = 1.

Noncausal systems

Although it seems unnatural in a real engineering world, we sometimes have to deal with
noncausal systems also, as well as with their related transfer functions. Their representation
is as in (2.16) with a possible two-sided pulse response {g(k)}ℓ=−∞,··· ,∞ and a transfer
function

G(z) =

∞∑

ℓ=−∞

g(ℓ)z−ℓ. (2.20)

For any rational transfer function G(z) there exists a unique expansion (2.20) that is con-
vergent on the unit circle, i.e.

∑∞
ℓ=−∞ |g(ℓ)| < ∞, and therefore is representing a stable

(noncausal) system.

We define the transfer function operation [·]+ as taking the causal part of this unique
expansion of the transfer function:

G+(z) :=
∞∑

ℓ=0

g(ℓ)z−ℓ (2.21)

and the operation [·]− as taking the noncausal part:

G−(z) :=

−1∑

ℓ=−∞

g(ℓ)z−ℓ (2.22)

so that G(z) = G+(z) + G−(z).
The system represented by G+(z) is causal and stable by construction, and will have all its
poles strictly inside the unit circle. The expansion (2.21) is convergent in |z| ≥ 1.

The system represented by G−(z) is anti-causal and stable. It will have all poles strictly
outside the unit circle, while the expansion (2.22) is convergent in |z| ≤ 1.

For more details see also Appendix B.5 and Oppenheim and Willskey (1997).

Frequency response and Bode plots The frequency response of a discrete-time system
is determined by the output of the system when excited with a sinusoidal input signal.
Consider the signal:

u(k) = cos(ωk) = Re{eiωk}.
The output of the (causal) discrete-time system is given by

y(k) =
∞∑

ℓ=0

g(ℓ)u(k − ℓ) = Re{eiωk
∞∑

ℓ=0

g(ℓ)e−iωℓ} (2.23)

= Re{eiωkG(eiω)}. (2.24)

Consequently

y(k) = |G(eiω)| · cos(ωk + φ) (2.25)

with φ = arg[G(eiω)].
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Figure 2.2: Zero/pole location and evaluation of frequency response of first order discrete-
time system

The complex-valued function G(eiω) is referred to as the frequency response of the discrete-
time system. It evaluates the transfer function in the complex plain over the unit circle
z = eiω. Note the difference with a continuous-time system, where the frequency response
is reflected by the evaluation of G(s) over the imaginary axis s = iω.

For discrete-time systems with a real-valued pulse response (and thus real-valued coeffi-
cients) it holds that G(e−iω) = G(eiω)∗ and so for reasons of symmetry, full information on
the frequency response of the system is obtained by G(eiω) for ω ∈ [0, π]. In Figure 2.2 this
is illustrated for a first order system, given by

G(z) =
z − b

z − a
. (2.26)

By writing the expression

G(eiω) =
eiω − b

eiω − a
(2.27)

it follows that

|G(eiω)| =
|eiω − b|
|eiω − a| and (2.28)

arg G(eiω) = arg(eiω − b) − arg(eiω − a). (2.29)

The first equation generates the amplitude Bode plot, whereas the second defines the phase
Bode plot. For the considered first order system these Bode plots are given in Figure 2.3,
where the values b = 0.3 and a = 0.8 are chosen. Note that the frequency function is given
for frequencies up to ω = π.

In this discrete-time case, unlike the situation in the continuous-time case, there is no
asymptotic point in frequency where ω tends to. Note that in the discrete-time case the
phase contribution of every (real) zero varies between 00 and +1800, while the contribution
of each (real) pole varies between 00 and −1800. For a complex conjugate pair of zeros/poles
it can simply be verified that the contribution to the phase in ω = π is given by respectively
+3600 and −3600.

Signal properties processed by discrete-time systems.
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Figure 2.3: Bode-amplitude and Bode-phase plot of first order discrete-time system

Similar to the situation of continuous-time systems, it can be verified that when given an
input/output system y(k) = G(q)u(k), and u and y quasi-stationary, the following relations
hold:

• Φyu(ω) = G(eiω)Φu(ω);

• Φy(ω) = |G(eiω)|2 · Φu(ω);

If u is a deterministic sequence for which the DTFT exists, then additionally, under the
assumption of zero initial conditions (i.e. u(t) = 0, t < 0):

• Y (ω) = G(eiω)U(ω).
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2.6 Overview of Fourier Transforms

Transform Inverse transform

CTFT U(ω) =

∫ ∞

−∞
u(t)e−iωtdt u(t) =

1

2π

∫ ∞

−∞
U(ω)eiωtdω

DTFT
Us(ω) :=

∞∑

k=−∞

ud(k)e−iωkTs ud(k) =
Ts

2π

∫

2π/Ts

Us(ω)eiωkTsdω

DTFT, Ts = 1
Us(ω) :=

∞∑

k=−∞

ud(k)e−iωk ud(k) =
1

2π

∫

2π
Us(ω)eiωkdω

DFT
UN (

ℓωs

N
) =

N−1∑

k=0

ud(k)e−i 2πℓ
N

k ud(k) =
1

N

N−1∑

ℓ=0

UN (
ℓωs

N
)ei 2πℓ

N
k

Table 2.1: Summary of Fourier transforms; CTFT = Continuous-Time Fourier Transform;
DTFT = Discrete-Time Fourier Transform; DFT = Discrete Fourier-Transform

2.7 Summary

In this section a brief review and summary of the basic concepts in deterministic discrete-
time signals and systems analysis has been presented. For a detailed treatment of the
fundamentals the reader is referred to more specialized textbooks, as e.g. Oppenheim and
Willsky (1997).
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Appendix

Lemma 2A.1 Let k ∈ Z and N ∈ N. Then

N−1∑

ℓ=0

ei 2πℓ
N

k = N for k = 0,

= 0 for k 6= 0.

Proof: The proof follows simply by applying the finite sum formula:
∑N−1

ℓ=0 aℓ = 1−aN

1−a for
a ∈ C, a 6= 1. 2

Example 2A.2 (DTFT of a periodic signal) Let u(t) be a periodic signal with length
N = rN0 and basic period N0. Then

UN (ω) =

rN0−1∑

t=0

u(t)e−iωt

=
r∑

ℓ=1

N0−1∑

m=0

u(m)e−iω[(ℓ−1)N0+m]

=

r∑

ℓ=1

e−iω(ℓ−1)N0

N0−1∑

m=0

u(m)e−iωm. (2A.1)

Since with Lemma 2A.1
r∑

ℓ=1

e−iω(ℓ−1)N0 = r for ω =
2πk

N0
, k = 1, · · ·N0,

= 0 for ω =
2πj

N
, j = 1, · · · , N ; j 6= r, 2r, · · ·N0r,

it follows that
UN (ω) = r · UN0(ω), (2A.2)

for ω = 2πk
N0

, k = 1, · · ·N0, where UN0(ω) is the DTFT of u over one period of the signal,
and UN (ω) will be 0 at frequencies outside this grid but being a member of the grid {ω =
2πk
N , k = 1, · · ·N}.

For N → ∞ and N0 finite, it follows that UN (ω) = 0 almost everywhere, except in the
frequencies ω = 2πk

N0
where the DTFT grows with r.

Lemma 2A.3 Let u be a signal defined on the time interval [0, N−1]. Consider the sample
covariance,

R̂N
u (τ) :=

1

N

N−1∑

t=0

u(t)u(t − τ), |τ | ≤ N − 1

:= 0 |τ | ≥ N. (2A.3)

Then the Discrete-Time Fourier Transform of this sample covariance satisfies:

∞∑

τ=−∞

R̂N
u (τ)e−iωτ =

1

N
|UN (ω)|2, (2A.4)

with UN (ω) the DTFT of the signal, UN (ω) =
∑N−1

t=0 u(t)e−iωt.
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Proof: Substituting the definitions it follows that

∞∑

τ=−∞

R̂N
u (τ)e−iωτ =

1

N

∞∑

t=−∞

∞∑

τ=−∞

u(t)u(t − τ)e−iωτ

with u(t) := 0 for t < 0 or t ≥ N . By variable substitution ℓ = t − τ we arrive at

1

N

∞∑

t=−∞

u(t)e−iωt ·
∞∑

ℓ=−∞

u(ℓ)eiωℓ

which equals 1
N UN (ω)UN (ω)∗. 2

Proof of Proposition 2.3.

Starting from 1
N

∑N−1
k=0 ud(k)2 = R̂N

u (0) and using the result of Lemma 2A.3 that 1
N |UN (ω)|2

is the DTFT of R̂N
u (τ), it follows that

R̂N
u (τ) =

Ts

2π

∫ π/Ts

−π/Ts

1

N
|UN (ω)|2eiωτdω

showing that

R̂N
u (0) =

Ts

2π

∫ π/Ts

−π/Ts

1

N
|UN (ω)|2dω.

Proof of the DFT-pair (2.10)-(2.11).

Substituting the expression (2.10) into (2.11) shows that

ud(k) =
1

N

N−1∑

ℓ=0

N−1∑

m=0

ud(m)e−i ℓωs
N

mTsei 2πℓ
N

k (2A.5)

=
1

N

N−1∑

m=0

ud(m) ·
N−1∑

ℓ=0

ei 2πℓ
N

(k−m). (2A.6)

With Lemma 2A.1 the sum of exponentials will equal Nδ(k−m) 2, which proves the validity
of the transform pair.

2δ(·) is the discrete pulse function, i.e. δ(k) = 1 for k = 0 and δ(k) = 0 elsewhere.
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Modelling of Stochastic Signals

Signals that have an inherent random nature are described by using random
variables and stochastic processes. The necessary tools for describing and ana-
lyzing these signals are presented. After defining the basic concepts of stochastic
processes, attention will be given to correlation properties (in time domain) as
well as to spectral properties (in frequency domain).

3.1 Introduction

For many signals it is not appropriate to describe their properties in terms of a fixed
and given amplitude at every time instant, as e.g. a sinusoid or an exponential function.
This is due to the fact that many signals that result from measurements are not exactly
reproducible: if we measure the same object at a different moment, a signal results that is
not exactly the same as the signal measured in first instance.

When studying the suspension properties of a particular car, consider that we drive it over a
particular highway track and measure the vertical acceleration with an acceleration sensor.
When repeating the experiment over the same track a different acceleration signal will
generally result, although some underlying characteristics of the signal may be invariant.
See e.g. examples of three measurements given in Figure 3.1. The difference in the signals
is caused by several sources of “uncertainty” (the exact horizontal position on the track,
effects of wind, initial driving conditions of the car, etcetera).

There are two options for describing (modelling) the difference between the several measured
signals. One can try to model all the effects mentioned above by using (physical) knowledge
of the related phenomena, and thus removing all of the “uncertainty” from the signal model.
In many cases this will not be very realistic. Alternatively one can apply a less “specific”
description of the signals that are measured, by considering them to be generated by random
variables. As a result a statistical way of describing the several signals is introduced.

Random signals are not described by a fixed and given amplitude at every time instant
but only by a probability density function that characterizes the probability that a certain
signal value will result.

In this chapter random or stochastic processes are introduced to describe signals, and
related modeling tools for these processes are discussed, such as correlation and covariance
functions and spectral density functions.

27
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Ensemble 

Timet 
0 

Figure 3.1: Three realizations of a random process.

3.2 From random variables to stochastic processes

Random Processes
A random process generates time sequences (signals) {x(t)} as result of a random exper-
iment. Every outcome in the sample space (also referred to as a realization) from the
ensemble is a single time sequence.

The random process will formally be denoted by x(t,Λ), and is actually described in two
dimensions, where t represents time, and Λ reflects the outcomes in the sample space (the
ensemble). In this way one can distinguish several quantities:

• x(t,Λ) is a collection of time signals {x1(t)}, {x2(t)}, etc.

• x(t, λi) is a particular time signal {xi(t)} (one realization)

• x(t0,Λ) is a collection of signal values at time t0, {x1(t0), x2(t0), · · · }, i.e., a random
variable;

• x(t0, λi) xi(t0), a particular numerical value of xi at time t0.

As a general notation x(t) will be used to denote the random (stochastic) process, presuming
that there exists an associate set Λ that underlies the generation of realizations from an
ensemble.

Example 3.1 Consider an ensemble of 6 signals being given by

x1(t) = −4; x2(t) = −2; x3(t) = +2; x4(t) = +4; x5(t) = −t/2; x6(t) = t/2;

being the result of a random experiment, where xi(t) is the result of x(t, λi) := x(t,Λ = i).
The sample space is given by {1, 2, 3, 4, 5, 6}. The six signals are sketched in Figure 3.2.

Note that x4(t) and x6(t) have clearly different properties in time.
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Figure 3.2: Example of a random process with a finite number of 6 signals in the ensemble,
that each have equal probability.

In this example:
x(t = 6,Λ = 5) = −3 is a constant;
x(6,Λ) = x(6) is a random variable with values taken from the set {−4,−3,−2, 2, 3, 4}.

Problem 3.2 Assume that the probability of each of the 6 signals in the previous example
is 1/6. Verify that for all values of t: E[x(t)] = 0.

Processes where t is discrete are sometimes referred to as random sequences ;
Processes where x(t) takes on values in a continuous domain (e.g. the real line) are called
continuous, whereas processes where x(t) takes values in a finite (discrete) set are called
discrete. Additionally x(t) can be either real- or complex valued.
In this course main attention will be given to real-valued continuous random sequences.

Description of a Random Process

Consider a random process x(t,Λ) with t ∈ Γ ⊂ R. For every value of t, x(t,Λ) is a random
variable that is characterized by a particular probability density function (pdf) fx(x), that
determines the distribution function:

Fx(a) := P (x ≤ a) =

∫ a

−∞
fx(x)dx,

and therefore completely describes the probabilistic properties of the random variable x
at time instant t1. This mechanism is illustrated in Figure 3.3, where the pdf of x at one
particular time instant t1 is sketched in the left part of the figure.
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t −−> 
x(t

1
) 

pdf(x) 

x 

Figure 3.3: Realization of a random process, and indication of the pdf of x at one particular
time instant t1, indicated by the red line.

In first instance it may look sufficient to fully characterize the random process by its dis-
tribution function at every time instant t. However such a description does not take into
account the possible interrelation between x(t1) and x(t2). When considering the random
process in Figure 3.4, one of the questions to be addressed is how the random variables
x(t1) and x(t2) are statistically related to each other.

Time  

Ensemble 

t
1
 t

2
 

Figure 3.4: For properly characterizing the properties of a random process, it is necessary
to specify also the statistical relationship between the random variables x(t1) and x(t2) for
different values of t1, t2.

In order to illustrate that this statistical relation can contain important characteristics
of the process, consider Figure 3.5 where single realizations are sketched of two different
stochastic processes.
One of the apparent differences between the stochastic processes in this figure is that in
the left picture the signal at a time t seems to be dependent on the signal value in the
neighborhood of t (there is correlation in time), whereas the right picture shows a signal
that seems to be more ”noisy” and therefore in its time behaviour less correlated with
neighboring time samples.
A full characterization of the stochastic process is obtained when considering x(t) to be
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Figure 3.5: Realizations of two different stochastic processes

a random variable at every time instant t, while the full statistical behaviour of x(t,Λ) is
described by all joint distribution functions of any selection of n time moments t1, .., tn and
any value of n. As a result, the stochastic process will be fully characterized by all nth

order distribution functions

Fx(t1),x(t2),··· ,x(tn)(x1, x2, · · · , xn) =

P [x(t1) ≤ x1,x(t2) ≤ x2, · · ·x(tn) ≤ xn] ∀n and t1, · · · tn ∈ Γ (3.1)

In the continuous-time situation this is only of theoretical interest, as all possible combina-
tions of n time instants have to be considered for all values of n. This is truly an impossible
task. For the discrete-time case, however, there is one time vector: [t1, t2, · · · tn], and the
single distribution function Fx(t1),x(t2),··· ,x(tn)(x1, x2, · · · , xn) fully describes all statistical
properties of the random process.
For many purposes it will suffice to consider the first and second order distribution functions,
i.e.,

P [x(ti) ≤ xi] and (3.2)

P [x(ti) ≤ xi,x(tj) ≤ xj] . (3.3)

The statistical behaviour of the process is then considered to be characterized by these
first two distribution functions, that describe the interrelation between any two given time
instants. And an ever more crude characterization, but still a practical one, is when one only
considers the expected values related to the first and second order distribution functions,
i.e., the mean and the correlation. This situation is considered in the next section.

3.3 Autocorrelation and autocovariance functions

Basic properties of a random variable are reflected in their mean value and in their variance.
A simple extension of these quantities to the first and second order distributions of random
processes, leads to the notions of mean value and autocorrelation/autocovariance functions,
as formally defined next.

Mean.
The mean value of x(t) is the expected value of the random variable x(t):

µx(t) := E[x(t)]. (3.4)
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By construction, the mean value is dependent on n.

Autocorrelation:

Rx(t1, t2) := E[x(t1)x
∗(t2)] (3.5)

where x∗ is the complex conjugate of x, for the situation that x is complex-valued.

Autocovariance:

Cx(t1, t2) := E{(x(t1) − µx(t1))(x
∗(t2) − µ∗

x(t2))} (3.6)

The autocorrelation is basically the correlation (A.6) between the random variables x(t1)
and x(t2). With varying t1 and t2 the autocorrelation function becomes a two-dimensional
function. Similarly the autocovariance function is simply the covariance (A.7) between the
random variables x(t1) and x(t2). For processes that have zero mean, i.e., µx(t) = 0 for all
t, autocorrelation and autocovariance functions are the same.

The correlation and covariance functions partially describe the time domain behaviour of
the underlying stochastic process. They will be used later to derive the spectral (frequency
domain) properties of the process.

Note that for t1 = t2 = t, Cx(t, t) = var[x(t)] = σ2
x(t).

Random signals do not necessarily look “noisy”. This is illustrated in the following example.

Example 3.3 In many applications in communication systems carrier signals are defined
by sinusoidal signals of a particular (carrier) frequency and with random amplitude and
phase. As an example consider the random process

x(t) = a · cos(100t + b) (3.7)

with a a normally (Gaussian) distributed random variable with mean value 0 and variance
1, b uniformly distributed in [−π, π], and a,b independent random variables.
This implies that every realization of this process has the character of a cosine-signal,
however with an amplitude and phase that are random. Five different realizations of this
random process are sketched in Figure 3.6.

Here we address the question to analyze µx(t) and Rx(t, t − τ).

Solution.

E[x(t)] =

∫ ∞

−∞

∫ π

−π
a · cos(100t + b)fa,b(a, b)dadb

Since a and b are statistically independent, their joint pdf is equal to the product of the
separate pdf’s, i.e., fa,b(a, b) = fa(a) · fb(b), and as a result

E[x(t)] = E[a] · E [(cos(100t + b))] = 0.

Rx(t, t − τ) = E
[
a2cos(100t + b)cos(100t − 100τ + b

]
(3.8)

= E

[
a2

2
{cos(100τ) + cos(200t − 100τ + 2b)}

]
(3.9)

following from the trigonometric rule that 2 · cosα · cosβ = cos(α + β) + cos(α − β).
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Figure 3.6: Five different realizations of the random process (3.7).

Since E[cos(200t − 100τ + 2b)] =
∫ π
−π cos(200t − 100τ + 2b) 1

2π db = 0, it follows that

Rx(t, t − τ) =
1

2
cos(100τ).

Note that the autocorrelation function is independent of the absolute time t; it is only
dependent on the time difference τ . It also shows that the autocorrelation function is
periodic in τ .
As every realization of the stochastic process is a cosine function with frequency 100 rad/sec,
it is not surprising that the correlation between time samples that are one period apart is
high. One period of the cosine refers to τ = 2π/100, which implies that cos(100τ) =
cos(2π) = 1, which is its maximum value.

The value of the autocorrelation function can be interpreted by considering a scaled version
of Rx(t, t − τ), which is denoted as the correlation coefficient ρx(t)x(t−τ) between the (zero
mean) random variables x(t) and x(t − τ) (see Appendix A1):

ρx(t)x(t−τ) =
Rx(t, t − τ)√

var{x(t)}var{x(t − τ)}
=

Rx(t, t − τ)√
Rx(0)Rx(0)

= cos(100τ).

The correlation coefficient directly relates the statistical relation between the random vari-
ables x(t) and x(t − τ). Because of its scaling it takes on real values between −1 and 1. If
|ρx(t)x(t−τ)| = 1, x(t) and x(t − τ) are linearly related.

As mentioned, the previous example clearly shows that a random process does not nec-
essarily generate signals that are “noisy”. In the example, all signals that are generated
are “nicely-behaving” sinusoids. In this case it is the non-deterministic character of the
amplitude and phase that leads to the random nature of this process.

3.4 Particular examples of stochastic processes

3.4.1 White noise process

Consider a real-valued stochastic process x(t) defined by the following properties:

• x(t) has a pdf fx(x) that is fixed for all t, with µx = 0;
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• x(t1) and x(t2) are independent random variables for all t1 6= t2.

This is also denoted as a sequence of zero mean identically distributed independent random
variables.

It follows that

Rx(t1, t2) = E[x(t1)x(t2)] = E[x(t1)] · E[x(t2)] = 0 ∀t1 6= t2

For t1 = t2:

Rx(t1, t1) = E[x(t1)
2] = var(x(t1)).

The autocorrelation (and also the autocovariance) function is zero for all t1, t2, except in
those values where t1 = t2.

This process has the (spectral) properties of a so-called white noise process, as explained
later in this chapter.

For processes (sequences) where the time is discrete, there are several ways to generate a
white noise process. The most straightforward example is to draw independent samples
from a random variable with a fixed zero-mean pdf (e.g., normal distribution or uniform
distribution). Since for all time instants the samples are drawn independently, there will be
no correlation in time and consequently the autocorrelation function Rx(t1, t2) will be 0 for
t1 6= t2. Typical time realizations are given in Figure 3.7. Note that a white noise process
generated by a uniform distribution has an amplitude that is bounded by the pdf-interval.
The Gaussian white noise can have any amplitude, although high amplitudes (larger than
3σ) have very small probability.

0 10 20 30 40 50
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−1

0

1

2

0 10 20 30 40 50
−2

−1

0

1

2

Figure 3.7: Realizations of two different white noise processes based on a Gaussian (normal)
pdf N (0, 1) (left), and on a uniform pdf over the interval [−1, 1] (right).

An alternative way to generate a white noise process in discrete time is given in section
3.4.5.

3.4.2 Random walk - Wiener process

In 1923, Norbert Wiener1 derived a random process model for Brownian motion, i.e., the
random movement of a small particle when immersed in a medium, due to a bombardment

1Norbert Wiener (1894-1964) was an American mathematician who is considered to be the founder of
modern (statistical) signal analysis.
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of the molecules of the medium.2 The principle of Brownian motion was explained by
Albert Einstein in 1905. The Wiener process can be derived as a limiting behaviour of a
so-called random walk.

Consider a stochastic process defined by

x(n) =

n∑

k=1

ak ai = ±d

with d a real-valued number.
A possible realization of x(n) is indicated in Figure 3.8. At every (discrete) time step, a
coin is tossed and dependent on its outcome (head or tail) a positive or a negative step
(±d) is added to the previous signal value.

Figure 3.8: Realization of random walk

E[x(n)] =

n∑

k=1

E[ak] = 0 (3.10)

E[x(n)2] = E
[
(a1 + a2 + · · · + an)2

]
= nd2 (3.11)

On the basis of this one can construct a continuous process:

y(t) =

{
0, t = 0

x(n), (n − 1)T < t ≤ nT, n = 1, 2, 3, · · ·

Then at t = nT :

E[y(t)] = 0 t = nT (3.12)

E[y2(t)] = nd2 =
t

T
d2 (3.13)

2For an illustrative example showing Brownian motion see
http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/applet.html.

http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/brownian/applet.html
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If we take the limit for T → 0, d → 0, with d2

T = α constant, a so-called Wiener process
w(t) results, having the following properties:

• w(t) is continuous in time and amplitude;

• w(t) has independent increments, i.e., ∀t1 < t2 < tk : w(tk) − w(t2), w(t2) − w(t1)
are mutually independent;

• E[w(t)] = 0, E[w2(t)] = αt

• Because w(t) is constructed as a summation of n independent, identically distributed
random variables, the Central Limit Theorem (CLT) (see section A.5) shows that
w(t) has a Gaussian probability density function for n → ∞.

w(t) has mean value 0 and a variance that grows linearly with t. An example of a realization
of a Wiener process is given in figure 3.9.
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y(t)

Figure 3.9: Realization of a Wiener process

3.4.3 Poisson random process

The Poisson process is a continuous-time, discrete-amplitude random process that is used
to model random phenomena that are the result of a counting process, as, e.g., the emission
of photons from a light-emitting diode, or the number of α-particles from a radio-active
source arriving at a particular point in an image over a fixed observation time, or electrons
arriving at a positively charged plate.
It is based on the positioning of n points randomly in the interval (0, T ).
When randomly positioning 1 point in the time interval (0, T ) the probability that it is
positioned in (t1, t2) equals t2−t1

T . In other words: the probability that it is positioned in
an interval of length t equals t/T .
Now as a generalization of this, we randomly position n points, and the counting function
y(t) denotes the number of events in an interval of length t. Then

P [y(t) = k] =

(
n
k

)
pkqn−k
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with p = t/T and q = 1 − p.

For n >> 1, p << 1, but np ≈ 1 the Poisson theorem states that the above mentioned
probability can be approximated by (see e.g. Papoulis, 1991):

(
n
k

)
pkqn−k ≃ (np)k

k!
e−np.

For n → ∞, p → 0 and np = nt/T → λt with λ = n/T the average number of events per
time unit, it follows that

P [y(t) = k] =
(λt)k

k!
e−λt.

A random process with this property is called a Poisson process, under the additional
restriction that the number of events in nonoverlapping time intervals are independent. A
typical realization y(t) is sketched in Figure 3.10.
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Figure 3.10: One realization y(t) of the Poisson random process.

Mean value

E[y(t)] =
∑

k

k · P [y(t) = k] =
∑

k

k
(λt)k

k!
e−λt = λt.

This can be understood by realizing that
∑∞

k=1 k ak

k! = aea which is a result of differentiating

the standard series expansion ea = 1 +
∑∞

k=1
ak

k! with respect to a.

Variance

var{y(t)} = E[y(t) − E(y(t))]2 = E[y2(t)] + (E[y(t)])2 − 2(E[y(t)])2

= E[y2(t)] − (E[y(t)])2 (3.14)

The first term in this expression is given by

E[y(t)2] =
∑

k

k2 (λt)k

k!
e−λt.
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Differentiating aea =
∑

k k ak

k! with respect to a delivers:

ea(1 + a) =
∑

k

k2 ak−1

k!

aea(1 + a) =
∑

k

k2 ak

k!

a(1 + a) =
∑

k

k2 ak

k!
e−a

= E[y(t)2] for a = λt. (3.15)

As a result E[y2(t)] = λt(1 + λt) and (3.14) shows that

var{y(t)} = λt(1 + λt) − (λt)2 = λt.

For a more thorough description of the Poisson process the reader is referred to Dekking et
al. (2005).

3.4.4 Continuous-time random binary waveform

x(t) =
∞∑

k=−∞

akp(t − kT − b)

with p(·) a unit pulse of duration T , see figure 3.11.

t -->

p(t)

T

1

Figure 3.11: Unit pulse function p(t)

ak is a binary random variable:

P [ak = +1] = P [ak = −1] =
1

2
,

and b is a continuous random variable with a uniform distribution in [0, T ]. All pulse
amplitudes ak are independent.

For any value of t, x(t) has one of two possible values ±1, with equal probability, because
it is determined by a single variable ak. Hence the mean and variance of x(t) are

E[x(t)] = 0; E[x2(t)] = 1.

The autocorrelation Rx(t1, t2) is given by
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b

T

t

1

-1

Figure 3.12: Random binary waveform

Rx(t1, t2) = 1 − |t2 − t1|
T

, |t2 − t1| < T (3.16)

= 0 elsewhere.

The derivation of this is as follows:

For 0 < t1 < t2 < T :

x(t1)x(t2) = 1 if 0 < b < t1 or t2 < b < T

= ±1 if t1 ≤ b ≤ t2.

If t1 < b < t2 then the probability that x(t1) and x(t2) have different sign is 1/2.

E[x(t1)x(t2)] = E{x(t1)x(t2)|0 < b < t1, or t2 < b < T} · P [0 < b < t1 or t2 < b < T ] +

+E [x(t1)x(t2)|t1 < b < t2] · P [t1 < b < t2]

= 1 ·
[
1 − (t2 − t1)

T

]
+ 1 · 1

2
· (t2 − t1)

T
− 1 · 1

2
· (t2 − t1)

T

= 1 − (t2 − t1)

T
.

Interchanging the role of t1 and t2 shows the validity of the expression (3.16).

For |t2− t1| > T there does not exist a statistical relation anymore between x(t1) and x(t2)
because of the randomly occurring sign-changes. As a result Rx(t1, t2) = 0 for |t2− t1| > T .

3.4.5 Discrete-time random binary process

In the discrete-time situation, i.e., when the time axis is a discrete sequence of time instants,
the following random binary waveform can be considered:

x(t) =

∞∑

k=−∞

akδ(t − k), t = · · · ,−2,−1, 0, 1, 2, · · ·

with δ(t) a discrete pulse function, as indicated in Figure 3.13.
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Figure 3.13: Discrete pulse function δ(t) (left) and a realization of random binary process
(right)

ak is a binary random variable:

P [ak = +1] = P [ak = −1] =
1

2
,

while all pulse amplitudes ak are independent, which implies that E[akaℓ] = 0 for k 6= ℓ.

For any value of t, x(t) has one of two possible values ±1, with equal probability, because
it is determined by a single variable ak. As a result the mean and variance of x(t) are
determined by

E[x(t)] =
∞∑

k=−∞

δ(t − k) · E(ak) = 0;

E[x2(t)] = 1.

The autocorrelation Rx(t1, t2) is given by

Rx(t1, t2) = E

[
∞∑

k=−∞

akδ(t1 − k)

∞∑

ℓ=−∞

aℓδ(t2 − ℓ)

]
(3.17)

= E[at1at2 ] (3.18)

=

{
0 t1 6= t2
1 t1 = t2

(3.19)

This shows that the random binary process is indeed a white noise process. The auto-
correlation function of this process can be further influenced by adapting the probabilistic
properties of the amplitudes ak, e.g. by

P [ak = ak−1] = α P [ak = ak−1] = 1 − α.

A white noise process will only result if α = 0.5.

3.4.6 Gaussian process

A random process is called Gaussian if all n-th order distribution functions
Fx1,x2,···xn(x1, x2, · · · xn) are n-variate Gaussian distributions, i.e.,

Fx1,···xn(x1, · · · xn) =∫ x1

−∞
· · ·
∫ xn

−∞

1

(2π)n/2
√

det(Σx)
exp

(
−1

2
(x − µx)T Σ−1

x (x − µx)

)
dx1 · · · dxn.

See also Appendix A.
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3.4.7 Autoregressive process

A special class of random processes is formed by the so-called autoregressive (AR) processes.
A discrete-time autoregressive process is one represented by a difference equation of the
form:

x(t) = α1x(t − 1) + α2x(t − 2) + · · · + αpx(t − p) + e(t) (3.20)

where x(t) is a real random sequence, αi, i = 1, . . . , p are real-valued constant coefficients,
and e is a discrete-time white noise process, that is,

E[e(t)] = 0, ∀t (3.21)

E[e(t1)e(t2)] =

{
σ2
e, t1 = t2

0, t1 6= t2
(3.22)

If the difference equation is of the order p (i.e., αp 6= 0), then the process is called a pth
order autoregressive process (denoted by AR(p)).

First order autoregressive process

Let us now consider the AR(1) process in more detail. An AR(1) process is described by
the following difference equation:

x(t) = αx(t − 1) + e(t) (3.23)

where e is a white noise process, and α is a real-valued constant. To study the properties of
this model, we start by solving the difference equation (3.23) so as to obtain an expression
for x(t) in terms of e(t), e(t− 1), e(t− 2), . . .. The precise solution of this equation depends
on the ”initial condition”, so let us suppose that initially x(0) = 0, so that x(1) = e(1).
Then solving (3.23) by repeated substitution we obtain

x(t) =

t−1∑

i=0

αie(t − i). (3.24)

Since e is a white noise process, it follows that E[x(t)] = 0 and

E[x2(t)] = E

[(
e(t) + αe(t − 1) + α2e(t − 2) + · · · + αt−1e(1)

)2]
(3.25)

= σ2
e

(
1 + α2 + α4 + . . . + α2(t−1)

)
(3.26)

=

{
σ2
e

(
1−α2t

1−α2

)
, |α| 6= 1

σ2
et, |α| = 1

(3.27)

Similarly, we find for the autocorrelation function of x (if τ ≥ 0):

Rx(t + τ, t) := E[x(t + τ)x(t)]

= E
[(

e(t + τ) + αe(t − 1 + τ) + · · · + ατe(t) + · · · + αt−1+τe(1)
)

(
e(t) + αe(t − 1) + · · · + αt−1e(1)

)]

= σ2
e

(
ατ + ατ+2 + . . . + ατ+2(t−1)

)

=

{
σ2
e · ατ

(
1−α2t

1−α2

)
, |α| 6= 1

σ2
et, |α| = 1

(3.28)
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Similarly we find for τ ≤ 0 (if t > |τ |):

Rx(t + τ, t) =

{
σ2
e · α−τ

(
1−α2t

1−α2

)
, |α| 6= 1

σ2
et, |α| = 1

(3.29)

The proof is left as an exercise to the reader. Generally, both E[x2(t)] and Rx(t + τ, t) are
functions of the absolute time t. However, if |α| < 1 we may argue that for t sufficiently
large,

E[x2(t)] ≈ σ2
e

1 − α2
,

Rx(t, t + τ) ≈ α|τ | σ2
e

1 − α2
. (3.30)

The right hand side of (3.30) is now a function of the time difference τ only. AR processes
will be discussed more extensively in section 4.3

3.5 Cross-correlation and cross-covariance functions

When considering two different stochastic processes, the following notions are instrumental
in describing and quantifying statistical relationships between the two processes.

Cross-correlation function:

Ryx(t1, t2) := E[(y(t1)x
∗(t2)] (3.31)

Cross-covariance function:

Cyx(t1, t2) := E[(y(t1) − µy(t1))(x
∗(t2) − µ∗

x(t2))] (3.32)

These functions reflect the statistical relationship between two processes.

Two stochastic processes x and y are called:

• uncorrelated if Cyx(t1, t2) = 0, ∀t1, t2 ∈ Γ

• orthogonal if Ryx(t1, t2) = 0, ∀t1, t2 ∈ Γ

• independent if all joint distribution functions are equal to the product of the corre-
sponding single-variable distribution functions; this implies e.g. that

P [x(t1) ≤ x1, y(t2) ≤ y2] = P [x(t1) ≤ x1] · P [y(t2) ≤ y2] .

Example 3.4 (Time-delayed white noise process) Suppose an acoustic noise signal
is observed by a sensor at a particular location, i.e., x(t) = v(t) with v(t) a stochastic
process with zero mean and variance σ2

v for all t. The same acoustic noise is also observed
at a different location, with a sensor y(t) and will appear as a time-delayed version of the
signal that is measured at sensor x, i.e., y(t) = v(t − τ).
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The relation between x and y is reflected in the cross-correlation function:

Ryx(t1, t2) = E[v(t1 − τ)v(t2)].

In the particular situation that v is a white noise process, it follows that

Ryx(t1, t2) = σ2
v for t2 = t1 − τ

= 0 elsewhere

or

Ryx(t, t − k) = σ2
v for k = τ (3.33)

= 0 elsewhere

The cross-correlation function is independent of t, and only dependent on the time difference
between t2 and t1, as reflected in the latter expression.
Note that in this case the relation between the stochastic processes x and y is given by
y(t) = q−τx(t). This time delay of τ time steps, appears similarly in the cross-correlation
function as a (discrete) delta function shifted over τ time steps: Ryx(t, t− k) = σ2

vδ(k− τ).
This is depicted in figure 3.14.

Ryx(t,t-k)

kττττ

1

Figure 3.14: Ryx(t, t − k) = σ2
vδ(k − τ) (example 3.4).

Example 3.5 (Detection of a phase shift in two noise disturbed sinusoids) Suppose
that measurements are available of two stochastic processes u and y, being sinusoids of given
amplitude and fixed frequency, but disturbed by additive noise:

u(t) = sin(ωt) + v1(t) (3.34)

y(t) = sin(ωt + ϕ) + v2(t) (3.35)

with ω fixed but possibly unknown, ϕ fixed but unknown, and v1,v2 uncorrelated zero-mean
stochastic processes. Determine ϕ from the cross-correlation function Ryu(t, t − τ).

Solution

Ryu(t, t − τ) = E[sin(ωt + ϕ) + v2(t)][sin(ω(t − τ)) + v1(t − τ)] (3.36)

= 0.5[cos(ϕ + ωτ) − cos(2ωt + ϕ − ωτ)] + Ev2(t)v1(t − τ) (3.37)

= 0.5[cos(ϕ + ωτ) − cos(2ωt + ϕ − ωτ)]. (3.38)
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The cross-correlation function is sketched in figure 3.15(left) as a function of t and τ , for
ω = 5rad/sec and ϕ = π/4.
For a fixed value τ = τf the cross-correlation function is a function of t only. In that case
ω can be determined from the period length of the periodic signal Ryu(t, t − τf ), while ϕ
can be determined with the following procedure:
Suppose the function Ryu(t, t − τf ) reaches a maximum value of rmax, then

0.5[cos(ϕ + ωτf ) + 1] = rmax.

As a result:
ϕ = −ωτf ± arccos(2rmax − 1). (3.39)

The curve Ryu(t, t − τf ) is sketched in figure 3.15(right) for τf = 1. Substituting the
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Figure 3.15: Left: Ryu(t, t − τ) for ω = 5rad/sec and ϕ = π/4; right: Ryu(t, t − τf ) for
τf = 1.

numerical values, leads to:

ϕ = −5 ± arccos(2 · 0.9393 − 1) = −5 ± 0.4978rad.

As a result: ϕ = −1.75π or −1.43π. The first solution corresponds to π/4 rad. The duality
in the expression (3.39) can be removed, by either incorporating a second curve Ryu(t, t−τf )
for another value of τf , or by determining the phase shift ϕ − ωτf in the cross-correlation
function Ryu(t, t − τf ).

From the definitions the following two expressions are immediate:

• If two stochastic processes are independent they are also uncorrelated.

• If two processes x, y are uncorrelated then Ryx(t1, t2) = µy(t1)µx(t2).

3.6 Stationarity

Several properties of a stochastic process can be invariant over time. While separate signals
taken from the ensemble clearly exhibit time-dependent behavior, the statistical properties
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of the process can be time-invariant. To this end there are several notions of stationarity
of a stochastic process, depending on whether all or only part of the distribution functions
and moments thereof are time-invariant. Basically a stochastic process is called stationary
if its statistical properties are independent of time. We distinguish two different concepts:

• Strict sense stationary (SSS): all joint distribution functions are invariant under a
shift in time. This means that for all values of t1, · · · tn, and for all values of τ and n:

P [x(t1) ≤ x1,x(t2) ≤ x2, · · · x(tn) ≤ xn] = (3.40)

P [x(t1 + τ) ≤ x1,x(t2 + τ) ≤ x2, · · ·x(tn + τ) ≤ xn] (3.41)

• Wide sense stationary (WSS) or weakly stationary: the first two moments are inde-
pendent of time t, i.e., the mean value and the autocorrelation function are indepen-
dent of time:

E[x(t)] = µx, constant (3.42)

E[x(t)x∗(t − τ)] = Rx(τ) (3.43)

for all values of t and τ .

It is straightforward to show that strict-sense stationarity (SSS) implies wide-sense station-
arity (WSS). However the converse is in general not true. There is an important exception:
for Gaussian stochastic processes, wide-sense stationarity implies strict-sense stationarity.
This follows from the fact all statistical properties of a Gaussian stochastic process are de-
termined by its mean and autocorrelation function, which is a direct result of the description
of the multivariate Gaussian probability density function (A.10).

Two stochastic processes are ”jointly” stationary (in SSS or in WSS sense) if each of the
two is stationary, and if additionally all joint distribution functions (for SSS-sense) or their
first two moments (for WSS-sense) are time-invariant.

An example of a non-stationary stochastic process is the noise disturbed sinusoidal

u(t) = sin(ωt) + v1(t)

of Example 3.5.
While Ev1(t) = 0 for all t, Eu(t) = sin(ωt) is time-varying, and therefore the conditions
for wide-sense stationarity are not met.
A typical example of such a situation is found in speech signals, of which an example is
given in figure 3.16. The several vowels and consonants appear in particular time frames
and lead to time-dependent correlation properties.
Except for the Wiener and the Poisson process, the white noise stochastic processes de-
scribed in sections 3.4 are all wide sense stationary, as can easily be verified from the fact
that mean value and autocorrelation function are independent of absolute time.

3.7 First and second order moments of WSS-processes

3.7.1 Introduction

The role of first and second order moments (mean value and correlation function) of WSS
processes is twofold:
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Figure 3.16: Speech signal

• To specify properties, i.e., to model stochastic processes; and in particular

• to find expressions for the distribution of power of the processes over frequency.

For deterministic types of signals the power or energy distribution of a signal over frequency
can directly be obtained from Fourier analysis. For stochastic processes a different approach
has to be followed, since the transformation of a single time sequence or signal does not only
reflect the structural properties of the underlying stochastic process, but also the specific
realization that is taken from the process.

3.7.2 Autocorrelation and autocovariance function

First we consider the autocorrelation function of a real-valued wide-sense stationary stochas-
tic process.

Rx(τ) = E[x(t)x(t − τ)] (3.44)

The variable τ is called the lag. It represents the shift between the two processes that
are considered. It may take on both positive and negative values. The following basic
properties of an autocorrelation function can be observed:

1. The mean power of the process:

Rx(0) = E[x2(t)] ≥ 0.

2. Rx(τ) is an even function
Rx(τ) = Rx(−τ).

This is a direct result of the definition.
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3. Rx(τ) is bounded by Rx(0)

|Rx(τ)| ≤ Rx(0).

This can be shown as follows:

{
E[(x(t + τ) − x(t))2] ≥ 0
E[(x(t + τ) + x(t))2] ≥ 0

⇒

{
2Rx(0) − 2Rx(τ) ≥ 0
2Rx(0) + 2Rx(τ) ≥ 0

⇒

−Rx(0) ≤ Rx(τ) ≤ Rx(0).

4. If x(t) is periodic, then Rx(τ) will have the same periodic component, i.e., if x(t+T0) =
x(t) for all t, then

Rx(τ) = E[x(t)x(t − τ)] = E[x(t)x(t − τ − T0)] = Rx(τ + T0).

5. If Rx(T0) = Rx(0) for some T0 6= 0 then Rx(τ) is periodic with period T0, i.e.,

Rx(τ + T0) = Rx(τ).

The proof of this follows from the inequality

{E[(x(t + τ + T0) − x(t + τ))x(t)]}2 ≤ E[(x(t + τ + T0) − x(t + τ))2] · E[x2(t)]

which originates from the Schwartz inequality (A.12).

Hence

[Rx(τ + T0) − Rx(τ)]2 ≤ [2Rx(0) − 2Rx(T0)]︸ ︷︷ ︸
=0

·Rx(0)

showing that Rx(τ + T0) = Rx(τ) for all τ .

These five properties of autocorrelation functions show that not every function can be an
autocorrelation function.

For discrete-time stochastic processes the allowable autocorrelation functions are exactly
characterized by the following two restrictions:

• Rx(τ) = Rx(−τ), and

• Rx(τ) constitutes a correlation matrix

Rx :=




Rx(0) Rx(1) · · · Rx(p − 1)
Rx(1) Rx(0) · · · Rx(p − 2)

...
...

. . .
...

Rx(p − 1) Rx(p − 2) · · · Rx(0)




that is positive semidefinite for any finite value of p.
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The latter condition is based on the property that if we consider any linear map

y := a1x(1) + a2x(2) + · · · + apx(p)

with ai any real-valued coefficients, and y a resulting random variable, then E[y2] which is
determined by

E[y2] = E[aTxxT a] = aTRxa ≥ 0

for all values of vector a = [a1 · · · ap]
T . Consequently Rx ≥ 0 for all values of p.

Example 3.6 Consider the discrete-time stochastic processes AR(1) x determined by the
following time-recursive relation

x(t) = αx(t − 1) + e(t) (3.45)

where e is a white noise stochastic processes, and α is a real-valued constant, |α| < 1. It
follows from subsection 3.4.7 that this process is asymptotically WSS. That is, x(t) is WSS
for t sufficiently large.
Consider the autocorrelation function of x:

Rx(τ) = E[x(t)x(t − τ)] = αE[x(t − 1)x(t − τ)] + E[e(t)x(t − τ)]. (3.46)

For positive values of τ the last term of this expression will be 0 due to the fact that x(t)
will only be correlated with past and present values of e but not with future ones. In that
case it follows that

Rx(τ) = αRx(τ − 1), τ ≥ 1 (3.47)

and consequently
Rx(τ) = ατRx(0), τ ≥ 1. (3.48)

For negative values of τ , Rx(τ) is simply obtained by following the property that Rx(τ) is
an even function, i.e., Rx(τ) = Rx(−τ).
In figure 3.17 the autocorrelation of this process is sketched for two different values of α,
while the signals are scaled so as to obtain two processes with the same mean power Rx(0).
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Figure 3.17: Autocorrelation function Rx(τ) of stochastic process x (3.45) for α = 0.9 (left)
and α = 0.2 (right) while the mean power of e is adjusted to obtain two processes with
equal mean power Rx(0).

The interpretation of the two curves in figure 3.17 is that the correlation of figure (a) ranges
over a longer horizon than the correlation of figure (b). One could state that the process
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Figure 3.18: One realization (time sequence) of the stochastic process x (3.45) for α = 0.9
(left) and α = 0.2 (right)

for α = 0.9 has a longer memory than for α = 0.2. As a result, time sequences from process
(a) will show a more smooth behaviour, while time sequences from process (b) will be more
erratic. In figure 3.18 two corresponding time sequences are plotted.
As can be observed from these figures, Rx(τ) will highly determine the frequency-content
of the stochastic process.

Example 3.7 (White noise process) A discrete-time white noise stochastic process x(t)
is determined by the property that it is a sequence of equally distributed zero-mean uncor-
related random variables, implying that

E[x(t)x(t − τ)] = 0, τ 6= 0.

There is no correlation between time samples at different time instants.

Autocovariance functions
The expressions for autocorrelation functions presented in the previous section can simply
be extended to the autocovariance functions:

Cx(τ) := E[(x(t) − µx)(x(t − τ) − µx)]. (3.49)

Whereas Rx(0) denotes the mean power of the process,

Cx(0) = E[(x(t) − µx)2] (3.50)

is the (mean) variance. It can be observed that

Rx(τ) = Cx(τ) + µ2
x. (3.51)

Since the autocovariance function is an autocorrelation function for processes with zero
mean, it follows that any property that holds for an autocorrelation function also holds for
an autocovariance function. This applies to all properties considered before:

1. Cx(τ) = Cx(−τ).
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2. |Cx(τ)| ≤ Cx(0).

3. If x(t + T0) = x(t) for all t, then Cx(τ) = Cx(τ + T0).

4. If Cx(T0) = Cx(0) for some T0 6= 0 then

Cx(τ + T0) = Cx(τ).

Along the same line of reasoning as applied to autocorrelation functions, the characterizing
properties of an autocovariance function are

• Cx(τ) = Cx(−τ), and

• Cx(τ) constitutes a covariance matrix

Σx :=




Cx(0) Cx(1) · · · Cx(p − 1)
Cx(1) Cx(0) · · · Cx(p − 2)

...
...

. . .
...

Cx(p − 1) Cx(p − 2) · · · Cx(0)




that is positive semidefinite, i.e., Σx ≥ 0 for any finite value of p.

3.7.3 Correlation and covariance matrices

When considering a discrete-time stochastic process x over a range of N time instants, the
resulting N random variables can be collected in a random vector:

x =




x(1)
x(1)

...
x(N)


 .

The correlation matrix of this vector random variable is denoted as

Rx := E




x(1)
x(2)

...
x(N)


 [x(1) x(2) · · · x(N)] (3.52)

which for wide-sense stationary processes satisfies

Rx =




Rx(0) Rx(1) · · · Rx(N − 1)
Rx(1) Rx(0) · · · Rx(N − 2)

...
...

. . .
...

Rx(N − 1) Rx(N − 2) · · · Rx(0)


 (3.53)

and by construction is a symmetric Toeplitz matrix. A Toeplitz matrix is a matrix with
equal elements on all diagonals and subdiagonals.
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Similarly, the covariance matrix of the vector random variable is denoted as

Σx := E




x(1) − µx

x(2) − µx

...
x(N) − µx


 [x(1) − µx x(2) − µx · · · x(N) − µx] (3.54)

leading to

Σx =




Cx(0) Cx(1) · · · Cx(N − 1)
Cx(1) Cx(0) · · · Cx(N − 2)

...
...

. . .
...

Cx(N − 1) Cx(N − 2) · · · Cx(0)


 (3.55)

which also is a symmetric Toeplitz matrix.

For a WSS stochastic process the correlation and covariance matrices do not change if the
N samples that are considered are taken over a shifted time period. Due to the stationarity
property the correlation and covariance functions are independent of the (absolute) time
and so a time-shift does not matter.

As formulated in section 3.7.2, the positive-semidefinite property of Rx and Σx is essential
in its characterization. It can simply be checked by calculating its eigenvalues. Since for a
symmetric matrix all eigenvalues are real-valued, for Rx and Σx to be positive semi-definite,
their eigenvalues should be ≥ 0.

Example 3.8 The autocorrelation function of a stochastic process is given by

Rx(τ) = 4 · (−0.5)|τ |.

The correlation matrix for N = 3 is




4 −2 1
−2 4 −2
1 −2 4


 .

This symmetric Toeplitz matrix has eigenvalues 7.4, 3.0 and 1.6. Due to the positivity of
all eigenvalues, the correlation matrix is positive definite.

For N = 4 the correlation matrix becomes




4 −2 1 −0.5
−2 4 −2 1
1 −2 4 −2

−0.5 1 −2 4


 .

The eigenvalues of this matrix are: 8.3, 4.0, 2.2 and 1.5, and again the correlation matrix
is positive definite.

It is shown in example 3.6 that the considered function can indeed be the autocorrelation
of a WSS stochastic process; therefore the positive semidefinite property will hold for all
values of N .
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3.7.4 Power spectral density function

For a real-valued wide-sense stationary stochastic process, we define the
Mean power as

E[x2(t)] = Rx(0). (3.56)

Because of the WSS-property of the process, this notion is independent of the absolute time
t.
One is generally interested in determining how the mean power of a process is distributed
over different frequency components. This can be obtained by writing the mean power as
an integral over frequency.

Continuous-time case
We first will consider the continuous-time situation.
In that case one is looking for a density function Φx(ω) that satisfies:

Rx(0) =
1

2π

∫ ∞

−∞
Φx(ω)dω. (3.57)

It can simply be verified that this expression holds true for a particular choice of function
Φx(ω), namely the
Power spectral density function:

Φx(ω) :=

∫ ∞

−∞
Rx(τ)e−iωτ dτ (3.58)

which of course is simply related to the autocorrelation function by Fourier transform:

Rx(τ)
Fourier⇔ Φx(ω). Expression (3.58) is known as the Wiener-Khinchine or the Wiener-

Khinchine-Einstein relation.

Note that the validity of (3.57) can simply be verified by writing the inverse Fourier trans-
form:

Rx(τ) =
1

2π

∫ ∞

−∞
Φx(ω)eiωτ dω, (3.59)

which reduces to (3.57) by taking τ = 0.
The simple fact that the definition (3.58) satisfies (3.57) does not warrant a sensible def-
inition of spectral density; it only puts a limitation on integral properties of Φx(ω) when
integrated over frequency.
However the expression (3.57) holds for all WSS stochastic processes, and therefore also for
narrow-band processes that build up their power only in a very small frequency range. In
order to examine this, consider e.g. the stochastic process

x(t) =

n∑

i=1

aisin(ωit + θi) (3.60)

with ai ∈ R given constants and θi independent random variables with a uniform distribu-
tion over [−π, π].

Problem 3.9 Verify that for stochastic process x it follows that

Rx(τ) =
n∑

i=1

1

2
a2

i cos(ωiτ) (3.61)
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and consequently

Φx(ω) =
π

2

n∑

i=1

a2
i [δc(ω − ωi) + δc(ω + ωi)] (3.62)

where δc is the continuous-time Dirac function.

Equation (3.62) shows that the spectral density function not only leads to a total power
(integrated over frequency) that is correct, but that it also has appropriate properties that
are localized in frequency: a sinusoidal signal of one particular frequency contributes to the
power spectral density function in terms of Dirac functions at that same frequency.

Properties of power spectral density functions

• Φx(ω) ≥ 0 and real-valued for all ω

• When x(t) is real-valued, Rx(τ) is an even function and so Φx(ω) is even too:

Φx(ω) = Φx(−ω)

• If x(t) has periodic components then Φx(ω) contains impulse functions (Dirac func-
tions).

Discrete-time case
In case of a discrete-time stochastic process, time is not a continuous variable but it is
discretized. Following the same reasoning as above we now get the expressions

Rx(0) =
1

2π

∫ π

−π
Φx(ω)dω (3.63)

which is being realized by the spectral density function 3

Φx(ω) :=
∞∑

k=−∞

Rx(k)e−iωk
(3.64)

being a function that is periodic in frequency with period 2π.
Again the correctness of (3.63) can be verified by considering the inverse (Discrete-Time)
Fourier Transform

Rx(k) =
1

2π

∫ π

−π
Φx(ω)eiωkdω (3.65)

and substituting k = 0.
For an overview of the considered Fourier Transforms, see section 2.6.

The power spectral density of the process considered in example 3.6 is sketched in figure
3.19. As can be clearly observed the process with a = 0.9 has higher power density in
the lower frequency range, whereas for a = 0.2 the power spectral density becomes more
flat, and the higher frequencies are more dominantly present. Since both processes have
the same power E[x2(t)] = Rx(0) (see figure 3.17) the integral of both spectral density
functions is equal. In the “visual” inspection of this equality one has to take account of the
fact that in the right side plot of the figure logarithmic scales are used.

3For some future analysis of spectral density functions a notation Φx(eiω) will appear to be more appro-
priate. However for simplicity of notation the expression Φx(ω) will be used here.
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Figure 3.19: Power spectral density function Φx(ω) of process x (3.45) for a = 0.9 (a) and
a = 0.2 (b), with linear (left) and logarithmic (right) frequency scale.

Example 3.10 (Power spectral density of a white noise process) A discrete-time
white noise stochastic process x with variance σ2

x (example 3.7) has a power spectral density
function that is given by

Φx(ω) = σ2
x for all ω. (3.66)

The property of having a constant (flat) power spectral density function, is exactly the
reason why this process is called “white”.

3.7.5 Cross-correlation and cross-covariance functions

For two real-valued stochastic processes that are jointly WSS, the cross-correlation function
will be independent of time, and therefore one can write:

Ryx(τ) = E[y(t)x(t − τ)]

Properties:

1. Ryx(τ) = Rxy(−τ)

2. |Ryx(τ)| ≤
√

Rx(0)Ry(0).
With the use of the Schwartz inequality (A.12) it follows that

[E(y(t)x(t − τ))]2 ≤ Ey2(t) · Ex2(t − τ).

3. |Ryx(τ)| ≤ 1
2 [Rx(0) + Ry(0)]

The proof of this equation is obtained from considering

{
E[y(t) − x(t − τ)]2 = Rx(0) + Ry(0) − 2Ryx(τ) ≥ 0
E[y(t) + x(t − τ)]2 = Rx(0) + Ry(0) + 2Ryx(τ) ≥ 0

⇒

{
Ryx(τ) ≤ 1

2 [Rx(0) + Ry(0)]
Ryx(τ) ≥ −1

2 [Rx(0) + Ry(0)]

4. If (x,y) orthogonal, then Ryx(τ) = 0 for all τ .
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For two stochastic processes that are jointly WSS, the cross-covariance function will also
be independent of time, and therefore one can write:

Cyx(τ) = E[(y(t) − µy)(x(t − τ) − µx)]

If (x,y) independent or uncorrelated, then Cyx(τ) = 0 implying Ryx(τ) = µxµy for all τ .

3.7.6 Cross-power spectral densities

We focus on the discrete time. The Fourier transform of the cross-correlation function is
referred to as the cross-power spectral density:

Φyx(ω) =
∞∑

k=−∞

Ryx(k)e−iωk (3.67)

Ryx(k) =
1

2π

∫ π

−π
Φyx(ω)eiωkdω (3.68)

Unlike the situation of the power spectral density, the cross-power spectral density is in
general a complex-valued function, characterized by an amplitude and a phase function.
The following properties can directly be derived from its definition:

• Φyx(ω) is complex-valued.

• Φyx(ω) = Φ∗
yx(−ω) i.e., its real part is even and its imaginary part is odd.

• Φyx(ω) = Φ∗
xy(ω); this is a result of the property that Ryx(τ) = Rxy(−τ).

• Φyx(ω) = 0 if x and y are orthogonal.

The cross-power spectral density function describes the statistical relationship between two
processes x and y in the frequency domain.
The question can be raised if there is a notion of (mean) power related to

Ryx(0) = E[y(t)x(t)]

similar to the situation of power spectral densities?
In order to illustrate this, let y(t) = αx(t) + w(t) with E[x(t)w(t)] = 0 and α a scalar.
Then

E[y(t)x(t)] = α · E[x2(t)] + E[x(t)w(t)] (3.69)

= α · E[x2(t)] = E[
√

α · x(t)]2 (3.70)

is the power of
√

α ·x(t), a process that is the square root of the product (i.e., the geometric
“mean”) of x(t) and α · x(t). This latter process actually is the “projection” of y(t) onto
x(t).

Cross-correlation functions and cross-power spectral densities are used to characterize statis-
tical relationships between two stochastic processes. Consider, e.g., the vibration behaviour
of a car when it travels on a bumpy road. Since the source of the vibration (the particular
road profile) will essentially generate all vibrations on several locations on the car frame,
the acceleration signals that can be measured from different parts of the frame will show
statistical dependencies.
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3.8 Time-averaging and ergodicity

In this section we briefly consider the relation between averaging over time (of one time
signal), and averaging over the ensemble.

Consider for example a constant c which is measured at several time instants, subject to a
zero-mean disturbance signal w(t), leading to a time signal

x(t) = c + w(t).

In order to estimate c, one can e.g. just pick a measurement at any time instant t1, i.e.,
ĉ = x(t1). However since w(t) is zero-mean, one may expect that averaging over time, i.e.,

ĉ =
1

m

m∑

i=1

x(ti)

will lead to an estimate that is much more reliable.

The averaging over ensemble samples will in general be quite complicated. It requires
an (infinite) repetition of experiments. In general one will need to estimate properties of
a stochastic process on the basis of a single measured time series. The question will be
considered under which conditions separate time series contain characteristic information
on the underlying stochastic process.

The analysis of time-averaged estimators for first and second order moments of WSS
stochastic processes will be analyzed in detail in one of the future chapters. Here only
brief attention will be given to some general notions and concept definitions.

We consider the following definitions and notation for any function g of a stochastic process:

Time averages:

< g[x(t)] >T :=
1

T

∫ T/2

−T/2
g[x(t)] dt continuous-time (3.71)

:=
1

m

m∑

i=1

g[x(i)] discrete-time (3.72)

Ensemble-means:

E [g[x(t)]] :=

∫ ∞

−∞
g(α)fx(α)dα continuous r.v. (3.73)

:=
∑

i

g(xi)P (x = xi) discrete r.v. (3.74)

Time-averaged mean:

〈x(t)〉T := 〈µx〉T :=
1

T

∫ T/2

−T/2
x(t)dt continuous-time (3.75)

〈x(t)〉N := 〈µx〉N :=
1

N

N∑

i=1

x(i) discrete-time (3.76)
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Time-averaged autocorrelation: (sample autocorrelation)

〈x(t)x(t − τ)〉T := 〈Rx(τ)〉T :=
1

T

∫ T/2

−T/2
x(t)x(t − τ)dt (3.77)

〈x(t)x(t − k)〉N := 〈Rx(k)〉N :=
1

N

N∑

i=1

x(i)x(i − k) (3.78)

Note that a principal difference between time-averages and ensemble-means is that a time-
average is a random variable, while an ensemble-mean is a fixed (deterministic) quantity.

Example 3.11 Consider the stochastic process containing 6 signals:

x1(t) = 5; x2(t) = 3; x3(t) = 1; x4(t) = −1; x5(t) = −3; x6(t) = −5,

while the probability of each realization is 1/6. For this process, Ex(t) = 0 for all t, but
time-averaging delivers a different value of 〈x(t)〉T for every realization.

Consequently a single time series from this stochastic process does not contain full infor-
mation on the stochastic process.

Stochastic processes of which each time signal has the characteristics of the full stochastic
process are referred to as ergodic processes.

Ergodicity

A stationary stochastic process x(t) is ergodic if its ensemble means are equal (in mean
square sense) to corresponding time-averages.

This implies:

• Expected valued of time-average is equal to the ensemble-mean, and

• The variance of the time-average tends to 0 for N → ∞.

The following two forms of ergodicity are distinguished:

• Ergodicity in the mean, characterized by the properties that

E [〈x(t)〉N ] = E[x], and var{〈x(t)〉N} −→
N→∞

0

• Ergodicity in the autocorrelation function, characterized by the property that

E [〈x(t)x(t − k)〉N ] = Rx(k), and var{〈x(t)x(t − k)〉N} −→
N→∞

0

Questions concerning ergodicity actually reflect whether estimates of characteristic proper-
ties of stochastic processes that are based on averaging over one realization of the process,
have the desirable property that they provide accurate knowledge of the underlying process
itself. More will be said about this when discussing estimation procedures for stochastic
process models.
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3.9 Summary

In this chapter a probabilistic modelling framework is presented for characterizing signals
that or not exactly reproducible, i.e., signals that typically vary under experiment repeti-
tion. The framework of stochastic processes has been introduced, leading to the modelling
of a measurement signal as one realization of a whole ensemble of realizations that are
considered as possible outcomes of the measurement experiment. Mean values and au-
tocorrelation functions are the important notions for characterizing typical properties of
the underlying process. Two different signals/processes can be related through their in-
terdependence that appears in the cross-correlation function. The power spectral density
function characterizes which frequency regions contribute to the power of the signals, and
this gives input to the design of filters that are designed towards influencing this power
distribution.
Linear filtering of stochastic processes is the topic of the next chapter.
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Linear filtering of stochastic
processes

Like deterministic signals, stochastic signals can be processed by linear dynamic
filters. Filters allow to influence the characteristic properties of the signals with
interpretations in both time and frequency domain. Additionally the concept of
linear filters can be used to model the dynamic properties of stochastic processes
as the output of a linear filter being excited by white noise.

4.1 Stochastic processes related through linear dynamical

systems

One of the basic operations that can be applied to a stochastic process is that of filtering the
stochastic process with a linear time-invariant finite-dimensional dynamical system. This
means that a given stochastic process u(t) is applied as input to a dynamical system G,
leading to an output stochastic process y, as schematically depicted in the block diagram
in figure 4.1.

G

u
 y


Figure 4.1: Filtering a stochastic process u by a linear dynamical system G.

As in the case of deterministic signals, one can shape the properties of the output sig-
nal/process by the appropriate design of the system G.

Following the notation and concepts for linear discrete-time dynamical systems, as presented
in section 2.5, a linear discrete-time causal system can be represented by the convolution
expression

y(t) =
∞∑

k=0

g(k)u(t − k) t = 0, 1, 2, · · · (4.1)

59
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where {g(k)}k=0,1,··· is the pulse response of the system, and y and u are (deterministic)
output and input signals.

For deterministic signals for which a Fourier transform exists1, the input-output relation
(4.1) can be written in the frequency domain as:

Y (eiω) = G(eiω)U(eiω) (4.2)

with Y (eiω), U(eiω) and G(eiω) determined by the Fourier/z-transform:

Y (z) =

∞∑

k=−∞

y(k)z−k

U(z) =
∞∑

k=−∞

u(k)z−k

G(z) =
∞∑

k=0

g(k)z−k (4.3)

For random input signals (stochastic processes) these relations can not be used straightfor-
wardly, as the Fourier transform may not exist for these signals.

However the convolutional description (4.1) remains applicable. This implies that for a
causal filter G with transfer function G(z), an input-output relationship is determined
given by

y(t) =

∞∑

k=0

g(k)u(t − k) t = 0, 1, 2, · · · (4.4)

specifying a stochastic process y(t), based upon the input stochastic process u(t), while
g(k) is defined by (4.3). In this way a transfer function G(z) can be used to describe the
relationship between two stochastic processes.

Next some of the most important properties of the stochastic process y(t) are discussed.

Wide sense stationarity of y

For the mean value E[y(t)] it follows directly that

E[y(t)] =
∞∑

k=0

g(k) · E[u(t − k)]. (4.5)

If µu = E[u(t)] is independent of time t, this reduces to

E[y(t)] =

∞∑

k=0

g(k) · µu = G(z)|z=1 · µu. (4.6)

A direct consequence is that if u(t) is a zero mean stochastic process, then y(t) is also
zero-mean. If u(t) has a non-zero mean value, this mean value gets amplified by the factor
G(z)|z=1, which is the static gain of the system G.

1The requirements for a discrete-time Fourier transform of a signal x to exist, are that either∑∞
k=−∞ |x(k)| < ∞ or that

∑∞
k=−∞ |x(k)|2 < ∞.
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For the autocorrelation function we write:

Ry(t1, t2) = E[y(t1)y(t2)] = (4.7)

= E{
∞∑

k=0

g(k)u(t1 − k)

∞∑

ℓ=0

g(ℓ)u(t2 − ℓ)] (4.8)

=

∞∑

k=0

∞∑

ℓ=0

g(k)g(ℓ) · Ru(t1 − k, t2 − ℓ). (4.9)

If Ru(t1, t2) is independent of time, but dependent on t1 − t2 only, then

Ry(t1, t2) =

∞∑

k=0

∞∑

ℓ=0

g(k)g(ℓ) · Ru(t1 − t2 + ℓ − k) (4.10)

which shows that in that case Ry(t1, t2) is a also function of t1 − t2 only, and therefore is
independent of absolute time.

The results for mean value and autocorrelation function directly imply that if u(t) is wide
sense stationary (WSS), then also y(t) is WSS.

Distribution functions
In the general situation it is very hard to make statements about the distribution functions
of y(t) on the basis of distribution functions of u(t). Even in the situation that the pulse
response of the dynamical system has finite length, and y(t) simply becomes a finite linear
combination of elements from u(t), the resulting distribution functions can not generally be
expressed in closed–form / analytical expressions. There is an important exception for the
situation of a process u(t) having Gaussian distribution functions. In that case y(t) actually
is a linear combination of Gaussian distributions, which again is a Gaussian distribution,
according to appendix A.3.2.

Correlation functions and power spectral density
If u(t) (and consequently also y(t)) are wide sense stationary, then the following relation-
ships for the correlation function are found:

Ryu(τ) = E[y(t)u(t − τ)] (4.11)

= E[

∞∑

k=0

g(k)u(t − k)u(t − τ)] (4.12)

=

∞∑

k=0

g(k)Ru(τ − k) = g(τ) ⋆ Ru(τ) (4.13)

Ruy(τ) = E[u(t)y(t − τ)] (4.14)

= E[
∞∑

k=0

g(k)u(t)u(t − τ − k)] (4.15)

=
∞∑

k=0

g(k)Ru(τ + k) = g(−τ) ⋆ Ru(τ) (4.16)
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Ry(τ) = E[y(t)y(t − τ)] (4.17)

= E[
∞∑

k=0

g(k)u(t − k)y(t − τ)] (4.18)

=
∞∑

k=0

g(k)Ruy(τ − k) = g(τ) ⋆ Ruy(τ) (4.19)

Ry(τ) = g(τ) ⋆ Ruy(τ) (4.20)

= g(τ) ⋆ g(−τ) ⋆ Ru(τ). (4.21)

As a result we have the following expressions:

• Ryu(τ) = g(τ) ⋆ Ru(τ)

• Ruy(τ) = g(−τ) ⋆ Ru(τ)

• Ry(τ) = g(τ) ⋆ g(−τ) ⋆ Ru(τ).

Note that the dynamical system G not only maps the input process u(t) to the output
process y(t), it constitutes in a similar way the relation between Ru(t) and Ryu(t), as
depicted in figure 4.2.

G

u
(t)


G

R
u
(t)
 R
yu
(t)


y
(t)


Figure 4.2: System G relates the processes u(t) and y(t), and similarly the correlation
functions Ru(t) and Ryu(t).

By combining the operation of G and its complex conjugate form G∗, the linear relation is
obtained between Ru(t) and Ry(t), as sketched in figure 4.3.

G

R
u
(t)
 R
yu
(t)


G*

R
y
(t)


Figure 4.3: The dynamical system relation between Ru(t) and Ry(t) is represented by a
concatenation of system G and its complex conjugate form G∗.

Consequences for the relationships between spectral density functions of u(t) and y(t)
can now simply be obtained by applying Fourier transformation to the expressions for the
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autocorrelation functions. Use has to be made of the Fourier transform properties that for
two functions g and f , g(τ)⋆f(τ) transforms to G(eiω) ·F (eiω) and g(−τ)⋆f(τ) transforms
to G(e−iω) · F (eiω). Consequently

Φy(ω) = G(e−iω)G(eiω)Φu(ω) = G∗(eiω)G(eiω)Φu(ω) (4.22)

Φy(ω) = |G(eiω)|2 · Φu(ω) (4.23)

and through the same reasoning:

Φyu(ω) = G(eiω) · Φu(ω) (4.24)

Φuy(ω) = G(e−iω) · Φu(ω). (4.25)

Note that the first equation provides a means to construct the dynamical relation G(eiω)
between u and y on the basis of signal properties, by way of:

G(eiω) =
Φyu(ω)

Φu(ω)
. (4.26)

If the auto- and cross-spectral densities of the input and output process are known, or
estimated, the dynamical relation between the two processes can be constructed. This
powerful tool will be used later when discussing the estimation of spectral densities and
transfer functions.

Example 4.1 Let u be a WSS stochastic process with

µu = 0 (4.27)

Ru(τ) = 1 τ = 0 (4.28)

= 0 τ 6= 0. (4.29)

This is a white noise process.
Consider a linear filter G with the properties

g(τ) = 1 τ = 0, 1 (4.30)

= 0 elsewhere. (4.31)

The pulse response of G is depicted in figure 4.4.
Let y(t) =

∑∞
k=0 g(k)u(t − k). Determine µy, Ry and Φy.

Taking the mean value of the convolutional expression for y(t) it follows that

µy = E[

∞∑

k=0

g(k)u(t − k)] =

∞∑

k=0

g(k)µu =

= µu · G(1) = 0. (4.32)

Φu(ω) =
∞∑

k=−∞

Ru(k)e−iωk = 1
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Figure 4.4: Pulse response g(τ) of system G.

Since G(z) = 1 + z−1, it follows that G(eiω) = 1 + e−iω and so

|G(eiω)|2 = [1 + e−iω][1 + eiω] = 2 + 2cos(ω).

As a result
Φy(ω) = |G(eiω)|2 · Φu(ω) = 2[1 + cos(ω)]

Ry(k) can simply be obtained by inverse Fourier transform of Φy(ω). Since

Φy(ω) = e−iω + 2 + eiω

and Φy(ω) =
∑∞

k=−∞ Ry(k)e−iωk it follows that

Ry(k) = 1 k = ±1 (4.33)

= 2 k = 0 (4.34)

= 0 elsewhere. (4.35)

The autocorrelation function and the spectral density function of y(t) are sketched in figure
4.5.
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Figure 4.5: Left: Autocorrelation function Ry(k), and Right: spectral density function
Φy(ω) (solid, blue) and Φu(ω) (dashed, red) of the processes in example 4.1.

Example 4.1 clearly illustrates how a dynamical system can influence the power spectral
density properties of the output process. Whereas the input process is a white noise with
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a spectral density that is constant over frequency, the output process shows an increased
power contribution of the low-frequency range, while for higher frequencies the power den-
sity is reduced. This phenomenon is due to the low-pass characteristic of the dynamical
system G, of which the squared amplitude |G(eiω)|2 exactly describes the power spectral
density of the output y(t).

The relations that apply for cross-correlation functions and cross-spectral density functions
also extend to other filter operations. If two WSS stochastic processes x and u have cross-
correlation function Rux(τ) and cross-spectral density function Φux(ω) and if y = Gu,
then

Ryx(τ) = g(τ) ⋆ Rux(τ) (4.36)

Φyx(ω) = G(eiω) · Φux(ω). (4.37)

Similarly, if v = Gx then

Ruv(τ) = g(−τ) ⋆ Rux(τ) (4.38)

Φuv(ω) = G(e−iω) · Φux(ω). (4.39)

If there are two dynamical systems G1, G2 as depicted in Figure 4.6, that generate y1, y2,
then application of the formulas above lead to the results:

y2 = G2G
−1
1 y1

and therefore

Φy2y1 = G2G
−1
1 Φy1 (4.40)

= G2G
−1
1 |G1|2Φu = G2G

−1
1 [G1G

∗
1]Φu (4.41)

= G2G
∗
1Φu (4.42)

so that
Φy2y1(ω) = G2(e

iω)G1(e
−iω)Φu(ω).

G1

G2

u

y1

y2

Figure 4.6: Two signals y1, y2 originating from the same source signal u.

Covariance functions of y(t) and u(t)
When considering a WSS stochastic process with non-zero mean µu, the systems relation
(4.4) can be supplemented by adding a term −∑∞

k=0 g(k)µu to both sides of the equation,
leading to

y(t) −
∞∑

k=0

g(k)µu =
∞∑

k=0

g(k)[u(t − k) − µu]. (4.43)
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Since the process u(t) − µu is zero-mean, the resulting output y(t) −∑∞
k=0 g(k)µu is nec-

essarily zero-mean also, showing that

µy =

∞∑

k=0

g(k)µu.

Then

y(t) − µy =

∞∑

k=0

g(k)[u(t − k) − µu].

Exactly the same line of reasoning as applied to the autocorrelation functions can now be
followed to arrive at the same expressions for the autocovariance functions. In this case one
considers squared forms and products of y(t) − µy and u(t − k) − µu, leading to:

• Cyu(τ) = g(τ) ⋆ Cu(τ)

• Cuy(τ) = g(−τ) ⋆ Cu(τ)

• Cy(τ) = g(τ) ⋆ g(−τ) ⋆ Cu(τ)

4.2 Spectral factorization

In the previous section it has been indicated how a dynamical system G determines the
spectral density Φy(ω) of the output signal, starting from a unit-variance white noise input
process, leading the relation

Φy(ω) = |G(eiω)|2. (4.44)

In this section the converse route will be followed by considering the question, which stable
and causal dynamical system will generate a prespecified spectral density function as output
process, when driven by unit variance white noise as input.

When considering this question one first has to specify which class of spectral density
functions is being considered; e.g., any positive continuous function in ω, or any positive
rational function in eiω. In the sequel of this section the second case will be studied, i.e.
assuming that Φy(ω) as any positive rational (and therefore continuous) function in eiω.
This excludes spectral density functions that contain Dirac functions.

As already appearing in (4.44) it seems rather natural that Φy(ω) can also be written
in terms of the argument eiω rather than ω. In this section it will appear attractive (and
actually necessary) to write spectral densities as Φy(eiω) rather than Φy(ω). This allows also
to generalize spectral densities to be written as functions over the complex indeterminate
z. In line with (3.64) we will denote

Φy(z) =

∞∑

k=−∞

Ry(k)z−k (4.45)

while the power spectral density function is obtained by evaluating Φy(z) over z = eiω.
When appropriate, Φy(z) will be referred to as the complex power spectral density function.
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Similarly, in line with (3.67), complex cross-power spectral density functions can be defined
as

Φyx(z) =

∞∑

k=−∞

Ryx(k)z−k, (4.46)

where the cross-power spectral density function is obtained by evaluating Φyx(z) over z =
eiω. Note that, unlike Φyx(eiω), Φy(eiω) will always be real-valued though, as is formulated
as one of the properties of a spectral density function in section 3.7.4. Through the relation
(4.44) it appears that the transfer function G only influences the spectral density Φy through
its amplitude function. The phase properties of G do not appear in Φy. In order to handle
this indeterminateness of the phase the notion of minimum-phase systems is considered.

Definition 4.2 (Minimum-phase system) A linear dynamical system is called minimum-
phase if the system and its inverse are causal and stable.

A rational transfer function H(z) is representing a minimum-phase system if it has all poles
and zeros strictly inside the unit circle. In that case

• H(z) has a series expansion

H(z) =

∞∑

k=0

h(k)z−k

that is convergent for |z| ≥ 1, i.e.
∑∞

k=0 |h(k)| < ∞.

• H(z)−1 also has all zeros and poles strictly inside the unit circle as can simply be
verified by realizing that in the systems inverse zero’s and pole’s interchange roles.
Therefore H(z)−1 also has a stable and causal expansion.

Minimum-phase systems have a “minimum-phase” according to the following interpretation:
when the amplitude of a system frequency response is fixed, the pole-zero locations related
to the transfer function are not uniquely determined. E.g., pole- and zero-locations can
be mirrored with respect to the unit circle without affecting the shape of the amplitude
frequency response. See, e.g., the construction of the amplitude frequency response as
sketched in Figure 2.2. It is more easily observed in the continuous-time case, where zeros
and poles can be mirrored with respect to the imaginary axis s = iω without affecting
the amplitude function. Since we will generally deal with causal and stable filters, it is
convenient to restrict the pole locations to be inside the unit circle. The zeros however
are not determined yet. When a system zero is mirrored from a location outside the unit
circle z0 to a related location 1/z∗0 within the unit circle, the phase contribution of this
zero is reduced. Therefore a system with all zeros within the unit circle is referred to as a
“minimum-phase system”.
Next attention has to be paid to the class of (complex) power spectral density functions
that are rational (i.e. a fraction of polynomials) in z. The following property is shown.

Proposition 4.3 For a power spectral density function Φy(z) that is rational, it holds that
all poles and zeros of Φy(z) come in complex conjugate reciprocal pairs, i.e.

• If z0 is a pole of Φy(z) then 1/z∗0 is also a pole of Φy(z);

• If z0 is a zero of Φy(z) then 1/z∗0 is also a zero of Φy(z).
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Proof: The result is direct from (4.45) by the following reasoning:
Because Ry(k) is an even function, Ry(k) = Ry(−k), and therefore

Φy(z−1) =

∞∑

k=−∞

Ry(k)zk =

∞∑

k=−∞

Ry(−k)zk =

∞∑

k=−∞

Ry(k)z−k = Φy(z).

Additionally because Ry(k) is real-valued, it follows that

Φy(z∗) =
∞∑

k=−∞

Ry(k)(z∗)−k =
∞∑

k=−∞

Ry(k)(z−k)∗ = Φ∗
y(z).

Combining the two expressions leads to Φy(z) = Φ∗
y(1/z∗). This shows that any pole/zero

of Φy will be accompanied by a pole/zero in its complex conjugate reciprocal location. 2

Since poles and zeros of Φy(z) also come in (ordinary) complex conjugate pairs, i.e. z0 and
z∗0 , due to the fact that the series expansion of Φy(z) (4.45) has real-valued coefficients,
every pole and zero of Φy(z) appears four times. This is illustrated in the plot of figure 4.7.

z
0


1/z
0


z
0
*


1/z
0
*


Figure 4.7: Repetition of pole locations of Φy(z) in z0, 1/z0, z∗0 and 1/z∗0 .

Now sufficient ingredients have been collected to solve our originally posed problem in terms
of the spectral factorization theorem.

Theorem 4.4 (Spectral Factorization) For any rational spectral density function2 Φy(z)
that is analytic (i.e. has no poles) on the unit circle, there exists a minimum-phase system
represented by Hm(z), and a scalar σ2, such that

Φy(z) = σ2 · Hm(z)Hm(1/z).

If additionally Hm(z) is restricted to be monic, i.e.

Hm(z) = 1 +
∞∑

k=1

hm(k)z−k

then this factorization is unique.

2Actually the theorem applies also to nonrational spectral density functions, provided that the Paley-
Wiener condition

∫ π

−π
|lnΦy(eiω)|dω < ∞ is satisfied.
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Whereas Hm(z) has all its poles and zeros strictly inside the unit circle, Hm(1/z) will
necessarily have all its poles and zeros strictly outside the unit circle.
Using the pole/zero location symmetry as formulated in proposition 4.3, a procedure for
the construction of Hm is simply obtained as follows:

• Evaluate the pole/zero locations of Φy(z);

• Compose Hm(z) be taking all the poles and zeros of Φy(z) that are located strictly
inside the unit circle;

• By proposition 4.3, all poles and zeros that remain are necessarily located outside the
unit disc at the inverse locations of the selected poles/zeros;

• Adjust the positive scalar σ2 to satisfy Φy(z) = σ2Hm(z)Hm(1/z).

Example 4.5 Consider the spectral density function

Φy(eiω) =
1 − 2.5e−iω + e−2iω

1 − 2.05e−iω + e−2iω
.

First we write the function in its z-domain representation:

Φy(z) =
1 − 2.5z−1 + z−2

1 − 2.05z−1 + z−2
,

which can be factored as:

Φy(z) =
(1 − 0.5z−1)(1 − 2z−1)

(1 − 0.8z−1)(1 − 1.25z−1)
=

(1 − 0.5z−1)

(1 − 0.8z−1)
· (1 − 2z−1)

(1 − 1.25z−1)
.

The first factor has a pole in z = 0.8 and a zero in z = 0.5; the second factor has a pole in
z = 1.25 = 1/0.8, and a zero in z = 2 = 1/0.5.
As a result the minimum-phase spectral factor of Φy(z) is

Hm(z) =
(1 − 0.5z−1)

(1 − 0.8z−1)
.

The minimum-phase spectral factor of a spectral density function Φy has a particular and
important property. First it serves as the causal and stable linear dynamical system, that,
when using a white noise as input process, generates an output process with the specified
spectral density function Φy(eiω).
However secondly, through the inverse 1/Hm which also is minimum-phase by construc-
tion, it generates a stable and causal linear dynamical system, that, when using y as an
input process, generates a white noise output process. This representation is called the
innovations representation of a WSS stochastic process y, and is illustrated in figure 4.8.
As a result of the previous analysis it appears that for a stochastic process generated
according to the structure in Figure 4.8 (left), the complex spectral density function is
determined by

Φy(z) = Hm(z)Hm(1/z)σ2
e .
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Figure 4.8: Innovations representation of WSS stochastic process y(t), with signal model
(left) and inverse filter (right).

The spectral density functions considered in this section are not allowed to have poles
and/or zeros exactly on the unit circle. When there are poles on the unit circle, Φy(eiω)
becomes unbounded and the Paley-Wiener condition mentioned in the footnote with the-
orem 4.4 can not be satisfied. Note that a pole on the unit circle implies the presence of
a periodic component in y(t), and therefore a component that can be exactly (determinis-
tically) described. Zeros that occur exactly on the unit circle require special care, as they
can lead to inverse filters 1/Hm that are unstable.

4.3 Autoregressive moving average processes

4.3.1 Introduction

This section is based on Priestley (1981) and Shanmugan and Breipohl (1988). More
detailed information can be found in these references.

A special class of random processes is formed by the so-called autoregressive (AR), moving-
average (MA) and autoregressive moving average process (ARMA). These models have
each been found to provide useful descriptions for a large number of ”real life” processes.
A discrete-time autoregressive process has been introduced already in section 3.4.7. It is
represented by a difference equation of the form:

x(t) + a1x(t − 1) + a2x(t − 2) + · · · + anx(t − n) = e(t) (4.47)

where x(t) is a real random sequence, ai, i = 1, . . . , n are real-valued constant coefficients,
and e is a (stationary) white noise process with variance σ2

e. If the difference equation is
of the order n (i.e., an 6= 0), then the process is called an nth order autoregressive process
(denoted by AR(n)).
An mth order moving average process (denoted by MA(m)) is described by:

x(t) = e(t) + b1e(t − 1) + . . . + bme(t − m) (4.48)

where, again, e is a white noise process, and bi, i = 1, . . . ,m, bm 6= 0 are real valued
constants. In the autoregressive case the value of e(t) influences all future values x(t),x(t+
1), . . .. In the moving average case x(t) is expressed directly as a linear combination of
the present and past values of the white noise process e but of finite extent, so that e(t)
influences only q future values of x(t), namely x(t+1), . . . ,x(t+m). This feature accounts
for the fact that whereas the autocorrelation function of an autoregressive function ”dies
out gradually”, the autocorrelation function of an MA(l) process, as we will show, cuts off
after the point m, i.e., Rx(τ) = 0, |τ | > m.
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The mixed autoregressive/moving average model of order (n,m) is obtained by combining
the above equations, leading to a model of the form

x(t) + a1x(t − 1) + · · · + anx(t − n) = e(t) + b1e(t − 1) + . . . + bme(t − m). (4.49)

The mixed model includes of course, both the autoregressive and moving average models
as special cases, these being obtained, respectively, either by setting b1 = b2 = . . . bm = 0,
or by setting a1 = a2 = . . . an = 0. Note that the ARMA model may be written more
concisely in the operational form:

A(q−1)x(t) = B(q−1)e(t) (4.50)

with q−1 the backward shift operator :

q−1x(t) = x(t − 1) (4.51)

and

A(z−1) = 1+a1z
−1+a2z

−2+· · ·+anz−n, B(z−1) = 1+b1z
−1+b2z

−2+· · ·+bmz−m (4.52)

It can be shown that an ARMA process corresponds to the output obtained by passing
white noise through a linear time-invariant finite-dimensional causal dynamical system, as
schematically depicted in figure 4.9, with a rational transfer function. Indeed, the ARMA

H

e
 X


Figure 4.9: Filtering a stochastic process e by a linear dynamical system H.

process x can be represented by the convolution expression

x(t) =
∞∑

k=0

h(k)e(t − k), t = 0, 1, 2, · · · (4.53)

where the transfer function, which is defined by

H(z) =

∞∑

k=0

h(k)z−k, (4.54)

can be written as the rational function

H(z) =
B(z−1)

A(z−1)
. (4.55)

This transfer function reduces to

H(z) =
1

A(z−1)
(4.56)
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and

H(z) = B(z−1) (4.57)

for AR processes and MA processes, respectively. The system will be stable if and only if
all poles of the transfer function lie inside the unit circle in the complex plane. It follows
from the analysis in the previous sections, that the following relationships for the complex
(cross-)power spectral density functions of the ARMA process hold:

Φxe(z) = H(z) · Φe(z) = H(z) · σ2
e (4.58)

Φex(z) = H(z−1) · Φe(z) = H(z−1) · σ2
e (4.59)

Φx(z) = H(z)H(z−1) · Φe(z) = H(z)H(z−1) · σ2
e (4.60)

and the power spectral density function of an ARMA process is given by:

Φx(ω) = |H(eiω)|2 · Φe(ω) = |H(eiω)|2 · σ2
e (4.61)

which is a rational function of eiω.

4.3.2 First order autoregressive process

Let us now consider the AR(1) process. Recall that this process is described by the following
difference equation:

x(t) + a1x(t − 1) = e(t) (4.62)

where e is a white noise process, and a1 is a real-valued constant. It follows from (4.56)
and (4.52) that the transfer function of the system described by model (4.62) is given by

H(z) =
1

1 + a1z−1
. (4.63)

The mean and the autocorrelation function of an AR(1) process have already been derived
in section 3.4.7. There it was found that E[x(t)] = 0 and, for |a1| < 1 and t sufficiently
large, the autocorrelation function Rx(t + τ, t) is a function of τ only, being given by

Rx(τ) = a
|τ |
1 σ2

x. (4.64)

Hence, we may say that x is asymptotically WSS if |a1| < 1, i.e. if the pole of the transfer
function (4.63) lies inside the unit circle. The power spectral density function of an AR(1)
process follows from (4.61) and (4.63), yielding:

Φx(ω) =

∣∣∣∣
1

1 + a1e−iω

∣∣∣∣
2

σ2
e =

σ2
e

1 + a2
1 + 2a1 cos(ω)

. (4.65)

Autocorrelation functions and corresponding power spectral density functions of three
AR(1) processes are sketched in Figure 4.10.

Note that the autocorrelation functions of AR(1) processes show an exponential decay of
the function for increasing values of τ .
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Figure 4.10: Autocorrelation functions (left) and Power spectral density functions (right) of
the AR(1) process x described by (4.62) for a = 0.9 (a)/red, a = 0.7 (b)/blue, and a = 0.5
(c)/green.

4.3.3 Autoregressive process of general order

Recall that x is an autoregressive process of order n (denoted by AR(n)) if it satisfies
the difference equation (4.47), while the transfer function of the system described by this
difference equation is given by equation (4.56), that is,

H(z) =
1

A(z−1)
=

1

1 + a1z−1 + a2z−2 + . . . + anz−n
(4.66)

Reasoning as in the first order case, it can be shown that an AR(n) process is asymptotically
stationary (in wide sense) if all the poles of (4.66) lie inside the unit circle (Priesley, 1981).
If we assume stationarity, multiplying both sides of equation (4.47) by x(t − τ) and taking
the expectations yields:

Rx(τ) +

n∑

i=1

ai · Rx(τ − i) = 0, τ ≥ 1. (4.67)

which, for τ = 1, 2, . . . , n, is an nth order difference equation, which can be expressed in
matrix form as




Rx(1)
Rx(2)

...
Rx(n)


 =




Rx(0) Rx(1) · · · Rx(n−1)

Rx(1) Rx(0)
. . . Rx(n−2)

...
. . .

. . .
...

Rx(n−1) · · · Rx(1) Rx(0)



·




−a1

−a2
...

−an


 (4.68)

This matrix equation is called the Yule-Walker equation. Since the n × n matrix in (4.68)
is invertible, this equation can be used to express the coefficients of the AR(k) process
in terms of autocorrelation function values, which is of considerable importance in data
analysis.
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It follows from (4.52), (4.56) and (4.61) that the power spectral density function of an
AR(n) process is given by

Φx(ω) =
σ2
e

|1 +
∑n

k=1 ake−iωk|2
. (4.69)

4.3.4 First order moving average process

A moving average process of first order (an MA(1) proces) is described by the following
difference equation:

x(t) = e(t) + b1e(t − 1), (4.70)

where b1 is a constant and e is a white noise process. It follows from (4.52) and (4.57) that
the transfer function of the system described by (4.70) is given by:

H(z) = 1 + b1z
−1 (4.71)

The expected value, the variance and the autocorrelation function of the MA(1) process
are given by

µx := E[x(t)] = E [e(t) + b1e(t − 1)] = 0, (4.72)

σ2
x = E[x2(t)] = (b2

1 + 1)σ2
e, (4.73)

and (for |τ | ≥ 1)

Rx(τ) = E [x(t)x(t − τ)]

= E [(b1e(t − 1) + e(t)) (b1e(t − τ − 1) + e(t − τ))]

=

{
b1σ

2
e, |τ | = 1,

0, |τ | > 1,
(4.74)

respectively. Since the first two moments of the MA(1) process are independent of time,
the process is WSS. The power spectral density function of the MA(1) process is

Φx(ω) =

1∑

τ=−1

Rx(τ)e−iωτ = σ2
e

(
b2
1 + 2b1 cos(ω) + 1

)
. (4.75)

Note that this power spectral density function can also be derived from (4.71) and (4.61),
yielding the same result:

Φx(ω) =
∣∣1 + b1e

−iω
∣∣2 · σ2

e

= σ2
e

(
1 + b1e

−iω + b1e
iω + b2

1)
)

= σ2
e

(
b2
1 + 2b1 cos(ω) + 1

)
. (4.76)

Autocorrelation functions and corresponding power spectral density functions of two MA(1)
processes are sketched in Figure 4.11.

Note that the autocorrelation function has finite support, i.e. it becomes exactly zero for
|τ | > 1.
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Figure 4.11: Autocorrelation functions (left) and Power spectral density functions (right)
of the MA(1) process x described by (4.70) for b1 = 0.1 (a)/red, and b1 = 1/3 (b)/blue.

4.3.5 Moving average processes of general order

Recall that an MA(m) process may be expressed in the form:

x(t) = e(t) + b1e(t − 1) + . . . + bme(t − m) (4.77)

where, again, e is a white noise process, and bi, i = 1, . . . ,m, bm 6= 0 are real valued
constants. It is easy to see that an MA process is always WSS, irrespective of the values of
b1, b2, . . . , bm. Since e is a white noise process, we have E[x(t)] = 0, and

σ2
x = σ2

e(1 + b2
1 + · · · + b2

m). (4.78)

Furthermore, if we define b0 = 1, it can be shown that the autocorrelation function is given
by

Rx(τ) = E



(

m∑

i=0

bie(t − i)

)


m∑

j=0

bje(t − τ − j)






=

{
σ2
e (bτb0 + bτ+1b1 + . . . + bmbm−τ ) , 0 ≤ τ ≤ m,

0, τ > m,

Rx(τ) = Rx(−τ), τ < 0 (4.79)

It follows from Equations (4.61), (4.57) and (4.52) that the power spectral density function
of an MA(l) process is given by

Φx(ω) =
∣∣B(e−iω)

∣∣2 σ2
e =

∣∣∣∣∣1 +

m∑

k=1

bke
−iωk

∣∣∣∣∣

2

· σ2
e. (4.80)

4.3.6 Mixed autoregressive/moving average processes

Recall that an ARMA(n,m) process is describe by the following difference equation

x(t) + a1x(t − 1) + · · · + anx(t − n) = e(t) + b1e(t − 1) + . . . + bme(t − m). (4.81)
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The transfer function of the system represented by (4.81) is described by (4.55) where
A(z−1) and B(z−1) are defined by (4.52). For stationarity, we require that all poles of
the transfer function (4.55) lie inside the unit circle. The autocorrelation function of the
ARMA(n,m) process can be derived as follows:

Rx(τ) = E [x(t − τ)x(t)]

= E


x(t − τ) ·



−

n∑

k=1

akx(t − k) +

m∑

j=1

bje(t − j) + e(t)








= −
n∑

k=1

akRx(τ − k) + E[x(t − τ)e(t)]

+

m∑

j=1

bjE[x(t − τ)e(t − j)]. (4.82)

Because
E[x(t − τ)e(t)] = 0, τ ≥ 1 (4.83)

the preceding equation reduces to

Rx(τ) = −
n∑

k=1

akRx(τ − k), (4.84)

for τ ≥ m + 1. Thus for an ARMA(n,m) model Rx(0), Rx(1), . . . , Rx(m) will depend
upon both the autoregressive and the moving average parameters. The remainder of the
autocorrelation function, that is Rx(τ), τ > m is determined by the nth order difference
equation (4.84). Finally, it follows from Equation (4.61) that the power spectral density
function of an ARMA(n,m) process is given by

Φx(ω) =

∣∣∣∣∣
1 +

∑m
j=1 bje

−iωj

1 +
∑n

k=1 ake−iωk

∣∣∣∣∣

2

· σ2
e. (4.85)

4.4 Summary

Random signals resulting from stochastic processes can be filtered by linear filters. It has
been shown that relatively simple theory exists for quantifying the effect of these linear
filters. Auto- and cross-correlation functions are obtained by convolution with the filters’
pulse response, and spectral densities are obtained by multiplication with the filters’ fre-
quency response. A general class of WSS stochastic processes (all rational spectra) can be
modelled as the output of a linear filter that is driven by white noise at the input. This the-
ory will be used in subsequent chapters when designing optimal filters for signal estimation
and reconstruction.
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Appendix 4A

Proof of the Paley-Wiener condition for spectral factorization

The Paley-Wiener condition: ∫ π

−π
|lnΦy(eiω)|dω < ∞

implies that

lnΦy(z) =

∞∑

k=−∞

ckz
−k (4A.1)

is analytic and therefore converges in an annulus ρ < |z| < 1/ρ that contains the unit circle.
The sequence {ck} is called the cepstrum of the process y. ck may be viewed as Fourier
coefficients of the periodic function lnΦy(eiω), and therefore

ck =
1

2π

∫ π

−π
lnΦy(eiω)eiωkdω (4A.2)

and

c0 =
1

2π

∫ π

−π
lnΦy(eiω)dω. (4A.3)

From (4A.1) the following decomposition can be constructed:

Φy(z) = exp{
∞∑

k=−∞

ckz
−k} (4A.4)

= exp{c0} · exp{
∞∑

k=1

ckz
−k} · exp{

−1∑

k=−∞

ckz
−k}. (4A.5)

The function

H(z) = exp{
∞∑

k=1

ckz
−k}

is the z-transform of a stable and causal system, that can be written in a power series of
the form:

H(z) = 1 + h(1)z−1 + h(2)z−2 + · · ·
which is analytic for |z| > ρ and therefore is causal and stable.
Performing a similar analysis for 1/Φy(z), it can be shown that the factor H(z) will also
have a causal and stable inverse, and therefore is minimum-phase.
Since ln Φy(eiω) is positive and real-valued, it follows that ck is real-valued and c−k = ck,
showing that

exp{
−1∑

k=−∞

ckz
−k} = exp{

∞∑

k=1

ckz
k} = H(1/z).

As a result
Φy(z) = ec0 · H(z)H(1/z)

with H(z) minimum-phase and ec0 > 0.
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Chapter 5

Estimation

In this chapter the basic concepts are introduced for estimating physical quanti-
ties on the basis of (random) measurement data. It is discussed how the quality
of estimators can be assessed in terms of bias and variance. Additionally basic
estimation principles as least-squares, linear regression, weighted and total least
squares, and maximum likelihood are presented.

5.1 Introduction

In estimation theory it is the objective to determine/estimate an unknown physical quantity
or variable, on the basis of data that is available from measurements, that are generally sub-
ject to stochastic uncertainties. Because of the stochastic uncertainties, the measurement
data is actually described by a set (or sequence) of random variables.

An estimator (or sometimes called statistic)1 is any (deterministic) function of a (set of)
random variable(s); the estimator itself does not contain any unknown parameters.
Let, e.g., x1, · · · ,xN be a random sample from the probability density function fx(x), then

y = g(x1, · · · ,xN )

with any function g is an estimator. In other words, an estimator is simply a function of
random variables, and attempts to reproduce/estimate an unknown (physical) quantity on
the basis of measured data.

In this way

x̄ :=
1

N

N∑

i=1

xi

is an estimator of the mean value of x, but also

x̃ :=
1

2
[max

i
xi + min

i
xi]

can be an estimator of this quantity.

1A statistic is any deterministic function of observable random variables, which is itself an observable
random variable, which does not contain any unknown parameters (Mood et al., 1974). When a statistic is
used to estimate a function τ (θ) of an unknown parameter θ, it is called an estimator of τ (θ).

79
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Estimators are not bound to have any direct relation with the quantity/variable that is
estimated. Even mini xi can be an estimator of the mean value of x, although one may
guess that the properties of this estimator will be rather poor, unless xi is fixed for all
values of i.
In this chapter several approaches will be discussed on how to design estimators for par-
ticular objects and with particular properties. The discussion is directed towards general
estimators and their properties. Estimation of second order moments (correlation functions
and spectral density function) of stochastic processes will be the subject of a later chapter.

5.2 Characteristics of estimators

5.2.1 Basic definitions

We will first discuss several notions that characterize the “quality” of estimators. As a
notation we will consider an estimator θ̂N of an underlying quantity θ0, based on N mea-
surements. Since we will generally assume that both θ̂N and θ0 are real-valued vectors in
R

d, the definitions will be given for real-valued parameters. However, they can easily be
extended to include complex-valued parameters.

Bias
The estimator θ̂N is called unbiased if

E[θ̂N ] = θ0

i.e., the estimator is delivering the “right” quantity “on average” and for a particular finite
value of N . Additionally the estimator is called asymptotically unbiased if

lim
N→∞

E[θ̂N ] = θ0.

Estimators that are not unbiased are called biased, and the bias is given by

bias(θ̂N ) = E[θ̂N ] − θ0.

Variance
The variance of θ̂N is given by the mean deviation from its expected value, measured in a
quadratic sense, i.e.,

var(θ̂N ) = E

[
(θ̂N − Eθ̂N )(θ̂N − Eθ̂N )T .

]

It determines the variation of outcomes of θ̂N about its mean value. For vector-valued
parameters the resulting matrix is referred to as the covariance matrix, also denoted as

cov(θ̂N )

having dimensions d × d when θ̂N has dimension n. For scalar-valued parameters this
covariance matrix reduces to the variance of the random variable θ̂N .
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Mean squared error (MSE)
The mean squared error (MSE) is given by2

MSE(θ̂N ) := E[(θ̂N −θ0)
2].

Denote E[θ̂N ] = m, then

MSE(θ̂N ) = E[(θ̂N − m + m − θ0)
2]

= E[(θ̂N − m)2] + (m − θ0)
2 + 2E[(θ̂N − m)(m − θ0)].

Because E[θ̂N ] = m the last term on the right hand side is 0, and therefore

MSE(θ̂N ) = var(θ̂N ) + [bias(θ̂N )]2. (5.1)

This renders the measure MSE(θ̂N ) into a notion that includes aspects of both bias and
variance. It describes the mean deviation of the estimator from its exact value, measured
in a quadratic sense.

Figure 5.1: Hitting a target, where the bull’s eye reflects θ0; left: an unbiased estimator
with small variance; middle: a biased estimator with small variance; right: an unbiased
estimator with large variance.

For vector-valued parameters a natural extension exists, writing

MSE(θ̂N ) := traceE[(θ̂N − θ0)(θ̂N − θ0)
T ]

then through a similar reasoning as above,

MSE(θ̂N ) = trace[E(θ̂N − m)(θ̂N − m)T + E(m − θ0)(m − θ0)
T ]

= trace[cov(θ̂N ) + bias(θ̂N ) · bias(θ̂N )T ] (5.2)

=
∑

i

var(θ̂
(i)
N ) +

∑

i

bias(θ̂
(i)
N )2 (5.3)

where (·)(i) refers to the i-th component of a vector. As a result the MSE for a vector-valued
parameter is equal to the sum of the MSE’s of each of its components.

2We first consider the situation of scalar real-valued parameters.
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θ
0

        

Figure 5.2: Probability density function f
θ̂N

(θ) of a scalar-valued θ for increasing N .

Distribution of estimator - probability density function
The most complete description of the properties of an estimator (which is a random vari-
able), is of course its distribution function

F
θ̂N

(θ) = P [θ̂N ≤ θ].

or probability density function f
θ̂N

(θ). For the considered situation, this pdf is a function
of the number of measurements N that is taken into account.

If f
θ̂N

(θ) tends to a Gaussian or normal distribution for N → ∞, then θ̂N is being referred
to as being asymptotically normal (Gaussian), also denoted as

θ̂N ∈ AsN (θ∗,Σθ)

with θ∗ the mean of the asymptotic distribution, and Σθ the asymptotic covariance matrix.

Consistency
An estimator θ̂N is called (weakly) consistent if for every δ > 0,

lim
N→∞

Pr[‖θ̂N − θ0‖ > δ] = 0

also denoted as plimN→∞ θ̂N = θ0.
Weak consistency is also denoted as convergence in probability. It means that for every θ
with ‖θ0−θ‖ > δ with δ arbitrarily small, the probability density function f

θ̂N
(θ) disappears

for N → ∞. particular when the probability density function converges to a dirac-pulse
for N → ∞. This situation is illustrated in figure 5.2. Note that a (weakly) consistent
estimator is not necessarily unbiased for finite values of N , as is also illustrated in figure
5.2. However an estimator for which holds that

E[θ̂N ] → θ0

cov(θ̂N ) → 0

}
for N → ∞ (5.4)

is weakly consistent. Here the expression cov(θ̂N ) → 0 should be interpreted as an element-
wise convergence to 0.
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Efficiency
θ̂N is called an efficient estimator of θ0 if

cov(θ̂N ) ≤ cov(θ̄N ) (5.5)

for all unbiased estimators θ̄N . This means that it concerns an estimator that has the
smallest possible variability (variance), measured in terms of its covariance matrix, of all
unbiased estimators. Note that the inequality in (5.5) is a matrix inequality, requiring that
the matrix cov(θ̄N ) − cov(θ̂N ) is positive semi-definite.
For scalar-valued estimators, the (relative) efficiency of an estimator θ̂1 with respect to
another estimator θ̂2 is sometimes denoted by

var(θ̂2)

var(θ̂1)
.

Example 5.1 (Sample-average estimator of the mean value of a stochastic process)
Consider a discrete-time WSS stochastic process x(t) with

E[x] = µx (5.6)

E[(x − µx)2] = σ2
x. (5.7)

Determine the statistical properties (bias, variance, consistency) of the sample-average 3

x̄N :=
1

N

N∑

i=1

x(i)

as an estimator for the mean value µx.

• E[x̄N ] =
1

N

N∑

i=1

µx = µx. As a result the estimator is unbiased for any value of N .

• var(x̄N ) is given by

E[(
1

N

N∑

i=1

x(i) − µx)2] =
1

N2
E[(

N∑

i=1

x(i) − Nµx)2]

=
1

N2
E

[
{(x(1) − µx) + (x(2) − µx) + · · · + (x(N) − µx)}2

]

(5.8)

If x(i),x(j) are uncorrelated random variables for i 6= j, as , e.g., is the case if x is a
white noise stationary stochastic process, then the previous expression directly leads
to

var(x̄N ) =
1

N
σ2
x. (5.9)

As a result, the variance decays with 1/N and therefore tends to 0 for N → ∞. Since
the bias of the estimator is 0 for all values of N , this shows that the sample-average
estimator is a consistent estimator of µx.

3In the literature this is often referred to as the sample-mean. Here we choose to use “mean” for
expectation over the ensemble, and “average” as averaging over sequence/time.
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Figure 5.3: Variable substitution i − j = k in (5.11).

• If x(i),x(j) are not uncorrelated for i 6= j, then

var(x̄N ) = E[
1

N2

∑

i

∑

j

(x(i) − µx)(x(j) − µx)] (5.10)

=
1

N2

∑

i

∑

j

Cx(|i − j|). (5.11)

By drawing the i, j-grid over which the summation is taken, and by making the
variable substitution i − j = k, as illustrated in Figure 5.3, it can be noted that for
each value of k there are N − |k| grid points to be taken into account. Therefore the
previous expression becomes

var(x̄N ) =
1

N2

N−1∑

k=1−N

(N − |k|)Cx(|k|) (5.12)

=
1

N

N−1∑

k=1−N

(1 − |k|
N

)Cx(|k|). (5.13)

Note that the situation of x being a white noise process again results as a special
case, i.e., if Cx(k) = 0 for k 6= 0, then

var(x̄N ) =
1

N
Cx(0) =

σ2
x

N
.

In order for the sample-average estimator to be a consistent estimator of the mean value it
is sufficient that

lim
N→∞

1

N

N−1∑

k=1−N

(1 − |k|
N

)Cx(k) = 0. (5.14)

This condition implies that Cx(k) should converge to 0 sufficiently fast for growing values
of k. As a counter example consider the situation that Cx(k) = c, a constant, then

var(x̄N ) =
c

N

[
N−1∑

k=1

(1 − k

N
) + 1 +

N−1∑

k=1

(1 +
k

N
)

]
=

c

N
[2(N − 1) + 1] =

c(2N − 1)

N
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which tends to 2c for N → ∞, and therefore does not satisfy the condition (5.14).

Apparently, properties of the covariance function of the process fully determine whether the
mean value of the process can be estimated consistently on the basis of a single measurement
sequence. Processes for which the sample-average estimator is a consistent estimator of the
ensemble mean are referred to as ergodic in the mean, see also section 3.8.

Example 5.2 (Estimating the variance of a random variable) Let {xi}i=1,···N be N
independent observations of a random variable x. We investigate the bias properties of the
estimator

σ̂2 :=
1

N

N∑

i=1

(xi − x̄)2 (5.15)

with x̄ = (1/N)
∑N

i=1 xi, as an estimator of the mean of x:

σ2
x = E[(x − Ex)2].

The mean value of the estimator can be analyzed as follows:

E[σ̂2] = E[
1

N

N∑

i=1

(xi − x̄)2] =
1

N

N∑

i=1

E[(xi − x̄)2]. (5.16)

Analyzing one term:

E[(xi − x̄)2] = E[(xi −
1

N

N∑

j=1

xj)
2] = E[(xi − µx + µx − 1

N

N∑

j=1

xj)
2]

= E[(xi − µx − 1

N

N∑

j=1

(xj − µx))2]

= E[(xi − µx)2] +
1

N2

N∑

j=1

σ2
x − 2E[(xi − µx)

1

N

N∑

j=1

(xj − µx)] (5.17)

where the expression for the second term follows from equation (5.9). With respect to the
last term on the right hand side of the last equation, we can write:

E[(xi − µx)

N∑

j=1

(xj − µx)] = E[(xi − µx)2] +

N∑

j=1,j 6=i

E[(xi − µx)(xj − µx)]

︸ ︷︷ ︸
=0

,

where the second term is zero because of the fact that xi and xj are independent random
variable for i 6= j. As a result

E[(xi − µx)

N∑

j=1

(xj − µx)] = σ2
x. (5.18)
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Substitution of this result in (5.17) delivers:

E[(xi − x̄)2] = σ2
x +

1

N2
· Nσ2

x − 2

N
σ2
x

= σ2
x(1 − 1

N
) =

σ2
x(N − 1)

N
. (5.19)

As a result:

E[σ̂2] =
N − 1

N
σ2
x.

Consequently the estimator is biased for finite values of N . The bias disappears when
N → ∞, as in that case N

N−1 → 1. However the analysis also shows that one can construct
an unbiased estimator

σ̃2 :=
N

N − 1
σ̂2 =

1

N − 1

N∑

i=1

(xi − x̄)2.

The division by N − 1 can be understood by realizing that one degree of freedom in the
set of data is used to calculate x̄. As a result there remain N − 1 degrees of freedom to be
used in the variance estimation.

5.2.2 Diagonalizing the covariance matrix

The covariance matrix Σθ = cov(θ̂) of a parameter estimator determines the statistical
relation between the several components of the parameter vector θ̂. If Σθ is diagonal
this implies that the several components of θ̂ are uncorrelated. In the case that Σθ has
off-diagonal terms, this indicates a statistical relationship between the several variables.
In many situations it is convenient, and helpful for purposes of interpretation, to consider
uncorrelated estimators, corresponding to a diagonal covariance matrix. This situation
can simply be obtained by performing a linear operation of rotation and scaling to the
parameter vector, as will be explained here.

Since Σθ is positive semi-definite and symmetric all its eigenvalues will be real-valued and
≥ 0. Additionally the eigenvalue decomposition of Σθ can be written as

Σθ = WΛW T

where W is a unitary matrix of eigenvectors wi:

W =




| | |
w1 w2 · · · wn

| | |


 (5.20)

and Λ is a diagonal matrix with positive (≥ 0) eigenvalues λi:

Λ =




λ1 0
λ2

. . .

0 λn


 . (5.21)
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Since W is unitary, its columns are orthonormal vectors, i.e., W T W = In.

When defining the transformed parameter:

η̂ := W T θ̂

it follows from simple substitution in the definitions that

E[η] := µη = W T · µθ (5.22)

cov(η̂) := Ση = W T ΣθW = Λ. (5.23)

The second equation can be verified by noting that

Ση := E[η − µη][η − µη]T = E[W T (θ̂ − µθ)(θ̂ − µθ)T W ] = W T ΣθW.

Consequently, the estimator η̂ has uncorrelated components, regardless of the probability
density function of the “original” estimator θ̂. If θ̂ has a Gaussian probability density
function, then it follows from section A.3.2 that the transformed random variable η̂ also is
Gaussian distributed. In this case the components of η̂ are even statistically independent.

The results for the covariance matrix can be used to plot the contour lines of the density
function, defined by the relation:

fθ(θ) = constant.

In the case of a Gaussian distribution N (θ0,Σθ), these contour lines are defined by the
relation

(θ̂ − θ0)
T Σ−1

θ (θ̂ − θ0) = c

with c ∈ R, and c ≥ 0.

Applying now the transformation from θ̂ to η̂ then shows that

(θ̂ − θ0)
T Σ−1

θ (θ̂ − θ0) = (η̂ − µη)T Λ−1(η̂ − µη) = c (5.24)

or equivalently
n∑

i=1

|η̂(i) − µ
(i)
η |2

λi
= c (5.25)

with (·)(i) denoting the i-th component of the vector considered. Equation (5.25) is the char-
acterization of an ellipsoid. An ellipsoid in an (x, y)-plane is characterized by an equation
of the type

x2

a
+

y2

b
= c

or equivalently (
x√
a

)2

+

(
y√
b

)2

= c

determining an ellipsoid with the x and y axis as principal axes, and axes crossings x =
√

ac
and y =

√
bc.
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In the considered situation (5.25) it concerns an ellipsoid in the orthogonal basis spanned
by the components of η̂, with the center point µη. The orthogonal basis is determined by
the relation

η̂ = W T θ̂ =




wT
1

wT
2
...

wT
n


 θ̂N

The first basis vector is determined by



1
0
...
0


 =




wT
1

wT
2
...

wT
n


 θ̂N

leading to θ̂ = w1, etcetera. Therefore the principal axes of the ellipsoid are aligned with the
orthogonal eigenvectors w1, w2, · · · of Σθ. The principal axes of the ellipsoid are determined
in size by 2

√
cλi, i = 1, · · · n. This is illustrated in figure 5.4 for a 2-dimensional example.

θθθθ0
(1)

θθθθ0
(2)

w1w2

2sqrt{cλ 1}

Figure 5.4: Ellipsoid indicating levels of equal probability density function for a normally
distributed estimator θ̂ with covariance matrix Σθ having eigenvalues λ1, λ2 and eigenvec-
tors w1, w2.

5.3 Linear regression

5.3.1 Introduction

One of the most simple examples of estimation problems is the problem of estimating
a linear relationship between two different (random) variables, on the basis of multiple
observations of the two variables. Consider for instance the situation sketched in figure
5.5(left) where the (blue) dots reflect measurement pairs (ui, yi). The question of finding
a linear relationship between y and u can then be rephrased by finding the “best” straight
line through the cloud of measurement points.
In order to solve this problem one generally has to make some assumptions on the source of
the randomness in the data. We will first treat the standard case, where it is assumed that
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one variable (u) is measured noise free, and the other variable (y) is noise disturbed. Later
we will comment on this and discuss generalizations of this paradigm. In the considered
situation the relation between the measurements, {ui, yi}i=1,···n, is hypothesized by the
model:

yi = b0 + b1ui + ei (5.26)

where b0, b1 are unknown coefficients (parameters) that are to be estimated, and ei is an
error term that accounts for the fact that the measured points do not lie exactly on a
straight line. The term ei can be considered a realization of a random variable e with a
particular probability density function. More attention will be paid to this when analyzing
the properties of the linear least squares estimator and the weighted linear least squares
estimator.

5.3.2 Linear least-squares estimation

The linear least-squares estimate, constructs a solution to the sketched problem, by looking
for an estimate b̂0 and b̂1 such that

n∑

i=1

e2
i

is minimal. This implies that the “errors” between the straight line and measurement points
are minimal (in squared sense) if one considers the “errors” to lie in the y-direction of the
plot, as sketched in figure 5.5(right).
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Figure 5.5: Observed data points {ui, yi} (left) and measure of fit to a straight line, by
considering the errors in the y variables (right).

Starting from the model equation

yi = b0 + b1ui + ei (5.27)

we write
yi = φT

i θ + ei (5.28)

with

φi =

[
1
ui

]
and θ =

[
b0

b1

]
.
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In this formulation the vector φi is called the regressor or regression variable. The compo-
nents of φi are referred to as the independent variables in the regression problem, while the
yi are denoted the dependent variables.
The cost function V that has to be minimized is written as

V :=

n∑

i=1

e2
i =

n∑

i=1

(yi − φT
i θ)2

When the data is given, the function V becomes a function of θ, V (θ). Besides the fact that
V (θ) is quadratic in ei, it is also quadratic in θ. This implies that it is a convex function,
as illustrated in figure 5.6 for a scalar-valued θ, having a unique global minimum that can
be obtained by setting the derivative of V (θ) to zero.

θ 

V(θ) 

Figure 5.6: V is a quadratic function θ, which can be visualized for the situation that θ is
scalar-valued.

Since4

∂V (θ)

∂θ
=

(
∂V
∂b0
∂V
∂b1

)
=

(
−2
∑

i(yi − φT
i θ)

−2
∑

i ui(yi − φT
i θ)

)

it follows that
∂V

∂θ

∣∣∣∣
θ=θ̂

= 0 →
∑

i

φi(yi − φT
i θ̂) = 0.

The resulting equations ∑

i

φi(yi − φT
i θ̂) = 0 (5.29)

are called the normal equations. Note that φi and θ are both 2-dimensional vectors, leading
to a set of 2 (normal) equations with 2 unknowns. They deliver the following analytical
solution for θ̂: [

∑

i

φiφ
T
i

]
θ̂ =

∑

i

φiyi (5.30)

or equivalently:

θ̂ =

[
∑

i

φiφ
T
i

]−1∑

i

φiyi
(5.31)

4As a notational convention, the derivative of a scalar with respect to a column vector is again a column
vector.
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provided that the inverse of the corresponding 2 × 2-matrix exists.
Note that the right hand side of the expression is only dependent on measurement data;
once measurement data is available, the solution to the least-squares problem is simply
obtained.
Existence of the matrix inverse in (5.31) is directly coupled to the question whether a
sufficiently informative experiment has been done in order to uniquely determine the LS-
solution. Consider , e.g., the situation that in the experiment all measurements ui are the
same, so

ui = c for all i.

Then φi = (1 c)T and

∑

i

φiφ
T
i =

∑

i

[
1
c

]
[1 c] =

(
n cn
cn nc2

)

As the second column of this matrix is obtained by scalar multiplication of the first column
by c, the matrix is singular and its inverse will not exist. Therefore the LS-solution will
not be unique; there will exists many solutions of the equation (5.30). The non-uniqueness
of the solution can also simply be understood by considering the problem in the scope of
figure 5.5; if the cloud of points is concentrated around one value of ui, then there does not
exists a unique “best” straight line5 that relates u to y.

Least-squares solution in matrix form

For convenience, often use will be made of a more extensive matrix notation, replacing the
summations of i.
The normal equations ∑

i

φi(yi − φT
i θ̂) = 0 (5.32)

can actually be rewritten as:

[φ1 · · ·φn]




y1 − φT
i θ̂

...

yn − φT
n θ̂


 = 0

which can be rewritten in short as

XT (Y − Xθ̂) = 0 (5.33)

with

X =




φT
1
...

φT
n


 ; Y =




y1
...

yn


 .

Note that X is a n × 2 matrix and Y an n × 1 vector. The solution is given by

θ̂ = (XT X)−1XT Y

where again the assumption has to be made that the 2 × 2 matrix inverse indeed exists.

5Note that the straight line u = c does not relate u to y and therefore is not a solution to the problem.
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5.3.3 Linear regression as a statistical estimation problem

Through imposing relation (5.27), the least-squares problem considered here has become
a fully deterministic problem of drawing a straight line through a cloud of points, by
minimizing the deviation to the line in the y-direction.

Considering the problem as a statistical estimation problem, we have to take care of the
random character of the measurements yi. If in (5.26) the variables ei are random, then we
have to write:

yi = b0 + b1ui + ei (5.34)

showing that yi actually are random variables as well.

The corresponding estimator of θ0 then becomes

θ̂ = (XT X)−1XTY,

with Y now a vector of random variables:

Y =




y1
...

yn




and therefore θ̂ also becomes a random variable. As a result we can study the statistical
properties of the estimator θ̂.

Bias of a linear least squares estimator

Assume that the measured data ui, yi is generated by an equation of the form

Y = Xθ0 + E E =




e1
...
en


 .

This implies that there exists a noise free output vector Y = Xθ0 that is observed through
the random variable Y = Y + E where E is a vector of random variables.

Substituting Y into the expression for θ̂, it follows that

θ̂ = (XT X)−1XT (Xθ0 + E)

= θ0 + (XT X)−1XTE. (5.35)

The estimator is unbiased if E[θ̂] = θ0. If X is deterministic, as considered here, this
condition is simply satisfied if E[E] = 0, or equivalently if E[ei] = 0 for all i.

Conclusion:

The linear least squares estimator is unbiased if the noise terms on
the output variables are zero-mean random variables.
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Variance of a linear least squares estimator

For an unbiased estimator:

cov(θ̂) = E

[
(θ̂ − θ0)(θ̂ − θ0)

T
]

= E
[
(XT X)−1XT EETX(XT X)−1

]

If ei is a sequence of zero-mean uncorrelated random variables with equal variance σ2, then

E[EET ] = σ2 · I

and when the components of X are deterministic (no random variables), this will imply
that

cov(θ̂) = (XT X)−1XT σ2IX(XT X)−1 (5.36)

= σ2(XT X)−1. (5.37)

One of the important and appealing observations here is that the variance of θ̂ increases
with increasing values of σ2: the higher the noise level, the larger the parameter variance.

A graphical interpretation of the covariance matrix is obtained when considering the situ-
ation when θ̂ has a Gaussian distribution with covariance matrix

Σ = σ2(XT X)−1.

In this case
(θ̂ − θ0)

T Σ−1(θ̂ − θ0) ∈ χ2
d

which means that the left hand side expression follows a χ2 distribution with d degrees of
freedom (with d the dimension of θ0).

6 As a result the probability that

(θ̂ − θ0)
T Σ−1(θ̂ − θ0) ≥ α

is specified by the χ2
d distribution. The sets determined by this latter expression determine

ellipsoids in R
2, as visualized in figure 5.7 (for the case d = 2) and elaborated in section

5.2.2. Note that when giving confidence intervals for the two parameters on the basis of
a particularly chosen level of probability α, the covariance result (corresponding to the
ellipsoidal area in figure 5.7) is less conservative than when bounding the two parameters
separately (corresponding to the rectangular area in the figure). We will come back to the
subject of confidence intervals in subsection 5.3.3.

Variance for incorrect models

The expression for the variance of θ̂ remains the same if the chosen model does not match the
underlying data generating equations. Consider , e.g., the situation where data originates
from the relation

Y = Xθ0 + E0 = Xrθ
(1)
0 + Xeθ

(2)
0 + E0

while a model is used with only a restricted number of regression variables:

Y = Xrθ + E.

6A χ2
d distribution is typically obtained when taking the sum of d squared terms of independent normally

distributed random variables with mean 0 and variance 1.
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θθθθ0
(1)

θθθθ0
(2)

Figure 5.7: Ellipsoid indicating levels of equal probability density function for a normally
distributed estimator θ̂ with covariance matrix Σ. The principal axes of the ellipsoid are
determined by the eigenvectors and eigenvalues of Σ.

In this situation the regressor Xe is not incorporated in the model, possibly due to the
fact that its relevance for the considered data was unknown to the user. Now the model
estimator becomes:

θ̂ = (XT
r Xr)

−1XT
r Y = (XT

r Xr)
−1XT

r [Xrθ
(1)
0 + Xeθ

(2)
0 + E0] (5.38)

= θ
(1)
0 + (XT

r Xr)
−1XT

r Xeθ
(2)
0 + (XT

r Xr)
−1XT

r E0. (5.39)

If E0 is zero-mean, and Xr and Xe are deterministic then E[θ̂] = θ
(1)
0 +(XT

r Xr)
−1XT

r Xeθ
(2)
0

and as a result

cov(θ̂) = E

[
(θ̂ − Eθ̂)(θ̂ − Eθ̂)T

]
(5.40)

= (XT
r Xr)

−1XT
r σ2IXr(X

T
r Xr)

−1 (5.41)

= σ2(XT
r Xr)

−1. (5.42)

The resulting estimator will be biased now, but its variance expression still matches the
general formula (5.37), where X then has to be interpreted as the regressor matrix that is
used in the chosen model.

Example 5.3 (Estimation of a physical variable from 5 different measurements)
Consider a physical variable θ0 that is measured by 5 different instruments, each having
a different level of measurement noise. One can think , e.g., of the measurement of a
temperature with different instruments. The available instruments are given by

y1 = θ0 + e1

y2 = θ0 + e2

y3 = θ0 + e3

y4 = θ0 + e4

y5 = θ0 + e5

where ei is the random (additive) error that is induced by instrument number i. These
“errors” are supposed to be zero-mean random variables with variance σ2

i , such that

σ1 ≤ σ2 ≤ · · · ≤ σ5.
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There are several candidate estimators for estimating the true parameter value θ0:

• Choose the measurement of the “best” instrument, i.e., the instrument with the small-
est variance error. This implies:

θ̂ = y1. (5.43)

This estimator is unbiased, and has a variance of σ2
1 .

• Combine all measurement into a simple linear least squares estimator. The cor-
responding model is: yi = θ + ei, and the least squares solution is obtained by
minimizing

∑5
i=1 e2

i is given by

θ̂ = (XT X)−1XT Y

with X = [1 · · · 1]T and Y = [y1 · · ·y5]
T , leading to

θ̂ =
1

5

5∑

i=1

yi.

The estimator is simply obtained as the average of the 5 different instrument mea-
surements. Note that again Eθ̂ = θ0, and so the estimator is again unbiased.

The variance of the estimator is determined by

var(θ̂) = E
[
(XT X)−1XTEET X(XT X)−1

]

which with X as given above, reduces to

1

25
[1 · · · 1]




σ2
1

. . .

σ2
5







1
...
1




so that

var(θ̂) =
1

25

5∑

i=1

σ2
i .

Note that it is not automatic that the variance of the second estimator is smaller than that
of the first estimate. If all σi are equal, then averaging the 5 results improves the final
variance with a factor 5; however when instruments 2 until 5 are much worse in quality
than instrument number 1, averaging may even deteriorate the final estimator variance to
become worse than the first one.

Confidence regions and intervals

A 100(1−α)% confidence region is a region in the parameter space that covers the true but
unknown parameter vector θ0 with probability 1 − α. Similarly, a 100(1 − α)% confidence

interval for an element θ
(r)
0 of θ0 is an interval that covers the true element θ

(r)
0 of θ0 with

probability 1−α. If we consider the situation that the noise terms on the output variables
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are zero-mean, uncorrelated, Gaussian distributed random variables with equal variance
σ2, then the linear regression estimator

θ̂ = (XT X)−1 · XT Y

has a Gaussian distribution N (θ0,Σ) with covariance matrix

Σ = σ2 · (XT X)−1.

This also implies that

θ̂
(r) ∈ N (θ0

(r), [Σ]rr)

with θ̂
(r)

0 the rth element of θ̂ and [Σ]rr the rth diagonal element of Σ. In this case

θ̂
(r) − θ

(r)
0√

[Σ]rr

∈ N (0, 1)

and

(θ̂ − θ0)
T Σ−1(θ̂ − θ0) ∈ χ2

d

which means that the left hand side expression follows a χ2 distribution with d degrees of
freedom, with d the dimension of the parameter vector θ0. Hence, the following probability
statements hold true:

P

[
−λ1−α/2 <

θ̂
(r) − θ

(r)
0√

[Σ]rr

< λ1−α/2

]
= 1 − α,

and

P
[
(θ̂ − θ0)

T Σ−1
θ (θ̂ − θ0) < χ2

d,1−α

]
= 1 − α

with χ2
d,1−α the (1−α) quantile of a chi-square distribution with d degrees of freedom, and

λ1−α/2 the (1 − α/2) quantile of the standard normal distribution. The α quantile of the
distribution of a continuous random variable x is defined as the smallest number ξ satisfying
Fx(ξ) = α, with Fx(x) the distribution function of x. Consequently, an (ellipsoidal) 100(1−
α)% confidence region for θ0 is given by:

{
θ|(θ̂ − θ)TΣ−1(θ̂ − θ) < χ2

d,1−α

}
(5.44)

and a 100(1 − α)% confidence interval for the parameter θ
(r)
0 is given by

θ̂
(r) ± λ1−α/2

√
[Σ]rr. (5.45)

5.3.4 Extensions

The linear regression estimator or the linear least squares (LS) estimator, has been derived
for the situation of a two dimensional regressor

φT
i = [1 ui].
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However all expressions considered in this analysis can straightforwardly be extended to
the situation of any number of d regressors and d unknown parameters, by extending φi as
, e.g.,

φT
i = [1 ui vi wi · · · xi] ∈ R

d.

The several variables in the regressor are variables that are considered to be related to the
observed variable yi that one wants to explain from the independent variables ui, vi etc.
The corresponding parameter vector θ will then become a d× 1 vector, and the expressions
for the parameter estimator stay as they were:

θ̂ = [
∑

i

φiφ
T
i ]−1

∑

i

φiyi (5.46)

= (XT X)−1XT Y (5.47)

now with X a n × d matrix and Y a n × 1 vector.

So far we have considered the situation that the regressor variables ui are exactly known,
while the measured variables yi are assumed to be noise disturbed.

However the converse assumption is of course also possible: yi exactly known, and ui

disturbed by noise. In that case a similar analysis as given in this section can be applied
leading to a least-squares criterion that minimizes the distance from the measured points to
a straight line in the direction of the u variable. This is illustrated in figure 5.8(left). Note
that when starting with a cloud of measurement points it will clearly make a difference,
and lead to different parameter estimators, if one chooses for one or the other option.

A symmetric treatment of the y and u variables leads to the suggestion to determine the
straight line that minimizes the distance to the measurement points when taking orthogonal
projections onto the straight line. This is illustrated in figure 5.8(right) and will be further
analyzed in section 5.4.
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Figure 5.8: Linear regression problem with y as independent (exactly known) variable, and
u as dependent variable (left); regression problem where an orthogonal projection to the
straight line is used to determine least distance (right).
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Example 5.4 (Absorption coefficient of an optical fiber (Frieden, 2001)) A phys-
ical measurement problem does not always look as a regression problem, but can often be
written in this format.
Consider the problem of experimentally determining the absorptance coefficient of an optical
fiber. This can be done by measuring the light intensity i(x) at several measurement
locations x along the fiber. The -theoretical- relation between light intensity and location
is given by

I(x) = I0e
−αx

with I(x) the light intensity at distance x from the light source, α the absorption coefficient,
and I0 the light intensity of the source.
If the initial intensity I0 is unknown, there are basically two unknown parameters: I0 and
α. Measurement of light intensity at location x is done by cutting the fiber, and measuring
the light intensity. This is done for N different values of x.
In this situation it does not seem to be possible to write the system equation in the form:

I(x) = φT θ

as is required for a linear least squares estimator to be constructed.
However if we take the logarithm of the relation then:

log I(x) = log I0 − αx (5.48)

= φT θ (5.49)

with

φ =

(
1
−x

)
and θ =

(
log I0

α

)
.

By taking N measurements {xi, I(xi)}i=1,···N one can now construct a linear least squares
estimator:

θ̂N = [
∑

i

φiφ
T
i ]−1

∑

i

φi log I(xi).

In order for this estimator to be unbiased the noise on the measurement data has to be
such that

log I(xi) = log I0 − αxi + ei

with ei realizations of a zero-mean stochastic process. In terms of the original relation for
I(x), this implies that there is a multiplicative noise contribution

I(x) = I0e
−αxee

with e a zero-mean stochastic process.

5.3.5 Weighted linear least squares estimation

In the linear regression problem the residual “error” at every measurement point is weighted
with a constant weighting over all measurements. In other words: all data is equally
weighted. In the weighted least squares approach, an additional weighting factor is intro-
duced that allows for different weighting of the several measurements. This will be shown
to provide means to arrive at estimators with improved statistical properties.
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The weighted least squares criterion is formulated as:

V (θ) = (Y − Xθ)T W (Y − Xθ)

with W a symmetric positive definite n×n matrix that is called the weighting matrix. The
weighted least squares criterion may alternatively be written as

V (θ) =
∑

i

∑

j

wij(yi − φT
i θ)(yj − φT

j θ).

with {wi,j}i,j=1,··· ,n the elements of W . Note that for the special case of a diagonal weighting
matrix W = diag(w1, · · · , wn), the weighted least squares criterion can also be written as

V (θ) =
∑

i

wi(yi − φT
i θ)2.

The weighted least squares solution is found by minimizing the weighted least squares
criterion with respect to θ. Setting the derivative of V (θ) with respect to θ to zero, the
normal equations result:

XT W (Y − Xθ̂) = 0

If Y is again considered as a random variable (i.e., Y = Y), the solution to the weighted
least squares problem becomes:

θ̂ = (XT WX)−1XT WY

which reduces to the simple least squares estimator when W = I.

Bias and variance of the weighted linear least squares estimator

For a data-generating system
Y = Xθ0 + E0

the weighted least squares estimator is given by:

θ̂ = (XT WX)−1XT WY = θ0 + (XT WX)−1XT WE0

so the estimator is unbiased if EE0 = 0, i.e., if the noise process is zero-mean.

For the variance of the unbiased estimator one can write:

cov(θ̂) = E[(θ̂ − θ0)(θ̂ − θ0)
T ]

= E[(XT WX)−1XT WE0E
T
0 WX(XT WX)−1]

Note that in the particular situation that W = (E[E0E
T
0 ])−1, the expression for the variance

simplifies to
cov(θ̂) = (XT WX)−1. (5.50)

This particular choice of weighting matrix is not just chosen for simplicity; it appears to have
an important property. It is the - optimal - weighting that minimizes the variance over all
possible choices of weighting matrices. More precisely, the weighted least squares estimator
with as weighting matrix the inverse of the covariance matrix of the noise (i.e., with W =
Σ−1) has minimum variance within the class of weighted least squares estimators, that is,
the difference of the covariance matrix of any estimator of this class and its covariance
matrix is positive semidefinite.
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Lemma 5.5 Let Σ be a positive definite matrix, and define

P (W ) = (XT WX)−1XT WΣWX(XT WX)−1.

Then for all symmetric, positive semi-definite W , it holds that

P (Σ−1) ≤ P (W ).

This inequality expresses that the difference between the left-hand and right-hand member
is negative semi-definite. A property of a negative semi-definite matrix is that its diagonal
elements cannot be positive. This means that the diagonal elements of P (Σ−1) are smaller
than or equal to the corresponding diagonal elements of P (W ).

Proof: The matrix
[

XT

XT WΣ

]
Σ−1

[
XT

XT WΣ

]T

=

[
XT Σ−1X XT WX
XT WX XT WΣWX

]

is positive semi-definite by construction.
Consider any positive semi-definite matrix

H =

[
A B

BT C

]

with C invertible. Then considering xHxT with x = [x1 − x1BC−1] and x1 arbitrary
shows that

xHxT = x1[A − BC−1BT ]x1.

If H is positive semi-definite, then (A − BC−1BT ) is also positive semi-definite. Applying
this result to the above expressions, shows that

XT Σ−1X − XT WX[XT WΣWX]−1XT WX ≥ 0

or equivalently
XT Σ−1X ≥ XT WX[XT WΣWX]−1XT WX.

Taking inverses of both sides of the inequality leads to

(XT Σ−1X)−1 ≤ (XT WX)−1[XT WΣWX](XT WX)−1.

2

A weighted least-squares estimator, with the optimal weighting as indicated above, is also
referred to as the Markov estimator or the Best Linear Unbiased Estimator (BLUE). The
reason for this is that it can be shown that this estimator has the minimum variance not
only within the class of weighted least squares estimators, but also within the (broader)
class of estimators that are linear in the observations (Y) and are unbiased.

If we apply this BLUE to the problem as sketched in Example 5.3, then the “optimal”
weighting should be chosen as

W = Σ−1 =




σ−2
1

. . .

σ−2
5






Chapter 5 101

The weighted least squares criterion now reads:

min
θ

5∑

i=1

(yi − θ)2

σ2
i

,

leading to the weighted least squares solution

θ̂ = (XT Σ−1X)−1XT Σ−1Y

=
[y1/σ

2
1 + · · · + y5/σ

2
5 ]

1/σ2
1 + · · · + 1/σ2

5

. (5.51)

The variance of this estimator is given by (5.50):

var(θ̂) = (XT Σ−1X)−1

=
1

1/σ2
1 + · · · + 1/σ2

5

. (5.52)

Note for the first suggested estimator (5.43) the variance was given by

σ2
1 =

1

1/σ2
1 + 0

.

Therefore the estimator (5.51) will always have a smaller variance than the estimator (5.43).

Consequently: the use of all five measurement devices reduces the variance of the final
temperature estimator, and is to be preferred over simply choosing the measurement from
the device with the highest precision. However in order to find the optimal weightings
that minimize the overall variance, knowledge of the variance of the several instruments is
required.

5.4 Total least squares

5.4.1 Introduction

So far we have considered the problem of finding a linear relation between measured vari-
ables where we have chosen one of the variables to be given as deterministic, and one
variable to contain a random error. In this way a linear regression estimator comes down to
minimizing the sum of squared distances between the measurement points and the optimal
straight line, where “distance” is measured in the direction of the variable that is supposed
to contain the (random) measurement error.
However it may happen (and maybe it is even more realistic in many cases) that both
measured variables will be contaminated with measurement noise. In that case the usual
regression techniques, as discussed so far, do not suffice. First it will briefly be analyzed
how a linear least squares estimator will behave when all data is contaminated with noise.
Next an algorithm will be presented leading to an estimator that can appropriately handle
the considered situation.
In order to keep the exposition of the mathematical details at a comprehensible level, a
restriction will be made to linear regression models for which the regressor matrix contains
measured variables only, and does not contain constants, as , e.g., the constant term 1 in
the regressor φi in section 5.3.4. In the scope of Figure 5.8 this implies that in this section
we will restrict attention to linear relationships that pass through the origin (y, u) = (0, 0).
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5.4.2 Properties of the linear least squares estimator in the presence of
disturbances on all data

If both measurements of X and Y are contaminated with random noise the following model
equations can be formalized:

Y0 = X0θ0 (5.53)

Y = Y0 + Ey (5.54)

X = X0 + Ex (5.55)

where X0, Y0 are the exact (noise-free) variables that are assumed to be related through
the exact parameter value θ0, and X,Y are the measurement variables that are available,
being contaminated with the random variables Ex and Ey respectively.

When applying the linear least squares estimator, the following parameter estimator is
obtained on the basis of n data points:

θ̂n = (XTX)−1XTY = (XT X)−1XT [X0θ0 + Ey] (5.56)

For an analysis of this expression, assume that each row of the random matrix [Ex Ey] is
a vector-valued random variable with zero mean and covariance matrix

Σ =

(
Σx Σxy

ΣT
yx Σy

)
,

and that the several rows are independent and identically distributed. Let zT
i be the i-th

row of [Ex Ey]. Then Eziz
T
i = Σ for all i, and consequently

E[Ex Ey]
T [Ex Ey] = E[z1 z2 · · · zn]




zT
1

zT
2
...

zT
n


 = n · Σ.

For analyzing the statistical properties of the estimator (5.56) we need to consider its
expected value, which requires taking the expectation of an expression of products and
quotients of correlated random variables. In the general case this is quite hard to do.
However when using the notion of probability limit (plim) (see the definition of consistent
estimators, page 82) an asymptotic analysis can be made.

For the estimator

θ̂n = [(X0 + Ex)T (X0 + Ex)]−1(X0 + Ex)
T (X0θ0 + Ey) (5.57)

it follows that under the considered assumptions

plim
n→∞

1

n
[(X0 + Ex)T (X0 + Ex)] = lim

n→∞

1

n
XT

0 X0 + Σx (5.58)

plim
n→∞

1

n
(X0 + Ex)

T (X0θ0 + Ey) = lim
n→∞

(
1

n
XT

0 X0)θ0 + Σxy. (5.59)
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Denoting A0 = limn→∞( 1
nXT

0 X0) and substituting the above expressions into (5.57) then
delivers:7

plim
n→∞

θ̂n = [A0 + Σx]−1[A0θ0 + Σxy] (5.60)

= [I + A−1
0 Σx]−1[θ0 + A−1

0 Σxy], (5.61)

provided that the limit A0 exists and that it is invertible.
This result shows that the parameter estimator will generally be biased, in contrast with
the situation when the variables in X are noise free. The latter situation can be obtained
by substituting Σx = Σxy = 0.
The bias of the estimator can be constructed by rewriting (5.60) as

plim
n→∞

θ̂n = (A0 + Σx)
−1[(A0 + Σx − Σx)θ0 + Σxy] (5.62)

= θ0 + (A0 + Σx)
−1[−Σxθ0 + Σxy]. (5.63)

If the noise terms in X and Y are uncorrelated, i.e., Σxy = 0, the expression for the
parameter estimator simplifies to

plim
n→∞

θ̂n = [I + A−1
0 Σx]

−1θ0 (5.64)

and the bias expression (5.63) becomes

plim
n→∞

θ̂n = θ0 − (A0 + Σx)−1Σxθ0. (5.65)

Apparently the least squares estimator is asymptotically biased now, and the bias is depen-
dent on the noise-to-signal ratio in the measured variables X; here Σx is a reflection of the
noise signal, and (A0 + Σx) a reflection of the measured signal properties of X.

5.4.3 Total least squares

The linear least squares problem can be generalized to a situation that both X and Y are
contaminated by errors. This is reflected in the following (deterministic) model for the
measurements:

Y + Ey = (X + Ex)θ (5.66)

where Ey and Ex are perturbations of the measured variables Y and X respectively.
As in the case of the linear least squares method, we will first consider all data to be
deterministic, leading to a model-fit problem on the basis of a particular cost function. In
the next subsection we will then analyse the related statistical estimation method with the
corresponding total least squares estimator.
The total least squares problem, is formulated as to finding the solution for θ that satisfies
(5.66) and that minimizes the Frobenius norm:

‖[Ey | Ex]‖F =
√

tr([Ey | Ex][Ey | Ex]T ).

7Use is made of the so-called Theorem of Slutsky, that states that for two estimators θ̂
(1)

n , θ̂
(2)

n with

probability limits θ(1) and θ(2) it holds that plimn→∞ θ̂
(1)

n · θ̂
(2)

n = θ(1)θ(2), and for any continuous function

h of θ̂
(1)

n , plimn→∞ h(θ̂
(1)

n ) = h(θ(1)).
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I.e., on the basis of n measured data Y,X the total least squares estimate θ̂n is determined
by

θ̂n = arg
θ

min
θ,Ex,Ey

‖[Ey | Ex]‖F (5.67)

under the constraint that Y + Ey = (X + Ex)θ (5.68)

The squared Frobenius norm of a matrix is given by the sum of squared values of all
matrix elements. If X contains only one regressor, as is the situation in figure 5.8(right)
when the linear curve is restricted to pass through the origin, the Frobenius norm can

simply be written as
√∑n

i=1 E2
x,i + E2

y,i, where index i refers to the noise term on data

sample i. In this situation it follows directly that minimizing this Frobenius norm is (with
Pythagoras) equal to minimizing the sum of distances from the measurement points to the
(perpendicular) projected points on the estimated line.

The equation (5.66) can be rewritten into the form

[X̄ + ∆̄]

[
−1
θ

]
= 0 (5.69)

with

X̄ = [Y | X] (5.70)

∆̄ = [Ey | Ex]. (5.71)

If the matrix [X̄ + ∆̄] is regular (i.e., it has full column rank), the only -trivial- solution to
the equation [X̄ + ∆̄]x = 0 will be x = 0. Therefore in order for a non-trivial θ to exist,
the columns of the matrix [X̄ + ∆̄] have to be linearly dependent, i.e., the matrix has to be
singular. The problem is now to find a matrix ∆̄ with minimum Frobenius norm such that
[X̄ + ∆̄] becomes singular.
This latter problem can be solved through a singular value decomposition of X̄ .
Note that the dimensions of X̄ are n×m, with n the number of data points available, and
m = d+1, d being the number of regressors in X. It is assumed that n > m. Now consider
the singular value decomposition (see appendix B.2):

X̄ =

m∑

k=1

σkUkV
T
k

then the matrix ∆̄ with minimum Frobenius norm that renders X̄ singular, is given by

∆̄ = −σmUmV T
m .

In other words: compensating a matrix by its component that is induced by its smallest
singular value, delivers a matrix which is reduced in rank by one, and at the same time it
is the smallest compensating term (in Frobenius norm) that achieves this goal.
Substituting this into the equation (5.69) shows that

m−1∑

k=1

σkUkV
T
k

[ −1

θ̂n

]
= 0.
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The vector (−1 θ̂T
n )T should be orthogonal to all singular vectors Vk, k = 1, · · ·m− 1. The

only vector for which this holds is given by Vm.
Write Vm as

Vm =

[
v1

Vm,r

]

with v1 scalar, and Vm,r a d dimensional vector, then it follows that

θ̂n = − 1

v1
Vm,r. (5.72)

Summarizing, the total least squares estimate is obtained by applying an SVD to the data
matrix X̄, and by extracting the parameter estimate from the (right) singular vector Vm

that is related to the smallest singular value.
The presented algorithm provides the best straight line in the cloud of measurement points
yi, ui by minimizing the orthogonal distance of measurement points to the straight line. For
this reason this method is also referred to as orthogonal least squares or errors-in-variables
(EIV) method.

5.4.4 Statistical properties of TLS-estimators

If the measurement data X,Y are considered to be random variables, denoted by X and
Y, the total least squares solution (5.72) becomes a random variable, and therefore an
estimator, that is determined by

θ̂n = arg
θ

min
θ,Ey,Ex

‖[Ey | Ex]‖F (5.73)

under the constraint that Y + Ey = (X + Ex)θ. (5.74)

The properties of this estimator can now be analyzed. The principal result is formulated
in the following proposition.

Proposition 5.6 Assume that the measured data in X and Y satisfies the equations

Y0 = X0θ0 (5.75)

Y = Y0 + Ey (5.76)

X = X0 + Ex (5.77)

where X0, Y0 are the exact (noise-free) variables that are assumed to be related through the
exact parameter value θ0, and that the rows of the matrix [Ey | Ex] are independent and
identically distributed vector random variables with zero mean and covariance Σ = σ2Im.

If lim
n→∞

1

n
XT

0 X0 exists and is positive definite, then for n → ∞, θ̂n (5.73) converges to θ0

with probability one, and therefore the estimator is consistent.

The proof of this proposition is beyond the scope of the current text. It can be found
in Gleser (1981). More extensive properties of the TLS estimator, including asymptotic
distribution and variance properties can be found in Van Huffel and Vandewalle (1991).
This result shows that the TLS-estimator is consistent under the assumption that the noise
disturbance on all regression and output variables are independent, with fixed and equal
variance over all variables. In particular this latter situation is rather restrictive. If this
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condition is not satisfied, i.e., if each row of [Ey | Ex] has a covariance matrix that is not
σ2I, the data Y and X can be scaled and transformed by a linear operation such that
transformed data Ỹ and X̃ occurs that does satisfy the covariance matrix assumption.

Suppose that the rows of [Ey | Ex] have a covariance matrix Σ, then Σ can be decomposed
in an eigenvalue decomposition, as

Σ = WΛW T

equivalent to the situation in section 5.2.2.

By denoting

Σ = BBT

with B = WΛ
1
2 , the original model equations can be transformed from

[X̄ + ∆̄]

[
−1
θ

]
= 0

with X̄ = [Y | X] and ∆̄ = [Ey | Ex], into

[X̄ + ∆̄]B−T BT

[
−1
θ

]
= 0

and

[X̄B−T + ∆̄B−T ]BT

[
−1
θ

]
= 0.

In this latter expression the covariance of the rows of ∆̄ now will be the identity matrix,
and thus satisfying the consistency conditions of the TLS estimator.

The algorithm now follows by taking the SVD of the transformed data matrix X̄B−T ,
leading to the m-th right singular vector Vm, and by solving for the equation

BT

[ −1

θ̂n

]
= Vm

or equivalently [ −1

θ̂n

]
= B−TVm.

With this algorithm the situation of noise disturbance on Y and X can be handled, leading
to a consistent estimator of the model parameter. However knowledge of the covariance
matrix of the several noise terms is required to construct this estimator.

5.5 The Cramér-Rao lower bound

The estimators presented so far show different properties for the variance (i.e., the covari-
ance matrix) of the estimated parameter. This raises the fundamental question whether,
in a particular estimation problem, there exists a lower bound on the reachable estimator
variance. The answer to this question is one of the most powerful results in estimation
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theory, and is known as the Cramér-Rao lower bound (CRLB), named after the work of
Cramér (1946) and Rao (1945)8.

Cramér-Rao lower bound (CRLB)

Consider observations from a random variable y with probability
density function fy(y, θ), where θ is the unknown parameter. Then

for any unbiased estimator θ̂ of the parameter θ, its covariance ma-
trix satisfies the inequality 9

cov(θ̂) ≥ J−1 (5.78)

with the Fisher Information Matrix:

J = E

[
− ∂2

∂θ2
log fy(y; θ)

∣∣∣∣
θ=θ0

]
(5.79)

The logarithm of the probability density function of the measurement data determines the
lower bound on the variance of any unbiased parameter estimator.

Note that the measurable random variable y will generally be an n-dimensional vector,
and the corresponding probability density function fy a multivariate p.d.f. With θ being
a d-dimensional vector of parameters, the second partial derivative of a scalar function g
with respect to θ is a d × d matrix defined by

∂2

∂θ2
g =




∂2g
∂θ1∂θ1

∂2g
∂θ1∂θ2

· · · ∂2g
∂θ1∂θd

∂2g
∂θ2∂θ1

∂2g
∂θ2∂θ2

· · · ∂2g
∂θ2∂θd

...
...

. . .
...

∂2g
∂θd∂θ1

∂2g
∂θd∂θ2

· · · ∂2g
∂θd∂θd




.

Proof of the Cramér-Rao inequality

Since fy(y; θ) is a probability density function, it holds that

∫ ∞

−∞
fy(y; θ)dy = 1 for all θ (5.80)

where the integral over dy should be considered to be taken over the n-dimensional mea-
surement space, when the measurement data is n-dimensional. In particular it will follow
that ∫ ∞

−∞
θfy(y; θ)dy = θ for all θ. (5.81)

8Actually Fisher (1922) had shown a similar result two decades earlier.
Ronald Aylmer Fisher (1890-1962) was a British mathematician who played a key role in the development
of modern probability theory.

9The expression for the Fisher Information Matrix requires the second partial derivative of log f (the
natural logarithm) with respect to θ to exist and to be absolutely integrable.
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The expected value of an estimator θ̂(y) is given by

E[θ̂(y)] =

∫ ∞

−∞
θ̂(y)fy(y; θ0)dy.

Consequently one can write that for every unbiased estimator θ̂ = θ̂(y) it follows that

E[θ̂ − θ0] =

∫ ∞

−∞
[θ̂(y) − θ0]fy(y; θ0)dy = 0.

Basically this expression holds true for all θ0, as the unbiasedness of the estimator θ̂ is not
dependent on the particular choice of θ0. As a result the above equation should also hold
when differentiated with respect to θ0.

If the partial derivative
∂fy(y;θ)

∂θ exists and is absolutely integrable, then

∂

∂θT
0

∫ ∞

−∞
[θ̂(y) − θ0]fy(y; θ0)dy = (5.82)

=

∫ ∞

−∞
[θ̂(y) − θ0]

[
∂fy(y; θ0)

∂θ0

]T

dy −
∫ ∞

−∞
I · fy(y; θ0)dy = 0 (5.83)

showing that ∫ ∞

−∞
[θ̂(y) − θ0]

[
∂fy(y; θ0)

∂θ0

]T

dy = I.

With the expression for the derivative of the logarithm, this leads to

∫ ∞

−∞
[θ̂(y) − θ0]

[
∂ log fy(y; θ0)

∂θ0

]T

fy(y; θ0)dy = I,

or

E

[
[θ̂ − θ0]

∂ log fy(y; θ)

∂θT

∣∣∣∣
θ=θ0

]
= I. (5.84)

In the scalar case (d = 1) one can now take the square of this relation, and apply Schwartz
inequality (E[xy])2 ≤ E[x2] · E[y2], to show that

1 ≤ E[(θ̂ − θ0)
2] · E



(

∂

∂θ
log fy(y; θ)

∣∣∣∣
θ=θ0

)2



leading to

E[θ̂ − θ0]
2 ≥



E



(

∂

∂θ
log fy(y; θ)

∣∣∣∣
θ=θ0

)2






−1

. (5.85)

In the multivariate situation (d > 1) a different route has to be followed. In that situation
we rewrite (5.84) into the form

E[abT ] = I (5.86)

and we consider

E

[(
a
b

)(
a
b

)T
]

=

(
E[aaT ] I

I E[bbT ]

)
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which is a positive semi-definite matrix by construction. Then with the property of positive
semi-definite matrices, as explained in the proof of Lemma 5.5 (page 100) it follows that

E[aaT ] ≥
(
E[bbT ]

)−1
,

leading to

cov(θ̂) ≥



E



(

∂

∂θ
log fy(y; θ)

∣∣∣∣
θ=θ0

)(
∂

∂θ
log fy(y; θ)

∣∣∣∣
θ=θ0

)T






−1

. (5.87)

Differentiating (5.80) shows that

∫ ∞

−∞

∂fy(y; θ)

∂θ
dy = 0

or equivalently ∫ ∞

−∞

∂ log fy(y; θ)

∂θ
fy(y; θ)dy = 0.

Differentiating this equation with respect to θT gives

∫ ∞

−∞

[
∂2 log fy(y; θ)

∂θ2
+

(
∂ log fy(y; θ)

∂θ

)(
∂ log fy(y; θ)

∂θ

)T
]

fy(y; θ)dy

and as a result

E

[(
∂ log fy(y; θ)

∂θ

)(
∂ log fy(y; θ)

∂θ

)T
]

= −E

[
∂2 log fy(y; θ)

∂θ2

]
.

Together with (5.87) this proves the result for the Cramér-Rao bound. 2

Discussion

Some comments on the nature of the lower bounds:

• The calculation of the CRLB requires exact knowledge of the probability density func-
tion of the measured random variables. This is of course a quite strict requirement,
that asks for detailed knowledge of the disturbances that act on the measured data.

• The calculation of the CRLB will generally require knowledge of the exact sys-
tem parameter θ0. There are exceptions though, when the second derivative of the
log fy(y; θ) is independent of θ. This typically happens in the situation of Gaussian
probability density functions, in combination of a parameter θ which occurs linearly
in the measured output. See also Example 5.7.

• The CRLB is a lower bound on the variance of unbiased estimators. It does not
say anything about the variance of biased estimators, and so it is possible that there
exists a biased estimator that has a smaller variance, and possibly even a smaller
mean-squared error.
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As a result of these remarks, calculation of the CRLB is often not feasible in practical
situations. However the bound is very useful in analysis questions, e.g., when evaluating
properties of several estimators and when comparing the covariance matrices of several
estimators.

Notice that the CRLB is not related to a particular estimation method. It depends on the
statistical properties of the observed variables, the measured data, and in most cases the
hypothetical true values of the parameters. As first sight, this dependence on the true values
looks as a serious impediment to the practical use of the bound. However, the expressions
for the bound provide the experimenter with the means to compute numerical values for it,
using nominal values of the parameters. This provides the experimenter with quantitative
insight in what precision (i.e., variance) might be achieved from the available observations.
In addition, it provides insight in the sensitivity of the precision to the parameter values.

Another important purpose for which the expressions for the CRLB can be used, is the
optimization of the experiment design, i.e., the selection of which data to measure and to
use as a basis for the estimation. By calculating the CRLB, the experimenter gets an im-
pression if for a given experiment setup the precision attainable is sufficient for the purpose
concerned. If not, the experiment design has to be changed. If this is not possible, it has
to be concluded that the observations are not suitable for the purpose of the measurement
procedure. In this way, the experiment design can be optimized so as to attain the highest
precision, i.e., the smallest variance (see , e.g., Van den Bos, 1999).

As a final remark it should be noted that existence of a lower bound on the parameter
variance, does not imply that an estimator can be found that reaches this lower bound. Es-
pecially in the situation of observing random variables with a finite number of observations,
it appears very hard to find the minimum variance estimator.

Example 5.7 (Continuation of Example 5.3) Consider again the 5 measurements

yi = θ0 + ei i = 1, · · · 5.

For calculation of the CRLB of this estimation problem, we additionally assume that the
random errors ei are jointly Gaussian distributed, with mean value 0 and covariance matrix
Σ = diag(σ2

1 , · · · , σ2
5).

Using the multivariate Gaussian distribution (A.10) it follows that

fy(y, θ) =
1

(2π)5/2
√

detΣ
exp[−1

2
(y − θ)T Σ−1(y − θ)]

with y := [y1 y2 · · ·y5]
T , and θ = [θ · · · θ]T . Consequently

log fy(y, θ) = c −
5∑

i=1

1

2

(yi − θ)2

σ2
i

.

Taking the partial derivative with respect to θ delivers

∂ log fy(y; θ)

∂θ
=

5∑

i=1

(yi − θ)

σ2
i



Chapter 5 111

and the second derivative:

∂2 log fy(y; θ)

∂θ2
=

5∑

i=1

−1

σ2
i

.

Substituting this result in the expression for the CRLB, gives:

var(θ̂) ≥ 1

1/σ2
1 + · · · + 1/σ2

5

.

This provides us, in the considered situation, with the best possible variance for any unbi-
ased estimator.

Note that the weighted least squares estimator that was analyzed in section 5.3.5 reaches
exactly this lower bound of the parameter variance in expression (5.52).

The conclusions that one can draw from this, are the following

• In the problem setting of the considered example, the weighted least squares estimator
with the particular weights as chosen in section 5.3.5 leads to the smallest possible
variance among all unbiased weighted least squares estimators, irrespective of the
probability density function of the disturbances.

• If in the problem setting of the considered example, the disturbance terms are Gaus-
sian distributed, then the weighted least squares estimator with the above mentioned
weights, has the smallest possible variance among all unbiased estimators.

If the probability density function of the disturbances is unknown, the weighted least squares
estimator can lead to satisfactory results; however there is no guarantee that it is the best
possible estimator in terms of minimum variance.

5.6 Maximum likelihood estimator

In the previous section it was shown that the probability density function of the measured
random variables plays a crucial role in the smallest possible variance that can be reached
for any unbiased parameter estimator.

The parameter estimation methods considered so far are based on linear (regression) tech-
niques, and therefore they are restricted to a well-defined class, characterized by the fact
that the resulting estimators lead to simple analytical functions of the measured random
variables. As a result, the computational tools required for the estimators are very straight-
forward.

In this section a general philosophy to parameter estimation will be presented that takes
account of the probability density function of the measured random variables, and therefore
has the potentials to come close to the covariance expressions as induced by the CRLB.

The so-called maximum likelihood principle is based on the following reasoning.

Suppose that a (vector) random variable y is observed, and that the underlying probability
density function of y is given by

fy(y, θ)

where θ reflects the unknown (vector) parameter that is to be estimated.
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For a given value of θ the function fy(y, θ) is a probability density function. However for
a fixed value of y and unknown θ, the function f is a (deterministic) function of θ and
referred to as the likelihood function, indicated by

L(θ; y)

Maximum likelihood principle

For a given observation y of the measured random variable y, de-
termine the maximum likelihood estimate as that value of θ that
maximizes the likelihood function, i.e.,

max
θ

L(θ; y).

The resulting maximum likelihood (ML) estimator is denoted as:

θ̂ml = arg max
θ

L(θ;y).

For given observed values y = y, the maximum likelihood estimate is determined by that
value of θ for which the probability density function fy(y, θ) reaches its maximum value. In
other words: that parameter θ is sought for that generates a probability density function
for which the observed measurement data was the most probable data. The idea can best
be visualized in a very simple example.

Example 5.8 (Visualization of the maximum likelihood principle) We consider the
linear model between the observed variables y and u, where u is exactly measured and
known, and y is a random variable that satisfies :

y = θ0u + e

with e a random variable with a particular pdf fe, and θ0 an unknown scalar constant.
We are going to estimate a model of the form

y = θu + e

and the pdf of the observed random variable y is then given by fe(y − θu).
For one observed measurement of y, i.e., y is a scalar, the pdf of y as a function of θ is
depicted in Figure 5.9 for u = 2. It is a continuum of pdf’s, since θ varies over a continuous
region.
Now, if one observation of y is made, e.g., y = 0, then the likelihood function results:
L(θ) = fe(y − θu)|y=0, being a function of θ only, and depicted in Figure 5.9 as the solid
(red) curve. The maximum likelihood estimate of θ is that value of θ for which L reaches
its maximum.
In Figure 5.9 the example is sketched of a normal pdf fe with zero mean and unit variance.
The likelihood function then becomes

L(θ; y) =
1√
2π

e
−(y−2θ)2

2 .
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Figure 5.9: A prior probability density function of y, as a function of θ, (blue continuum
of curves), and the likelihood function L for observation y = 0 (red solid curve).

For the observation y = 0, maximization of L(θ; y = 0) comes down to maximizing

1√
2π

e
−4θ2

2

which is obtained for θ = 0, this being the maximum likelihood estimate.

Maximum likelihood estimation of the parameters of linear regression models
from Gaussian distributed observations

The considered -very simple- example can straightforwardly be extended to the situation of
multiple observations and vector parameters. Consider the previously used linear regression
model:

yi = φT
i θ + ei i = 1, · · · n

with

φi =

[
1
ui

]
and θ =

[
b0

b1

]
.

and assume that ei is a set of independent Gaussian random variables with pdf fe having
mean value 0 and variance σ2.

Then the joint probability density function of the measured variables y1 · · ·yn is given by

fy(y) =

n∏

i=1

fe(yi − φT
i θ)

and the likelihood function then becomes

L(θ;Y ) =
n∏

i=1

1√
2πσ

e−
(yi−φT

i θ)2

2σ2 .
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Maximizing the likelihood function over θ leads to the same argument as maximizing
log L(θ, Y ) over θ. This is due to the fact that the log is a monotone increasing func-
tion. Taking the logarithm is often advantageous, in particular for probability density
functions that contain exponentials. Instead of maximizing log L one can equivalently min-
imize − log L, which is given by

− log L(θ;Y ) =
n

2
log 2π + n log σ +

1

2σ2

n∑

i=1

(yi − φT
i θ)2. (5.88)

Since the first two terms on the right hand side of this expression are constants and not
functions of θ, consequently

θ̂n = arg min
θ

1

2σ2

n∑

i=1

(yi − φT
i θ)2 (5.89)

= arg min
θ

n∑

i=1

(yi − φT
i θ)2 (5.90)

and this expression is exactly the same as the simple least squares (linear regression) esti-
mator that was developed in section 5.3. This leads to the following conclusion.

For n independent observations from a Gaussian distribution with
equal variance for all observations, the ML estimator is given by the
simple least squares (LS) estimator.

If in the considered problem the noise terms ei are independent Gaussian random variables
with zero mean and with fixed and known variance σ2

i , being different for the different
measurements i, then the likelihood function simply generalizes to

L(θ;Y ) =

n∏

i=1

1√
2πσi

e
−

(yi−φT
i θ)2

2σ2
i

and the corresponding maximum likelihood estimator is given by

θ̂n = arg min
θ

n∑

i=1

(yi − φT
i θ)2

σ2
i

(5.91)

and this expression is the same as the weighted least squares estimator with a diagonal
weighting matrix W = diag(1/σ2

i , · · · , σ2
n), which was developed in section 5.3.5. If in the

considered problem the noise terms ei are correlated Gaussian random variables with zero
mean and n × n covariance matrix Σ, then the likelihood function generalizes to

L(θ;Y ) =
1

(2π)n/2
√

det(Σ)
e−

1
2
(Y −Xθ)T Σ−1(Y −Xθ)

with

X =




φT
1
...

φT
n


 ; Y =




y1
...

yn


 .
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and the corresponding maximum likelihood estimator is given by

θ̂n = arg min
θ

(Y − Xθ)T Σ−1(Y − Xθ), (5.92)

which leads to
θ̂n = (XT Σ−1X)−1XT Σ−1Y (5.93)

and this expression is the same as the weighted least squares estimator that was developed
in section 5.3.5. As a result one can state the following:

For n observations from a joint Gaussian distribution, the ML esti-
mator is given by the weighted least squares (WLS) estimator, where
the weighting matrix is given by the inverse of the covariance matrix
of the observations.

Note that the considered weighted least squares estimator is identical to the BLUE (best
linear unbiased estimator), discussed in section 5.3.5. So, for Gaussian disturbances (and
regression models linear in the unknown parameters θ) , the BLUE and the ML estimator
coincide, and from the results of the previous section it follows that their variance reaches the
Cramér-Rao lower bound, i.e., the minimum possible variance over all unbiased estimators.
Note that the equivalence between ML and LS/WLS estimators typically holds true for
Gaussian distribution functions. However the maximum likelihood principle goes beyond
this situation and applies also to other distributions.

Discussion

In the general case, the ML estimator will require solving the optimization problem

θ̂n = arg min
θ

(− log L(θ,Y))

which might not be straightforward at all. In particular for Gaussian distributions, and
a linear regression model, this optimization problem is simple, since it reduces to mini-
mizing a quadratic function in θ. This convex optimization problem is simply solvable by
efficient algorithms, relying on analytical expressions for its solution. In the general situa-
tion however the optimization problem will require nonlinear (gradient-type) optimization
tools that suffer from possible poor convergence due to the existence of local minima, and
the resulting lack of guarantee that a solution to the problem has been obtained. For an
overview of optimization methods see , e.g., Fletcher (1980) and Miller (2000).
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Properties of the ML estimator
The maximum likelihood estimator has several important properties:

The ML-estimator has the property that for number of the observa-
tions n tending to infinity,

θ̂n → N (θ0, J
−1)

meaning that the random variable θ̂n converges in distribution to
a Gaussian distribution with mean value θ0 and covariance matrix
equal to the Cramér-Rao bound.
As a result of this, the ML-estimator is

• asymptotically unbiased;

• consistent

• asymptotically efficient, i.e., it asymptotically reaches the mini-
mum possible variance (CRLB) among all unbiased estimators.

These properties of the ML estimator are very powerful, and are a strong support for
this estimation principle. With respect to the practical implications one should realize
though that in order for an ML estimator to be applicable, detailed knowledge of the
probability density function of the observations has to be available (as prior information,
e.g., derived for physical considerations/analysis of the disturbances that are acting on the
measurement data). Note also that the attractive properties of the ML estimator all hold
asymptotically in the number of data n. There is no guarantee for unbiased and minimum
variance estimators in the case of finite data.
This section on the ML estimator will be ended by providing some examples.

Example 5.9 (Estimation of mean value of Gaussian random variable) Consider n
independent observations of a Gaussian random variable y with unknown mean µ and
known variance σ2. The likelihood function, as a function of µ is given by

L(µ) =
n∏

i=1

1√
2πσ

e−
(yi−µ)2

2σ2 (5.94)

and

log L(µ) = n log
1√
2πσ

− 1

2σ2

n∑

i=1

(yi − µ)2. (5.95)

Maximizing L leads to the same argument as minimizing − log L, and so the maximum
likelihood estimator for µ is determined by

µ̂n = arg min
µ

{
−n log

1√
2πσ

+
1

2σ2

n∑

i=1

(yi − µ)2

}
(5.96)

= arg min
µ

1

2σ2

n∑

i=1

(yi − µ)2. (5.97)
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Setting the derivative of the function in the right hand side to zero:
[
−2

n∑

i=1

yi − µ

]

µ=µ̂n

= 0 (5.98)

delivers nµ̂n =
∑n

i=1 yi or equivalently

µ̂n =
1

n

n∑

i=1

yi. (5.99)

In other words, in the considered situation is the sample average the maximum likelihood
estimator for the mean value of the random variable.

Example 5.10 (Estimation of variance of Gaussian random variable) Consider n
independent observations of a Gaussian random variable y with known mean µ and un-
known variance σ2. The likelihood function, as a function of σ is given by

L(σ) =

n∏

i=1

1√
2πσ

e−
(yi−µ)2

2σ2

Since maximizing L(σ) has the same optimum argument as minimizing − log L(σ), we
consider

− log L(σ) =
1

2σ2

n∑

i=1

(yi − µ)2 − n log
1√
2πσ

Minimizing − log L(σ) can be done by setting ∂
∂σ = 0, i.e.,

[
n

σ
− 2

n∑

i=1

(yi − µ)2

2σ3

]

σ=σ̂n

= 0

or equivalently

n −
n∑

i=1

(yi − µ)2

σ̂2
n

= 0

from which follows that

σ̂2
n =

1

n

n∑

i=1

(yi − µ)2. (5.100)

The difference of this estimator with analyzed in Example 5.2 is that here the exact ex-
pression µ is used, whereas in the earlier example an estimate of µ was substituted in the
expression. The current estimator is unbiased, whereas the estimator in (5.15) is biased.

Example 5.11 (Estimating arrival rate of photons on a detection plate) The time
T between the detection of two photons on a detection plate of an electron microscope is a
random variable with exponential density function

fT(T ) =

{
αe−αT T ≥ 0

0 otherwise
(5.101)
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The coefficient α is known as the arrival rate. Additionally interarrival intervals are inde-
pendent (see also the Poisson process discussed in section 3.4.3). For the estimation of the
arrival rate α, we construct the likelihood function:

L(α;T1, · · · , Tn) =

n∏

i=1

αe−αTi = αne−α
∑n

i=1 Ti . (5.102)

The maximum likelihood estimate is found by taking the logarithm of this function, and
setting the derivative equal to 0:

∂

∂α

[
n log α − α

n∑

i=1

Ti

]
=

n

α
−

n∑

i=1

Ti = 0. (5.103)

Solving this equation for α leads to the maximum likelihood estimate

α̂ml =
1

1
n

∑n
i=1 Ti

. (5.104)

The estimate is the inverse of the average interarrival time.

In the examples given so far, the maximum likelihood estimate can always be obtained by
simple analytic expressions. This is however not a structural property of this estimator.
Consider, e.g., the emission of radioactive particles from two radioactive sources, generally
modelled as

yt = λ1e
µ1t + λ2e

µ2t + η + et

with λ1, λ2 the concentration of the two radioactive sources, µ1, µ2 the decay rate of the
separate sources, η the effect of background radiation, and et a random error, and that the
radiation yt is observed over n time instants.
Suppose that et are independent Gaussian random variables with known and fixed mean
and variance.
If µ1 and µ2 are known, and we intend to estimate λ1, λ2 and η, we can write

yt = φT
t θ + et (5.105)

with
φt = [eµ1t eµ2t 1]T and θ = [λ1 λ2 η]T

and with et having a Gaussian distribution, the ML-estimator of θ is then simply obtained
as the linear least squares estimate. This is a direct consequence of the fact that the
observations can be written in the linear regression form (5.105) which is linear in the
unknown parameter θ.
If all variables are unknown the likelihood function to be optimized becomes:

L =

n∏

t=1

1√
2πσ

exp(−(yt − λ1e
µ1t − λ2e

µ2t − η)2

2σ2
). (5.106)

Maximizing this function is equivalent to minimizing the function

− log L = c +
1

2σ2

n∑

t=1

(yt − λ1e
µ1t − λ2e

µ2t − η)2. (5.107)
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Minimizing this function as a function of the unknown parameters λ1, λ2, η, µ1 and µ2 is
an optimization problem that cannot simply be solved analytically by setting the partial
derivatives equal to 0. Finding the ML estimate is now equivalent to solving a nonlinear
least squares problem. More complex nonlinear optimization algorithms, as , e.g., gradient
type methods, are necessary to computationally find the optimal parameter value.

5.7 Parameter estimation and random variable estimation

So far we have considered estimation problems where the unknown parameters to be esti-
mated are unknown constants, such as , e.g., the mean or variance of a random variable, but
also the autocorrelation function and the spectral density function of a stationary stochastic
process belong to this category. Estimators for the latter notions will be discussed in chap-
ter 7. Also unknown (but fixed) physical parameters in physical models can be estimated
with the methods presented in the current chapter.
A different situation occurs if the object that one intends to estimate itself is a random
variable. This typically occurs in problems of prediction and filtering:

• Consider observations of a stationary stochastic process y(t) over a time sequence
t = 1, · · ·N −1; determine an estimate of the future values of the process, y(t), t ≥ N .
E.g., predict future values of the stock exchange index on the basis of past observations
(prediction problem).

• Estimate the realization of a random variable that is not directly measurable, on the
basis of related and measurable random variables.
E.g., predict the weather forecast conditions on a fine grid over Europe, on the basis of
measurements at a limited number of locations, together with an atmospheric model
(filtering problem).

Random variable estimation will be considered in the next chapter.

5.8 Summary

In this chapter the basic theory for characterizing estimators has been presented. Principle
estimation methods, such as least squares/linear regression have been analyzed, and have
been shown to be easily extendable to more general estimators. This includes weighted least
squares, total least squares, and finally maximum likelihood methods. While going to more
advanced estimation methods an increasing amount of prior information on the statistics
of the measurement data is required. Linear least squares methods are directed towards
measurement data that are contaminated by zero-mean random variables. If the variance
of the measurement variables is known, better estimators (with smaller variance) can be
obtained by using a weighted least squares method. If the full pdf of the measurement data
is known, the maximum likelihood method provides an estimator which asymptotically
reaches the smallest variance possible, determined by the Cramér-Rao bound.
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Chapter 6

Optimal filtering

The problem is addressed how to estimate an information carrying source signal,
that is represented as a single realization of a stochastic process, on the basis
of observations that are corrupted by stochastic noise. Optimal filter theory
provides filters for extracting the source signal on the basis of the essential
properties of the stochastic processes involved. The theory includes methods
for estimating physical variables that are not directly measurable, but for which
indirect measurements are available.

6.1 Introduction

The estimation of an unobservable information carrying signal from a measurable -possibly
noise corrupted- signal is one of the central problems is signal processing. It refers to many
practical examples as, e.g., in speech, radar, EEG, imaging, where the direct information
carrying part of the signal can not be measured free of noise. This noise effect may be due to
inaccuracies or limited resolution in the applied sensors, but the contamination of the signal
can also be due to the underlying physical phenomena as , e.g., the propagation of the signal
from the source to the receiver (as the channel characteristic in a digital communication
system), or the propagation of an optical wave through a lens system.
Whereas in the previous chapter we have been considering the problem of estimating an
unknown physical (but constant) parameter θ0 on the basis of measurable random variables,
the problems considered in this chapter concern the estimation of quantities that are random
variables themselves. In other words: the quantities to be estimated are realizations of
random variables, and estimators are sought that provide good estimates for all possible
realizations of the random variable to be estimated.

Whereas parameter estimation refers to the hitting of a fixed target
on the basis of noisy observations, random variable estimation (or
optimal filtering) refers to the hitting of a (randomly) moving target
on the basis of noisy observations.

E.g., suppose that there exists a random variable x that can not be observed directly, and
a related set of random variables y1 · · ·yn that can be measured. For example, x may be
the value of a random signal at a particular time, but the signal is embedded in a hostile
environment and cannot be received without significant distortion. The observations may

121
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represent various receptions of the signal corrupted by noise, dispersion, multipath, or other
interfering signals. The goal is now to find an estimator

x̂ = x̂(y1, · · · ,yn)

that is optimal in some sense.

In time-sequenced signals, or random processes, the problems can be phrased as follows:

Suppose an information carrying random process {x(t)} is not directly measurable, but its
information is hidden in a measurable random process {y(t)} that is related / correlated
to the process {x(t)}. In terms of the global pictures presented in Chapter 1, this refers to
the situation as sketched in Figure 6.1.

measurement
y

stochastic v
source of uncertainty

desired process variable
x

measurable

to be reconstructed /
estimated

M

Figure 6.1: Filter problem

In Figure 6.2 an example of signals {x(t)} and {y(t)} is given. For given signal values y(t),
t ≤ t0, the optimal estimation of x(τ) is generally referred to as a
smoothing problem if τ < t0
filtering problem if τ = t0, and
prediction problem if τ > t0.

The presumed relation between y and x can be structured in different forms. The most
simple situation is sketched in Figure 6.3(left). Here the observed process y is a noise
disturbed version of the process x, with v an additive noise disturbance, e.g. reflecting the
finite precision of the measurement device.

If the measurement device does not only add a noise term, but also statically or dynamically
influences the measurement, the situation as sketched in Figure 6.3(right) applies. Here the
transfer function G refers to, e.g., the dynamical properties of the sensing device (finite
bandwidth), or the physical relationship that exists between the process of interest x and
the measurable process y.

Consider, e.g., a piezo-element that is used to measure a displacement by way of the voltage
across the element. In this case the transfer G refers to the relationship between voltage
and displacement of the considered piezo-element. In a communication channel, x can be
the transmitted signal, G the properties of the channel, and y the received signal. In an
image analysis/processing problem, G can be the effect of blurring.

In order to solve the filtering problem, several parts of prior information are required. This
will in particular include
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y(t) measurable 

x(t) non−measurable 

x(t) smoothing / filtering x(t) prediction t
0
 

Figure 6.2: Smoothing, filtering and prediction
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Figure 6.3: Simple relationships between measurable process y and to be reconstructed
process x; v is a stochastic disturbance term.

• Knowledge of the relationship between x and y, and particularly

• Knowledge of G and knowledge of the second order properties of x and v, i.e., their
means and covariance functions (or spectral densities).

Of course in general this required information will not be known a priori, and will have to
be estimated from measurements also. This will be the subject of later chapters. Here it is
assumed that the information mentioned above is available.

In the situation of (time-sequenced) stochastic processes, the optimal filtering problem may
seem to have a trivial solution. If the spectral density functions (frequency bands) of the
information carrying process x and the disturbance process v are disjunct, as sketched in
Figure 6.4, one might apply a simple low-pass filter H to reconstruct x from the measure-
ment y = x + v, and thus separate the two different signals. The resulting (optimal) filter
operation is sketched in Figure 6.5. In this case x̂(t) will be a perfect estimate of x(t) for
any realization of x that is considered. However in most applications such a clear separation
of frequency range will not appear, and more advanced techniques are required to optimally
estimate the information carrying signal from the available measurements.

In this chapter the general random variable estimation problem will be considered:
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low-pass filter

xΦ (ω)
vΦ (ω)

ω

Figure 6.4: Information carrying process x and noise v with disjunct power spectral densi-
ties

H

y(t)
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Figure 6.5: Filtering for separation of signals

• Construct an estimator x̂ of the random variable x, on the basis of n measured related
random variables y1, · · · ,yn.

This problem is tackled by considering so-called mean squared error (MSE) estimation.
Subsequently, this problem is transferred to the situation of time-sequenced random pro-
cesses, and related optimal filtering problems are considered. In this latter situation the
measured random variables are considered to be time-sequenced random variables in a
stationary stochastic process.

6.2 Random variable estimation and the mean squared error
(MSE) criterion

In the random variable estimation problem we first consider n random variables to be
available from measurements:

y1, · · · yn

and the problem is to construct an estimator

x̂ = g(y1, · · · ,yn)

to obtain a “best” estimator of the random variable x that somehow is related to the
random variables yi. So random variable x is the target to be reached, and yi are the
random measurements that are used to estimate the target.

As a criterion of fit, many different cost functions are possible. The most common criterion
is the mean squared error criterion

E[(x− x̂)2] (6.1)

and an estimator x̂ = g(y1, · · · ,yn) is sought for that minimizes this criterion.

In contrast with the use of the MSE of a parameter estimator, the MSE criterion (6.1)
concerns two random variables, i.e., x (the target is random) and y = [y1, · · · ,yn]T (the
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measurements are random). An appropriate notation for this MSE criterion is therefore:

Ex,y[(x − x̂(y))2].

Consequently the expected value in (6.1) is taken over the joint probability density function
fx,y(x, y), i.e.,

E[(x − x̂)2] = E[(x − x̂(y))2] =

∫ ∞

−∞

∫ ∞

−∞
(x − x̂(y))2fx,y(x, y)dxdy (6.2)

where of course the integration over y should be considered to be taken over an n-dimensional
measurement space.
By using Bayes’ relation (A.5) for joint probability density functions:

fx,y(x, y) = fx|y(x|y) · fy(y)

the MSE criterion becomes

E[(x − x̂)2] =

∫ ∞

−∞
J(x̂, y)fy(y)dy (6.3)

with

J(x̂, y) =

∫ ∞

−∞
(x − x̂)2fx|y(x|y)dx. (6.4)

A minimum for (6.3) can be obtained if we can find an estimate x̂ that is minimal for all
y. A necessary condition for J(x̂, y) to be minimal for all y, is that

∂

∂x̂
J(x̂, y) = −2

∫ ∞

−∞
(x − x̂)fx|y(x|y)dx = 0, (6.5)

or equivalently ∫ ∞

−∞
xfx|y(x|y)dx = x̂

∫ ∞

−∞
fx|y(x|y)dx.

Since the last integral of the density function is 1, this implies that the estimator that
minimizes the MSE criterion, is given by

x̂(y) =

∫ ∞

−∞
xfx|y(x|y)dx = E(x|y). (6.6)

This result leads to the observation that

The mean squared error (MSE) estimator of a random variable x on
the basis of observed random variables y is given by its conditional
mean E[x|y].

Actually a complete characterization of the random variable x when having knowledge of
y is present in the conditional probability density function fx|y(x|y). However in order to
construct this conditional pdf knowledge is required of both fx,y(x, y) and fy(y). While
the latter pdf might be estimated on the basis of measurement data, the first pdf requires
detailed knowledge of x. The result of the derivation in this section is that the mean value
of fx|y(x|y) can be found by minimizing E[(x − x̂)2], while no prior knowledge is required
on the form of pdf that is considered; the result holds for any pdf.
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6.3 Linear MSE estimators - the scalar case

For illustration we consider a simple example that will be approached from two different
sides.

Conditional mean for Gaussian distributions

Consider the random variables x and y to have a joint Gaussian distribution, with mean
value

µ =

(
µx

µy

)

and covariance matrix

Σ =

(
σ2
x σxy

σxy σ2
y

)

and the joint probability density function is given by

fx,y(x, y) =
1

2π
√

det(Σ)
e
− 1

2


 x − µx

y − µy




T

Σ−1


 x − µx

y − µy




while the marginal density function for observed random variable y is given by

fy(y) =
1√

2πσy

e
−

(y−µy)2

2σ2
y .

Then by forming the ratio

fx|y(x|y) =
fx,y(x, y)

fy(y)

and by some tedious manipulation, it can be shown that

fx|y(x|y) =
1√
2πσ

e−(x−m(y))2/2σ2
(6.7)

with

m(y) = µx + σxyσ−2
y (y − µy) (6.8)

σ2 = σ2
x − σxyσ−2

y σxy. (6.9)

The expressions (6.8) and (6.9) can directly be derived from the more complex multivariate
situation that is explained in detail in Appendix C. Alternative formulations are possible
employing the correlation coefficient ρxy = σxy/(σxσy), leading to, e.g., σ2 = σ2

x(1 − ρ2
xy).

As a result the conditional mean of x is given by

x̂(y) = m(y) = µx + σxyσ−2
y (y − µy). (6.10)

An important observation here is that the estimate depends linearly1 on y. The optimal
MSE estimator therefore is a linear estimator, and this is a direct result of the fact that
the joint distribution function is Gaussian.

1Actually the function m(y) is not linear but affine, meaning that it is of the form m(y) = ay + b. For
linearity it needs to satisfy m(αy1 +βy2) = αm(y1)+βm(y2), for all α and β and this only holds true when
b = 0. Nevertheless the y-dependent term appears linearly in m(y).
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For Gaussian distributed random variables, the optimal MSE esti-
mator is a linear function of the observed variables.

Note that for calculation of the optimal estimator, information is required on the joint
distribution function of x and y. This is of course a rather restrictive requirement.

Optimal MSE linear estimator

Consider again the scalar random variables x and y, with y being observable and x to be
estimated. Now we do not assume to have knowledge of the probability density function
but we simply look for the best MSE estimator of the form:

x̂ = a + by (6.11)

where a and b are constants that determine the MSE estimator. The linear structure of the
estimator (6.11) now is chosen by the experimenter, and one is looking for the best linear
estimator that has this structure.
When minimizing

E[(x− x̂)2]

with x̂ = a + by, the solution ams, bms is obtained by setting the derivative of the criterion
equal to zero, i.e.,

(
∂
∂a
∂
∂b

)
E[(x− a − by)2] =

(
0
0

)
in (a, b) = (ams, bms).

As the criterion is quadratic in the unknowns (a, b), this indeed leads to the global minimum
of the considered MSE criterion.
Analyzing the above expression shows:

−2E[x− ams − bmsy] = 0
−2E[(x − ams − bmsy)y] = 0

}
⇒
{

ams = µx − bmsµy

E[xy] − amsµy − bmsE[y2] = 0
(6.12)

Substitution of the first equation in the second one provides:

E[xy] − (µx − bmsµy)µy − bmsE[yy] = 0.

Utilizing the definitions for (co)variance:

σ2
y = E[(y − µy)2] = E[y2] − µ2

y

σxy = E[(x − µx)(y − µy)] = E[xy] − µxµy

it follows that σxy − bmsσ
2
y = 0, leading to

ams = µx − µy

σxy

σ2
y

bms =
σxy

σ2
y

. (6.13)

The linear MSE estimator is obtained by x̂ = ams + bmsy, which equals

x̂ = µx +
σxy

σ2
y

(y − µy) (6.14)

and this optimal estimator is exactly the same as the one that was obtained in (6.10).
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Remarks

• Note that in the second situation linearity of the estimator is the result of a choice
made by the experimenter, while in the first situation it is a result of the Gaussian
probability density function. In the second situation there might exist other estima-
tors (e.g., more complex linear or nonlinear functions g(y)) that might lead to smaller
values of the MSE criterion.

The best linear MSE estimator is equal to the best MSE estima-
tor under Gaussian assumptions. For other distributions nonlinear
estimators might lead to smaller MSE.

• A second remark that can be made is that the procedure for deriving the optimal
MSE coefficients of the linear estimators, is very similar to the linear regression tech-
niques analyzed in section 5.3. Indeed the results match very closely in terms of their
structure, although the different components in the expressions are slightly different:
data-based averages in the linear regression problems, versus covariances and mean
values in the linear estimator problems considered in this chapter. Whereas in the
linear regression problems the parameter estimators are random variables (with statis-
tical properties), the filter coefficients ams, bms derived here are no random variables,
but optimal filter coefficients.

In the considered situations, the minimum value of the MSE criterion can be calculated as
follows. By substituting the coefficient expressions (6.14) into the estimator x̂ = ams+bmsy,
and calculating

E[(x − x̂)2] = E[(x − µx + µy

σxy

σ2
y

− σxy

σ2
y

y)2] (6.15)

it follows that

E[(x − x̂)2] = E[

{
(x − µx) − σxy

σ2
y

(y − µy)

}2

] (6.16)

= σ2
x +

σ2
xy

σ4
y

σ2
y − 2

σ2
xy

σ2
y

(6.17)

= σ2
x −

σ2
xy

σ2
y

= σ2
x(1 − ρ2

xy). (6.18)

• If y and x are strongly correlated, ρxy ∼ 1, and the MSE criterion is close to 0. In
this situation x can very accurately be estimated on the basis of y.

• If y and x are only weakly correlated, ρxy ∼ 0, and the MSE criterion is close to
the variance of x. Observing y does not contribute essentially to variance reduction
caused by the fact that y does provide only very limited information on x.

We conclude this section with two -rather simple- examples.
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Example 6.1 (MSE Estimation of a random variable with a constant) Let a be a
-constant- parameter to estimate a random variable x. Which value of a will lead to an
estimate with the smallest MSE?

In the setting of this section, the estimator has the format

x̂ = a

and so it is not a function of any observable random variable.

By writing

E[(x − a)2] = E[{(x − µx) + (µx − a)}2]

= E[(x − µx)2] + E[(µx − a)2] +

+2(µx − a) E[x − µx]︸ ︷︷ ︸
=0

= σ2
x + (µx − a)2

it follows that the MSE is minimal for a = µx. This shows that the expected value is the
MSE estimate of a random variable, irrespective of its probability density function.

Example 6.2 Let

y = x + v

with v a scalar random variable with variance σ2
v = 1, and µv = 0, x a scalar random

variable with µx = 1, σ2
x = 4, independent of v.

We observe the variable y = 2. What is the linear MSE estimate of x in the format

x̂ = a + b · y?

With y = x + v it follows that µy = 1.
σ2
y = E[(x + v − 1)2] = E[(x − µx)2] + E[v2] = 5.

σxy = E[(x − µx)(y − µy)] = E[(x− µx)(x − µx + v)] = σ2
x = 4.

Then applying the relations found in the analysis delivers:

bms =
σxy

σ2
y

=
4

5

ams = µx − µy

σxy

σ2
y

= µx − 4

5
=

1

5
. (6.19)

So the optimal linear MSE estimator is x̂ =
1

5
+

4

5
y, and for observation y = 2: x̂ =

1/5 + 8/5 = 9/5.
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6.4 Linear MSE estimators - the vector case

This section will consider the situation of having multiple random variables as observed
variables, y1, · · · ,yn and using them in an estimator for a related scalar random variable:

x̂ = x̂(y1, · · · ,yn).

The linear case will be considered, where the structure of the estimator is:

x̂ = a +

n∑

i=1

biyi = a + bTy

with b = [b1 · · · bn]T and y = [y1 · · ·yn]T .

Substituting this expression into the MSE criterion E[(x − x̂)2] and setting the partial
derivatives of the criterion with respect to a and b to zero, it follows that

2E[x − x̂] = 0 (6.20)

2E[y(x − x̂)] = 0. (6.21)

The optimal filter, represented by (ams, bms), is then found by solving

2E[x − ams − bT
msy] = 0 (6.22)

2E[y(x − ams − bT
msy)] = 0. (6.23)

This leads to

ams = µx − bT
msµy = µx − µT

y bms (6.24)

while bms is determined by

E[yx] = amsµy + E[yyT ]bms.

Substituting ams in this latter equation leads to

E[yx] − µxµy = (E[yyT − µyµT
y ])bms

or equivalently:

E[(y − µy)(y − µy)T ]bms = E[(y − µy)(x − µx)]

which is -according to the notational conventions - denoted as

Σybms = Σyx. (6.25)

This leads to the solution:

bms = Σ−1
y · Σyx, (6.26)

where

Σy =




σy1y1 σy1y2 · · · σy1yn

σy2y1 σy2y2 · · · σy2yn

...
. . .

. . .
...

σyny1 σyny2 · · · σynyn


 (6.27)
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and

Σyx =




σy1x

σy2x

...
σynx


 . (6.28)

Substituting the expression for the estimator coefficients into the MSE criterion, it follows
that

E[(x − x̂)2] = E[(x− µx − bT
ms(y − µy))2] (6.29)

= σ2
x − 2Σxybms + bT

msΣybms (6.30)

= σ2
x − ΣxyΣ−1

y Σyx. (6.31)

Again, as in the scalar case, it can be observed that the MSE criterion reaches a smaller
value the higher the correlation between x and the components of y.

Summarizing one can state that

• The estimator based on the conditional expectation is always the optimal MSE esti-
mator.

• In general the conditional expectation is hard to determine since it requires knowledge
of the joint pdf’s.

• The linear MSE estimator is simply determined on the basis of first and second order
moments (Σxy, σx,Σy)

• In the situation of Gaussian joint pdf’s, the estimator based on conditional expectation
is a linear MSE estimator.

The orthogonality principle in linear MSE estimation

There is one important principle in linear MSE estimation that is applicable in many
different filtering problems. It is called the orthogonality principle, and it states that the
linear MSE estimator

x̂ = bT
msy

satisfies (and actually is determined by) the orthogonality property that

E[ǫy] = 0 with ǫ = x− x̂. (6.32)

In other words: the linear MSE estimator is constructed in such a way that the estimation
error is orthogonal to the measured (regression) variables. Orthogonality of two random
variables v and w has to be interpreted here on the basis of the inner product < v,w >:=
E[vw∗]. The situation is graphically illustrated in Figure 6.6.

The result is a direct consequence of the optimality conditions for the linear MSE estimator.
When considering the MSE criterion for any value of the parameter vector b

E[(x − x̂)2] = E[(x − bTy)2]
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y1

y2

x

x̂

ε

Figure 6.6: MSE estimation error is orthogonal to the measured variables yi.

and setting the partial derivative with respect to b to zero in b = bms, it follows that

−2E[y(x − bT
msy)] = 0,

which directly shows the result.
Note that in this analysis we have not taken account of a constant term a in the linear
estimator. Discarding this term actually comes down to restricting attention to the situation
that both x and y have mean value zero, or have been preprocessed to have zero-mean.
Note that in absence of a constant a in the estimator, the expression for bms becomes

bms = (E[yyT ])−1
E[yx] (6.33)

with

E[yyT ] = Ryy =




ry1y1 ry1y2 · · · ry1yn

ry2y1 ry2y2 · · · ry2yn

...
. . .

. . .
...

ryny1 ryny2 · · · rynyn


 and E[yx] = Ryx =




ry1x

ry2x

...
rynx


 .

The minimum value of the MSE criterion now becomes:

E[(x− x̂)2] = E[(x − bT
msy)2] = (6.34)

= rxx − 2bT
msRyx + bT

msRyybms (6.35)

= rxx − RT
yxR−1

y Ryx. (6.36)

As a general expression for the minimal MSE one can also write:

E[(x− x̂)2] = E[ǫ(x − bmsy)] (6.37)

and since E[ǫy] = 0 this simplifies to

E[(x − x̂)2] = E[ǫx]. (6.38)

6.5 Optimal MSE filtering

6.5.1 Introduction

The results on MSE estimators will now be applied to the situation of (random) signals
that are a sequenced in time2. This implies that the measured random variables y1, · · · yn

2As before, the sequencing is considered in a time domain but can equivalently be handled in other
domains, such as the spatial domain when considering, e.g., optical or image processing type of problems.
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are part of a stochastic process, and therefore indexed in the time domain:

y1, · · · ,yn → y(1), · · · y(n).

The estimator to be determined can then be interpreted as a (dynamical) filter that operates
on the stochastic process y in order to construct an estimator x̂ that is intended to match
a related random variable x as close as possible, in MSE sense.

optimal
MSE filter

y(t) x̂(t)

Figure 6.7: Optimal MSE filter operating on stochastic process y.

First we will consider the most simple form of the problem, namely the linear prediction
problem. Subsequently we will move to more general estimation and related filtering prob-
lems.

6.5.2 Linear prediction

In linear prediction the random variable to be estimated is y(t) while the available data is
given by the measured random variables y(t− 1), · · · y(t− n), n ≥ 1. So it is assumed that
past data is available, and that it is desired to estimate the current value y(t). This occurs
in many different (prediction) problems, as , e.g., occurring in tracking the position of a
target; if y(t) represents the target position, a sensor tracking the target must be able to
predict the target’s next likely position before it arrives.

In the framework of the previously handled MSE estimation problem we simply substitute
x = y(t) and y = [y(t − 1) · · · y(t − n)]. A linear estimator is then constructed of the form

ŷ(t) =

n∑

i=1

hiy(t − i).

For optimality in MSE sense, the optimal filter, determined by the filter coefficients

hms = [h1 · · ·hn]T

is then determined by the normal equations resulting from the orthogonality principle:

E[(y(t) −
n∑

i=1

hiy(t − i))y(t − k)] = 0 for k = 1, · · · n

or equivalently

Ry(k) −
n∑

i=1

hiRy(k − i) = 0 for k = 1, · · · n

with Ry(k) the autocorrelation function of the stochastic process y at time shift k.

The resulting description is a set of n equations with n unknowns, being the filter coefficients
hi, i = 1, · · · n. The equations can be written in a matrix form as:
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


Ry(0) Ry(1) · · · Ry(n − 1)
Ry(1) Ry(0) · · · Ry(n − 2)

...
. . .

...
Ry(n − 1) Ry(n − 2) · · · Ry(0)







h1

h2
...

hn


 =




Ry(1)
Ry(2)

...
Ry(n)


 . (6.39)

Note that this result is simply a special case of the optimal linear MSE result (6.33). The
matrix on the left hand side of the equation is a so-called correlation matrix (see also section
3.7.2), and because of its particular structure having equal elements on all (sub)diagonals
it is a Toeplitz matrix. Inversion of this matrix is necessary for obtaining the optimal filter
coefficients.

The resulting MSE of this estimator

E[ǫ(t)2] with ǫ(t) = y(t) −
n∑

i=1

hiy(t − i)

then becomes, using (6.38),

E[ǫ(t)2] = E[ǫ(t)y(t)] = Ry(0) −
n∑

i=1

hiRy(i).

6.5.3 Optimal filtering - the FIR case

In the most simple general filtering problem, we consider a variable to be estimated that is
different from the measurable stochastic process y. In this situation a linear estimator

x̂(t) =

n∑

i=1

hiy(t − i)

is constructed for a stochastic process x that is supposed to be related to measurements y.
This linear estimator is called an FIR (finite impulse response) estimator since hi reflects
the finite pulse response sequence of the dynamical filter with y as input and x̂ as output.

The analysis of this situation is very similar to the previous case. The normal equations
resulting from the orthogonality principle now become:

E[(x(t) −
n∑

i=1

hiy(t − i))y(t − k)] = 0 for k = 1, · · · n

or equivalently

Rxy(k) −
n∑

i=1

hiRy(k − i) = 0 for k = 1, · · · n

leading to the set of equations




Ry(0) Ry(1) · · · Ry(n − 1)
Ry(1) Ry(0) · · · Ry(n − 2)

...
. . .

...
Ry(n − 1) Ry(n − 2) · · · Ry(0)







h1

h2
...

hn


 =




Rxy(1)
Rxy(2)

...
Rxy(n)


 . (6.40)
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The resulting MSE of this estimator then becomes, using (6.38),

E[ǫ(t)2] = E[ǫ(t)x(t)] = Rx(0) −
n∑

i=1

hiRxy(i).

6.6 Wiener filter

6.6.1 Introduction

We consider the optimal filter problem in its most basic form, as depicted in Figure 6.8,
where x and v are assumed to be uncorrelated stochastic processes.

y

v

x
+

+
G fil ter H

x̂

Figure 6.8: Wiener filter problem

The filter problem concerns the construction of optimal filters:

x̂(t) =
∞∑

k=−∞

h(k)y(t − k) IIR-noncausal

or

x̂(t) =

∞∑

k=0

h(k)y(t − k) IIR-causal

such that x̂(t) is the optimal MSE estimate of x(t).
Note that the filters in the two cases are described by H(z) =

∑∞
k=−∞ h(k)z−k (non-causal

filter), and H(z) =
∑∞

k=0 h(k)z−k (causal filter).

If the filter has a finite impulse response (FIR): {h(k)}k=−M1,··· ,M2 then the optimal solution
is available from the previous section, and determined by the equation (6.40).
However, for filters with an infinite-length pulse response a new analysis will appear to
be necessary. For simplicity, in the sequel it will be assumed that x and v are zero-
mean stationary stochastic processes. Additionally it is, for the moment, assumed that
the spectral densities of x and v are known, as well as the dynamical transfer function G.
We will reconsider these assumptions at the end of this section. Furthermore, it will be
analyzed in Chapter 7 how spectral density information can be obtained (i.e. estimated)
from practical data.

6.6.2 Non-causal Wiener filter

In the situation of a non-causal Wiener filter, the estimator for x̂(t) is parameterized as

x̂(t) =
∞∑

k=−∞

h(k)y(t − k),
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where h(k) are the pulse response coefficients of the filter to be determined.
The orthogonality conditions for the linear MSE estimate as formulated in the orthogonality
principle (6.32), show that in the optimum, x(t) − x̂(t) is orthogonal to the components
{y(t − k)}k=−∞,··· ,∞. Consequently

E[(x(t) − x̂(t))y(t − i)] = 0 i = −∞, · · · ,∞

As a result: Rxy(i) =

∞∑

k=−∞

h(k)Ry(i − k) ∀i.

When applying z-transform to both sides of this equation, it follows that Φxy(z) = H(z) ·
Φy(z), leading to the following simple expression for the optimal filter:

H(z) =
Φxy(z)

Φy(z)
(6.41)

Remarks

• The filter is simply determined from Φy(z) and Φxy(z). Since y is measurable, the
spectral density Φy can be estimated from data (see the subsequent chapter). For
constructing Φxy, additional knowledge of Φx is required.

• The filter is not necessarily causal, and therefore it is likely not implementable in an
on-line form. I.e., future values of y(t) are required for estimating x(t).

• If v ≡ 0, then y = Gx and H(z) = 1/G(z) (the inverse filter of G is the optimal
estimate).

Resulting MSE of estimated signal
The MSE of the resulting optimal estimate can be written as

P := E[{x(t) − x̂(t)}2] = E[{x(t) − x̂(t)}x(t)]

= Rx(0) −
∞∑

k=−∞

h(k)Ryx(−k).

In order to find a frequency domain expression for this MSE, define

P̄m = Rx(m) −
∞∑

k=−∞

h(k)Ryx(m − k).

Note that P = P̄0. When considering P̄m as a sequence, it can be Fourier transformed to
obtain

P̄ (eiω) = Φx(ω) − H(eiω)Φyx(ω).

The relation of Parseval implies that P = P̄0 = 1
2π

∫ π
−π P̄ (eiω)dω, showing that

P =
1

2π

∫ π

−π
[Φx(ω) − H(eiω)Φyx(ω)]dω. (6.42)
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Example 6.3 Show that for the Wiener filter problem

y = Gx + v

with x and v uncorrelated, the optimal noncausal Wiener filter has a MSE given by

E[(x(t) − x̂(t))2] =
1

2π

∫ π

−π

ΦxΦv

|G|2Φx + Φv

dω.

As a result it is clear that the MSE error is 0 whenever the two spectral density functions
Φx and Φv do not overlap in the frequency domain (see figure 6.4).

Solution:
Substituting the expression (6.41) for H(eiω) into (6.42), the integrand of this expression
becomes

Φx(ω) − Φxy(ω)

Φy(ω)
Φyx(ω).

With the expression for y, it follows that ΦxyΦyx = |G|2Φ2
x. With Φy = |G|2Φx + Φv the

integrand becomes

Φx − |G|2Φ2
x

|G|2Φx + Φv

=
ΦxΦv

|G|2Φx + Φv

.

If Φx and Φv do not overlap in the frequency domain, their product equals 0 for all fre-
quencies and consequently the MSE is 0.

6.6.3 Causal Wiener filter

When restricting the optimal filter to be causal (and therefore also on-line implementable),
the filter takes the form

x̂(t) =
∞∑

k=0

h(k)y(t − k).

The orthogonality conditions for the minimum MSE estimate now show that

Rxy(j) =
∞∑

k=0

h(k)Ry(j − k) j = 0, 1, 2, · · · (6.43)

and this set of equations is referred as the (discrete-time) Wiener-Hopf equation.
Because of the fact that the summation intervals are not doubly infinite, but bounded below
by 0, this set of equations can not simply be solved by z- or Fourier transform techniques,
as was done in the non-causal case.3

As an alternative the following strategy is used for solving the set of equations. First it
will be assumed that y is a stationary white noise stochastic process, and a solution to
the problem will be constructed for this particular situation. Then in a second stage this
solution is generalized to the situation of non-white processes y.

3Note that an attempt to transform the equations to the frequency domain leads to∑∞
ℓ=0 Rxy(ℓ)e−iωℓ =

∑∞
k=0 h(k)e−iωk∑∞

ℓ=0 Ry(ℓ − k)e−iω(ℓ−k). Now the second summation in the right-
hand side can not be made independent of k.
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H1(z)
y e

Figure 6.9: White-shaping filter for process y.

For y being a stationary white noise process with variance σ2
y, and consequently Ry(j) =

σ2
yδ(j), the optimality conditions (6.43) reduce to

Rxy(j) =
∞∑

k=0

h(k) · σ2
y · δ(j − k) = h(j) · σ2

y j ≥ 0.

As a result the optimal filter coefficients are given by

h(j) =

{
1

σ2
y

· Rxy(j) j ≥ 0

0 j < 0

and consequently the optimal causal Wiener filter can be written as

H(z) =
1

σ2
y

· [Φxy(z)]+ =

[
Φxy(z)

Φy(z)

]

+

(6.44)

where the operation [·]+ (see also (2.21)) refers to taking the causal part of the filter, in the
series expansion that converges on the unit circle; i.e., if a filter H(z) is written as

H(z) =

∞∑

k=−∞

h(k)z−k

with
∑∞

k=−∞ |h(k)| bounded, then

[H(z)]+ =
∞∑

k=0

h(k)z−k.

In case the measurable process y is non-white, a two-step procedure can be followed to find
the optimal causal Wiener filter, according to the following strategy:

• Step 1: Make y white by applying a dynamic “white-shaping” filter H1 that is causal,
and such that e = H1y is a white noise process.

• Step 2: Determine the optimal causal filter for white noise process e.

First the optimal filter will be derived according to this two-step procedure. Subsequently
it will be motivated that it indeed leads to an overall optimal causal Wiener filter.

Step 1

For a given stochastic process y with (rational) power spectral density Φy, there exists a
minimum-phase system represented by Hm, such that

Φy(z) = Hm(z) · Hm(1/z), (6.45)
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(with Hm(z) a rational function in z). This is formulated in the Spectral Factorization
Theorem 4.4, where without loss of generality the scalar constant σ2 can be chosen to
be 1. The minimum-phase factor Hm satisfies: Φy(ω) = |Hm(eiω)|2 (on the unit circle).
Additionally, y can be written as y(t) = Hm(q)e(t) with e a unit variance white noise
process, and so alternatively

e =
1

Hm
y

where 1/Hm is again a causal and stable filter operation.

Summarizing, let

Φy(z) = Φ+
y (z) · Φ−

y (z)

be the spectral factorization of Φy according to (6.45), with Φ+
y (z) the minimum-phase

spectral factor Hm(z). Then the filter operation

H1(z) =
1

Φ+
y (z)

is causal and stable, and transfers the process y into a unit variance white noise.

y e
+
y

1
Φ (z)

Figure 6.10: White-shaping filter for process y.

Step 2

Using the result (6.44) for white noise processes, it follows now that the optimal causal
Wiener filter for e is given by

H2(z) =

[
Φxe(z)

Φe(z)

]

+

.

However since e is only an intermediate (artificially constructed) signal, an expression for
the filter in terms of y is preferred, and so one has to substitute the relation e = H1y. As
a result

H2(z) =

[
H1(1/z)Φxy(z)

H1(z)H1(1/z)Φy(z)

]

+

(6.46)

=

[
Φxy(z)

H1(z)Φy(z)

]

+

. (6.47)

Since Φy(z) = Φ+
y (z) · Φ−

y (z) and H1(z) = 1/Φ+
y (z) this becomes:

H2(z) =

[
Φxy(z)

Φ−
y (z)

]

+

. (6.48)

The optimal filter for e is sketched in Figure 6.11.
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Figure 6.11: Optimal causal Wiener filter for white noise e.
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Figure 6.12: Optimal causal Wiener filter construction

When combining the two steps of the procedure, the causal Wiener filter is specified by

x̂(t) =
1

Φ+
y (z)

·
[
Φxy(z)

Φ−
y (z)

]

+

· y(t). (6.49)

The result for the optimal causal Wiener filter is now depicted schematically in Figure 6.12.

Note that in the diagram of Figure 6.12 also the optimal non-causal Wiener filter appears.
This is visualized by removing the [·]+ operation, and by realizing that Φ+

y (z) · Φ−
y (z) =

Φy(z).

Example 6.4 x is a so-called AR(1) process:

x(t) − 0.8 · x(t − 1) = 0.6w(t)

y(t) = x(t) + v(t)

w and v unit variance white noise (uncorrelated with each other).
The filter that transforms w(t) into x(t) is given by H(z) = 0.6/(1 − 0.8z−1). As a result:

Φx(z) = H(z)H(z−1)σ2
w

=
0.6

1 − 0.8z−1
· 0.6

1 − 0.8z
=

0.36

(1 − 0.8z−1)(1 − 0.8z)

=
−0.45z

(z − 0.8)(z − 1.25)

Φxy(z) = Φx(z)

Φy(z) = Φx(z) + 1 =
(z − 0.5)(z − 2)

(z − 0.8)(z − 1.25)
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Non-causal Wiener filter:

Φxy(z)

Φy(z)
=

−0.45z

(z − 2)(z − 0.5)

For constructing the causal Wiener filter:

Φy(z) =
(z − 0.5)(z − 2)

(z − 0.8)(z − 1.25)
=

(z − 0.5)

(z − 0.8)︸ ︷︷ ︸
Φ+

y

· (z − 2)

(z − 1.25)︸ ︷︷ ︸
Φ−

y

[
Φxy(z)

Φ−
y (z)

]

+

=

[ −0.45z

(z − 0.8)(z − 1.25)
· (z − 1.25)

(z − 2)

]

+

=

[ −0.45z

(z − 0.8)(z − 2)

]

+

In order to decompose the rational function into a causal and an anti-causal expansion, we
need to write the function as a linear combination of basic terms (see Appendix B.5):

z

z − a
, |a| < 1 for the causal part

z

1 − cz
, |c| < 1 for the anti-causal part.

Since −0.45z

(z − 0.8)(z − 2)
=

0.375z

z − 0.8
+

0.1875z

1 − 0.5z

it follows that [
Φxy(z)

Φ−
y (z)

]

+

=
0.375z

z − 0.8
.

The causal Wiener filter is now specified as follows:

H1(z) · H2(z) =
1

Φ+
y (z)

·
[
Φxy(z)

Φ−
y (z)

]

+

=
z − 0.8

z − 0.5
· 0.375z

z − 0.8

=
0.375z

z − 0.5

Time realizations of y and x, as well as of the filtered signals (causal and non-causal) are
plotted in figures 6.13 and 6.14. Note that the several signals are shifted over a constant
amplitude, in order to display the differences more clearly.

MSE values of the several estimates are for x−y: 0.9288; x− x̂c: 0.3572; x− x̂nc: 0.2839.
The non-causal filter leads to a smaller MSE value as it allows more flexibility in the filter
than the causal one.

Optimality of the two-step procedure

It is not straightforward that the solution of the causal Wiener filter in the two-step pro-
cedure as described is the optimal solution. The estimator x̂ should be the optimal MSE
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Figure 6.13: Time realizations of x, y, x̂c (causal Wiener filter) and x̂nc (non-causal Wiener
filter).

estimator based on the past information y(t−1),y(t−2), · · · . However in step 2 the optimal
estimator is constructed on the basis of past “information” e(t − 1), e(t − 2), · · · . Because
of the fact that y and e are related through a minimum phase system (causal, and having
a causal inverse), past information on y is equivalent to past information of e, and this
justifies the MSE optimality of the two-step procedure that is considered here.

Summary Wiener filters

The optimal Wiener filter (causal or non-causal) optimizes

E[ǫ(t)2] = E[(x(t) − x̂(t))2]

where the estimation error is schematically depicted in Figure 6.15.

Which information is required to design a Wiener filter?

In order to design a Wiener filter knowledge is required of the spectral densities Φxy and
Φy. If there is no explicit information on Φxy, the required knowledge is reflected in

• Transfer function G (when present), and

• Two out of the three spectral density functions Φy,Φv,Φx.

This can be understood by notifying that Φxy = G∗Φx and Φy = |G|2Φx + Φv.

If G is known, then knowledge of two of the three spectral densities that occur in the second
equation, implies knowledge of the third function also. This gives full information on both
Φxy and Φy. Therefore, next to the spectral density of the measurable signal y, information
on the spectral density of either x or v should be available.



Chapter 6 143

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

x−y

x−x
c
 

^

x−x
nc

 
^

Figure 6.14: Time realizations of x− y, x− x̂c and x − x̂nc

y

v

x
+

+
G H

+

-

ε

x̂

Figure 6.15: Diagram of optimal filter and estimation error.

6.7 Examples

6.7.1 Noise cancellation

In problems of communication it is of interest to remove noise from a communication
channel. Consider, e.g., the radio communication between an airplane pilot and the traffic
control tower. Background noise of the engine, as well as wind noise within the cockpit can
severely hinder comprehensible communication.

Again the problem is to estimate an information carrying signal x(t) from noisy observations

y(t) = x(t) + v1(t).

The problem is illustrated in Figure 6.16. The - standard - Wiener filter is in this case
given by:

H(z) =
Φxy(z)

Φy(z)
, (6.50)

with

Φxy(z) = Φx(z) + Φxv1(z), (6.51)

Φy(z) = Φx(z) + Φv1(z). (6.52)
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If we assume that x and v1 are uncorrelated with each other, Φxy(z) = 0 and (6.51) reduces
to Φxy(z) = Φx(z). Hence, the Wiener filter is given by

H(z) =
Φx(z)

Φx(z) + Φv1(z)
. (6.53)

signal 
source

noise 
source

sensor
Wiener 

filter
x(t) 1y(t) = x(t)+ v (t)

1v (t)

x̂(t)+

+

Figure 6.16: Noise cancellation.

For applying the -standard- Wiener filter one thus needs to know the spectral density func-
tions Φx(ω) and Φv1(ω) or Φx(ω) and Φy(ω). Whereas Φy(ω) can probably be estimated
from measurable data y, the spectral density functions Φx(ω) and Φv1(ω) require knowledge
of the statistical properties of either x and/or v1. If these properties are not known (and
this will generally be the case in the considered application), a second sensor measurement
can be helpful, as indicated in Figure 6.17.

signal
source

noise
source

sensor1

sensor2

Wiener
filter

+

-
x(t) 1y(t) = x(t)+ v (t)

2v (t) ˆ
1v (t)

x̂(t)

Figure 6.17: Noise cancellation by using a second (noise) sensor.

With sensor 1 the source signal x(t) is measured while being corrupted with the noise
v1(t). With the extra sensor 2 only the noise signal is measured, e.g., by positioning a
sensor somewhere else in the cockpit. However as the position of both sensors is different,
sensor 2 will measure a noise signal v2(t) that is different from v1(t). For both noise signals,
the source is likely to be the same; therefore v2 and v1 will be highly correlated.
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The Wiener filter problem now is formulated as follows:
Given the observed signal v2(t) = G(q)v1(t) with G(q) unknown. Estimate v1(t) on the
basis of v2(t).

The non-causal Wiener filter solution for this problem is

H(z) =
Φv1v2(z)

Φv2(z)

By writing v1(t) = y(t)−x(t) it follows that Φv1v2(z) = Φ(y−x)v2
(z). If v2 can be assumed

to be independent of x, then Φv1v2(z) = Φyv2(z) and as a result

H(z) =
Φyv2(z)

Φv2(z)
.

The expression for this filter is dependent on spectral densities of measurable signals y,v2

only. So, if these spectral densities can be estimated from measurement data, the optimal
Wiener filter can be constructed without requiring further prior know of, e.g., the spectral
density of x.

Exercise Show that the MSE error of the estimate x̂(t) is 0 when sensor 2 can measure
the noise source without measurement error.

Solution
With v2(t) = G(q)v1(t) + w(t), and w(t) a measurement (disturbance) error, it follows
that the Wiener filter for constructing v̂1(t) is given by

H(z) =
Φv1v2(z)

Φv2(z)
=

G(1/z)Φv1(z)

|G(z)|2Φv1(z) + Φw(z)
.

Whenever Φw(z) = 0, it follows that H(z) = 1/G(z).

Then

x̂(t) = y(t) − v̂1(t) = (6.54)

= y(t) − 1/G(q) · v2(t) = (6.55)

= y(t) − 1/G(q)[G(q)v1(t) + w(t)] (6.56)

= y(t) − 1/G(q)[G(q)(y(t) − x(t)) + w(t)] (6.57)

= x(t) − G−1(q)w(t). (6.58)

Consequently the MSE estimate is exact when w ≡ 0.

6.7.2 Deconvolution

Many measurement problems in optics come down to reconstructing an (optical) source
signal on the basis of an optical measurement (lens) system that influences the original
source through a point-spread function (psf). A point source will then be measured as a
function that is spread out over a certain are, while this function is characterized by the
(im)pulse response of the measurement system. This situation is covered by the setup that
is sketched in Figure 6.18, where the dynamical transfer G reflects the operation of the
point-spread function which can be interpreted in a (two-dimensional) spatial domain.
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Figure 6.18: Optical system with point spread function characterized by G.

Since the operation G is actually a convolution of x with the point spread function of G,
the reconstruction of x on the basis of Gx is actually a deconvolution.

The most straightforward suggestion for reconstructing x on the basis of measurements y is
by processing y through the inverse of G. This is generally referred to as inverse filtering.

Note that under influence of a disturbance process v the resulting reconstructed signal will
be:

G−1y = G−1(Gx + v) = x + G−1v.

Consequently the reconstructed signal has an “error” component G−1v which can become
excessive, dependent on properties of G and v. If G is very small in (frequency) areas where
v is present, this noise disturbance will be strongly amplified in the reconstruction of x and
therefore will be dominantly present.

As a result this straightforward inverse filter is often a very poor choice, and outperformed
by a properly designed Wiener filter that adequately takes account of the disturbance term
v.

6.7.3 One-step-ahead prediction

The optimal IIR causal Wiener filter for a one-step-ahead prediction problem can be derived
as follows.

Suppose there is a measurable stochastic process x with spectral density Φx that is modelled
as

x(t) = W (q)e(t)

with e a white noise process with variance σ2, and W a linear filter that is minimum phase
and monic, i.e., W (z) = 1 +

∑∞
k=1 wkz

−k. Consequently, Φx(ω) = |W (eiω)|2 · σ2.

In a prediction problem we observe y = x without noise, but we only observe the signal up
to time instant t − 1 while we would like to predict x(t) (one-step-ahead prediction). This
situation is characterized by the requirement that the Wiener filter:

x̂(t) = H(q)y(t)

with y = x, should contain at least one step of time delay such that x̂(t) is not dependent
on x(t) and its past, but only on x(t − 1) and its past.

Applying the formulas for the IIR Wiener filter, it follows that the optimal filter is given
by

H(z) =
1

Φ+
y (z)

[
Φxy(z)

Φ−
y (z)

]

++

(6.59)
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where the operation [·]++ now has to be interpreted as taking the strictly proper (or strictly
causal) part of the function. This means that a constant term z0 is not allowed, and all
powers of z are required to be negative. As a result there is at least one time delay in the
considered transfer, and this is necessary to have a (one-step-ahead) prediction.
Substituting the corresponding expressions for the spectral densities leads to

H(z) =
1

W (z)σ
·
[
W (z)W (1/z)σ2

W (1/z)σ

]

++

(6.60)

=
1

W (z)σ
· [σW (z)]++ (6.61)

=
1

W (z)σ
· σ[W (z) − 1] (6.62)

= 1 − W (z)−1. (6.63)

Because of the fact that W (z) is monic and minimum-phase, its inverse will also be monic
and minimum phase, and consequently H(z) will have a series expansion of the form H(z) =
h1z

−1 + h2z
−2 + · · · , therefore being a stricly causal system that predicts x(t) on the basis

of measurements up to x(t − 1).

6.8 Discussion

In this chapter we have discussed and presented optimal filters for reconstructing information-
carrying data on the basis of corrupted measurements. The optimal filters are widely used
in many parts of science, communication networks, optics, image and signal processing,
and form the basis of the area which can be denoted as model-based measurement. The
optimal Wiener filters can also be rewritten into a time-recursive form, where estimates at
time instant t are written as a function (an update) of the estimates at time t − 1. This
form leads to the celebrated Kalman filter.
The optimal filters presented in this chapter require knowledge of spectral densities and
cross-spectral densities of measurable signals. The estimation of these density functions on
the basis of measurable data is the topic of the next chapter.
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Chapter 7

Estimation of correlation functions
and power spectra

The estimation of auto- and cross-correlation functions, as well as the related
power spectral density functions, is the subject of this chapter. An analysis is
made of basic nonparametric estimation methods.

7.1 Introduction

Estimating the power spectral density functions of stationary stochastic processes on the
basis of measurement data is one of the crucial topics in signal analysis. Besides the intrinsic
importance of characterizing the spectral properties of stochastic processes, it has been
shown in the previous chapter that knowledge of auto- and cross spectral density functions
is essential in the design of optimal (Wiener) filters. In this chapter spectral properties of
stochastic processes will be estimated from data, where it is typically assumed hat one single
data sequence is available for estimation. It is also assumed that the underlying stochastic
process is stationary, implying that the statistical properties do not change with time. As
a result (very) long data sequences can be used to estimate the statistical properties of
the stochastic process. If this assumption is not justified, i.e. if the process has properties
that may change with time, these changes have to be detected and/or relatively short data
sequences can only be used for “stationary” estimation.

There are several options for estimation of power spectral density functions. In the para-
metric or model-based approach, parameterized models are used to estimate smooth spectra
by determining a limited number of (unknown) parameters from the data. In this chap-
ter attention is restricted to the non-parametric (or model-free) approach, where spectral
density functions are considered graphical curves that, as such, are to be estimated from
data.

Since power spectral density functions are Fourier transformed versions of correlation func-
tions, the estimation of both concepts is very closely related to each other. For that reason,
the estimation of correlation and covariance functions will be discussed in this chapter also.

149
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7.2 Mean value estimation

Estimation of the mean value of a stationary stochastic process has been discussed in
Example 5.1. There it was shown that for a stationary stochastic process x(t) the sample
average:

x̄N :=
1

N

N−1∑

i=0

x(i) (7.1)

is an unbiased estimator of the mean value µx, having a variance:

var(x̄N ) =
1

N2

N∑

i=1

N∑

j=1

Cx(|i − j|). (7.2)

As a result the sample average is a consistent estimator of the mean value of x under the
condition that Cx(k) converges to 0 sufficiently fast for growing values of k.

7.3 Estimation of correlation functions

7.3.1 The sample autocorrelation function - unbiased version

On the basis of an available data sequence {x(t)}t=0,···N−1 a straightforward choice for an
estimator of the autocorrelation function of x is the sample autocorrelation

R̆x(k) =
1

N − k

N−1∑

t=k

x(t)x(t − k), k = 0, 1, · · ·N − 1. (7.3)

For k ≥ N the sample autocorrelation is defined to be equal to 0.
For negative values of k, use is made of the even property of autocorrelation functions, i.e.
Rx(k) = Rx(−k), and therefore for k < 0, R̆x(k) is defined by R̆x(k) = R̆x(−k).
When analyzing the properties of R̆x(k) attention will be restricted to the situation 0 ≤
k ≤ N − 1. This is only for ease of notation.

Bias of R̆x(k)

Since

E[R̆x(k)] =
1

N − k

N−1∑

t=k

E[x(t)x(t − k)] = Rx(k)

the estimator is unbiased for any finite value of N .

Variance of R̆x(k)

The variance of the estimator can be written as

var(R̆x(k)) = E[(R̆x(k) − Rx(k))2] (7.4)

which under assumption of a Gaussian distribution function of x can be shown to be given
by (see Appendix for a derivation):

var(R̆x(k)) =
1

N − |k|

N−1−|k|∑

m=−N+|k|+1

(1 − |m|
N − |k| )

[
Rx(m − k)Rx(m + k) + R2

x(m)
]

(7.5)
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for any |k| < N . For non-Gaussian processes this expression is a good approximation to
the variance for |k| << N (Bartlett, 1946).

For a Gaussian white noise process with variance σ2
x the expression reduces to

var(R̆x(k)) =

{ 2
N σ4

x k = 0
1

N−|k|σ
4
x k 6= 0

(7.6)

Discussion

The considered estimator is unbiased for any value of N . Additionally it follows from (7.5)
that for any fixed value of k, the variance of R̆x(k) tends to 0 for N → ∞. Therefore
the estimator is consistent for any value of k. On the other hand, the variance becomes
bigger for increasing values of k, leading to really large values if k approaches N . This is
understandable by noting that the number of terms in the summation (7.3) decreases for
increasing values of k, as illustrated in Figure 7.1.

k

N

Figure 7.1: Number of terms in calculation of R̂x(k) decreases for increasing values of k.

A second remark that has to be made is that it is often not very attractive to calculate the
convolutional time domain expression (7.3) directly. This will be commented upon later.

It has been analyzed in section 3.7.2 that not every sequence of numbers can be an au-
tocorrelation function. Autocorrelation functions are characterized by the fact that they
lead to a positive semi-definite correlation matrix. The considered estimator R̆x(k) has one
major problem in the sense that this estimator is not guaranteed to lead to an appropriate
autocorrelation function.

An example illustrating this effect can be considered by evaluating the 3-point measurement
data x(k), k = 0, · · · 2 as indicated in Figure 7.2(left), leading to a sample autocorrelation
function indicated in Figure 7.2(right).

5
4

5

0 4321-2 -1

22 20
25

-3 3210-1-2 4-4

25
20

Figure 7.2: Time sequence x(k) (left) and related sample autocorrelation function R̆x(k)
(right).
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Since R̆x(0) < R̆x(3), the sequence {R̆x(k)} does not satisfy the basic requirements of an
autocorrelation function, as it violates condition 3 in section 3.7.2. A direct consequence of
this is that the related spectral density function estimator:

Φ̆x(ω) :=

∞∑

k=−∞

R̆x(k)e−iωk (7.7)

is not guaranteed to be positive for all frequencies.

7.3.2 The sample autocorrelation function - biased version

As an alternative to the estimator considered in the previous subsection, we consider the
following expression:

R̂x(k) =
1

N

N−1∑

t=k

x(t)x(t − k) (7.8)

Following a similar analysis as in the previous section, it follows that

E[R̂x(k)] =
N − |k|

N
Rx(k) (7.9)

var{R̂x(k)} =
1

N

N−1−|k|∑

m=−N+|k|+1

(1 − |k|+|m|
N

)
[
Rx(m − k)Rx(m + k) + R2

x(m)
]
(7.10)

where a Gaussian distribution is assumed for the variance expression. For white noise
processes the variance expression simplifies to

var{R̂x(k)} =

{ 2
N σ4

x k = 0
1
N (1 − |k|

N )σ4
x k 6= 0.

(7.11)

This alternative estimator is not unbiased. From (7.9) it follows that the bias disappears
only for N → ∞. Therefore the estimator is asymptotically unbiased for a fixed value of
k. The variance is clearly different from the previous situation; now the variance of the
estimator does not increase for increasing values of k, but it essentially becomes dependent
on 1/N .
This alternative estimator will appear to be attractive when considering it as a basis for
the estimation of the spectral density function; it is guaranteed to deliver a positive semi-
definite correlation matrix, so that consequently the Fourier transform of R̂x(k) will be a
power spectral density function estimate that is non-negative for all frequencies. Denoting
this Fourier Transform as

Φ̂x(ω) =
∑

k

R̂x(k)e−iωk

we can use the result of Lemma 2A.3 to show that

Φ̂x(ω) =
1

N
|XN (ω)|2 (7.12)

i.e., R̂x(k) constitutes a Fourier transform pair with 1
N |XN (ω)|2, with XN (ω) the DFT of

the stochastic process x over the time interval [0, N − 1]:

XN (ω) :=
N−1∑

k=0

x(k)e−iωk. (7.13)
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Consequently 1
N |XN (ω)|2, being the Fourier transform of R̂x, will act as the related power

spectral density estimator which is non-negative by construction.

Example 7.1 For a first order autoregressive process:

x(t) = a · x(t − 1) + e(t) (7.14)

with e a unit variance white noise process, autocorrelation function estimates R̂x(k) are
calculated for 50 different experiments, each of length N . Results are depicted in Figure
7.3 for a = 0.8 and for N = 128 (left plot) and N = 1024 (right plot).

It can be observed that even for large data sets (N = 1024) the variance of the estimator
is still substantial. Although ’on average’ the estimate is quite close to the exact value,
the large variance induces a serious lack of reliability if one has only one data sequence
available. Note also that for higher values of k, as e.g., k > 20, all contributions in R̂x(k)
are actually due to a variance contribution and not to any structural phenomenon, as the
contribution of the exact autocorrelation is negligible in this region.
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Figure 7.3: Estimates R̂x(k) of autocorrelation function for 50 realizations of data resulting
from a first order AR process (blue tiny curves), and exact autocorrelation function (red
solid curve) for N = 128 (left) and N = 1024 (right).

7.3.3 The sample cross-correlation function

For estimating cross-correlation functions the analysis follows similar lines as for estimating
autocorrelation functions. The sample cross-correlation function is given by

R̂yx(k) =
1

N

N−1∑

t=k

y(t)x(t − k) 0 ≤ k ≤ N − 1, (7.15)

=
1

N

N−1−|k|∑

t=0

y(t)x(t − k) − (N − 1) ≤ k ≤ 0. (7.16)

Note that because the cross-correlation function is not symmetric, the terms for either
negative and positive values of k have to be calculated separately.
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The sample cross-correlation function considered here is a biased estimator of the cross-
correlation function, since

E[R̂yx(k)] =
N − |k|

N
Ryx(k) (7.17)

Its variance properties are similar to those of the autocorrelation function estimator, and
are, for jointly Gaussian and stationary processes y and x, expressed by

var{R̂yx(k)} =
1

N

N−1−|k|∑

m=−N+|k|+1

(1 − |k|+|m|
N

) [Rxy(m − k)Ryx(m + k) + Rx(m)Ry(m)]

(7.18)
and will therefore be essentially inversely proportional to N for small values of k. Expression
(7.18) is derived in the appendix of this chapter.

Where the sample autocorrelation R̂x(k) can be calculated as the inverse DFT of 1
N |XN (ω)|2,

the sample cross-correlation R̂yx(k) constitutes the Fourier transform pair:

R̂yx(k) ↔ 1

N
YN (ω) ·XN (ω)∗ (7.19)

and therefore the sample cross-correlation function can be calculated as the inverse DFT of
the righthand expression. Since Fourier transforms can be effectively calculated using Fast
Fourier Transform (FFT) algorithms, this is an effective computational procedure.

7.4 Spectral estimation

7.4.1 Introduction

The power spectral density function constitutes the distribution of the power of a stochastic
process over frequencies. It satisfies

E[x2(t)] =
1

2π

∫ π

−π
Φx(ω)dω.

Since Φx(ω) is the Fourier transform of Rx(k) it is a natural choice to construct an estimator
Φ̂x(ω) of Φx(ω) by the Fourier transform of an estimator R̆x(k) or R̂x(k) of Rx(k).
As motivated in the previous section the unbiased autocorrelation function estimator R̆x(k)
does not lead to a Fourier transform that is nonnegative for all ω. Therefore, when consid-
ering estimators of the power spectral density function, attention will be focussed on the
Fourier transform of the biased autocorrelation function estimator R̂x(k).

7.4.2 Periodogram estimator of spectral density function

Periodogram estimator

The autocorrelation function estimator discussed in section 7.3.2 generates a related esti-
mator of the spectral density function by

Φ̂x(ω) :=
∑

k

R̂x(k)e−iωk (7.20)

=
1

N
|XN (ω)|2. (7.21)
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The resulting estimator is referred to as the periodogram estimator of the spectral density
function. It is simply obtained by a finite length DFT of the time sequence x(t).

Bias of the periodogram

The autocorrelation function estimator R̂x(k) is a biased estimator of Rx(k). This of course
has consequences for the related spectral density function estimator.
For an analysis of the bias properties of Φ̂x(ω) we write

E[Φ̂x(ω)] = E

{
∞∑

k=−∞

R̂x(k)e−iωk

}

In this expression one can substitute

R̂x(k) =
1

N

∞∑

t=−∞

d(t)x(t)d(t − k)x(t − k) (7.22)

where d(t) is defined as the function: d(t) = 1 for t ∈ [0, N − 1] and d(t) = 0 elsewhere. It
selects those components of x(t) that are part of the measurement interval [0, N − 1]. As
a result, (7.22) is a valid expression for R̂x(k) for both positive and negative values of k.
Then

E[Φ̂x(ω)] =

∞∑

k=−∞

Rx(k)e−iωk ·
∞∑

t=−∞

1

N
d(t)d(t − k)

︸ ︷︷ ︸
window qN (k)

=

∞∑

k=−∞

qN (k)Rx(k)e−iωk (7.23)

with

qN (k) =

{
1 − |k|

N |k| < N
0 elsewhere

The particular window function qN (k) is referred to as the Bartlett window and is sketched
in figure 7.4 (left plot).
According to (7.23) the autocorrelation function Rx(k) is multiplied by qN (k) before being
transformed to the Fourier domain. Since multiplication in the time domain induces a
convolution in the Fourier domain, it follows that

E[Φ̂x(ω)] =
1

2π
· QN (ω) ⋆ Φx(ω) (7.24)

or equivalently

E[Φ̂x(ω)] =
1

2π

∫ π

−π
Φx(ξ)QN (ω − ξ)dξ (7.25)

with QN (ω) the Fourier transform of the Bartlett window function qN(k), i.e.

QN (ω) =
1

N

[
sin(ωN/2)

sin(ω/2)

]2

(7.26)

which is being sketched in the right plot of Figure 7.4.
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Figure 7.4: Bartlett window qN (k) (left) and its Fourier transform QN (ω) (right).

The mean value of the periodogram estimator Φ̂x(ω) of a spectral
density function Φx(ω) is given by the convolution (in the frequency
domain) of the exact spectral density function Φx(ω) with the win-
dow function QN (ω). As a result the mean value is a smoothed
version of the original density.

Convolution of Φx(ω) with QN (ω) will have a “smoothing” effect on the estimate. Sharp
peaks that may be present in Φx(ω) will be smeared out over adjacent frequencies, thus
leading to an effect which is often referred to as spectral leakage.
The leakage effect is an effect of the finite sample size N . If N increases the window function
QN (ω) will become more narrow and the bias will disappear. Eventually, for increasing
values of N , QN (ω) will approach a Dirac function, leading to limN→∞ E[Φ̂x(ω)] = Φx(ω),
i.e. an asymptotically unbiased estimator.

Note that the bias effect considered here is also related to the resolution that can be
achieved in the frequency domain. The sequence of N data points available in the time
domain is transformed to the frequency domain, and delivers there also a sequence of N
-uniquely determined - frequency points that are the basis for the back (inverse Fourier)
transformation. The N independent points in the frequency domain are actually given
by the equidistant grid ω = kπ/N with k = 1, · · ·N . Therefore π/N is the “smallest”
frequency difference that can be observed on the basis of the N data points, and therefore
determines a limit on the resolution that results from observing N data points. If two
sinusoids are present in the signal (two delta functions in the spectral density) that are
within a frequency distance of π/N , one can not expect to be able to distinguish the two
separate sinusoids from N observations in time without additional a priori information.

As an example we consider the situation of a single sinusoid that is observed under an
additive white noise disturbance:

x(t) = Acos(ω0t + φ) + v(t) (7.27)

with φ a random phase, uniformly distributed in the interval [0, 2π], and v a stationary
white noise process with variance σ2

v, while φ and v(t) are independent for all t. Under
these conditions the process x(t) is stationary.
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The power spectral density function of x is given by

Φx(ω) =
π

2
A2[δ(ω − ω0) + δ(ω + ω0)] + σ2

v (7.28)

This spectral density is sketched in figure 7.5(left) for ω0 = π/4.

0 π π/4 ω 

σ
v
2 

π A2/2

0 π π/4 ω 

σ
v
2 

A2N/4

Figure 7.5: Spectral density function of the two components of Φx(ω) of sinusoid in white
noise (left) and mean value of the periodogram estimate Φ̂x(ω) on the basis of N = 64 data
points.

The mean value of the periodogram estimator is

E[Φ̂x(ω)] =
1

2π
· Φx(ω) ⋆ QN (ω) (7.29)

= σ2
v +

1

4
A2[QN (ω − ω0) + QN (ω + ω0)] (7.30)

and this is sketched for in figure 7.5(right). The smoothing effect that the delta function of
the sinusoid undergoes due to the Bartlett window is clearly visible in the periodogram.

As a second example we consider 100 periodogram estimates of the considered process x,
based on 100 different realizations of the noise, and the average value of the 100 estimates.
Results for this test are depicted in figure 7.6 for data sets of length N = 64 (upper pictures)
and N = 256 (lower pictures).

The important difference between the situations of N = 64 and N = 256 is that in the latter
case (N = 256) the frequency resolution is higher, while in the former situation (N = 64)
the smoothing effect is stronger.

Variance of the periodogram

For analysis of the variance properties of the periodogram estimator of the spectral density
function first an analysis is made for a Gaussian distributed white noise process. In a
second stage the expressions can then be generalized to the situation of Gaussian non-
white processes.

The main result for Gaussian white noise processes is formulated first:
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Figure 7.6: Periodogram estimates of a sinusoid in white noise. Overlay of 100 periodograms
using N = 64 data (left upper), and the periodogram average (right upper). Overlay of 100
periodograms using N = 256 data (left lower), and the periodogram average (right lower).
Frequency axes are in π rad/sec.

For a Gaussian white noise process x with variance σ2
x the periodogram

estimator Φ̂x(ω) satisfies

var{Φ̂x(ω)} = σ4
x ω =

2πk

N
, k = 1, · · ·N − 1

= 2σ4
x ω = 0, π

Cov{Φ̂x(ω1), Φ̂x(ω2)} = 0, ωj =
2πkj

N
, j = 1, 2;ω1 6= ±ω2

Since the variance does not tend to zero for increasing N , the periodogram
estimator is not consistent.

The derivation of these expressions is added in the appendix of this chapter.
Basic result is that the variance of the periodogram is equal to the squared spectral density
of x. It does not tend to zero for increasing values of N , showing that the periodogram
estimator is not consistent.

Extension to non-white Gaussian processes
For a non-white process x it follows that there always exists a minimum-phase filter H(z)
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such that

Φx(ω) = |H(eiω)|2 · Φe(ω)

with e a unit variance white noise process.

If N is large compared to the length of the pulse response of H(z), then it will hold
approximately that

XN (ω) ∼ H(eiω) ·EN (ω)

and consequently

|XN (ω)|2 ∼ |H(eiω)|2 · |EN (ω)|2

so that

Cov{Φ̂x(ω1), Φ̂x(ω2)} = |H(eiω1)|2|H(eiω2)|2 · Cov{Φ̂e(ω1), Φ̂e(ω2)}
= Φx(ω1)Φx(ω2) · Cov{Φ̂e(ω1), Φ̂e(ω2)} (7.31)

This implies that the variance and covariance of a Gaussian process can simply be obtained
from the earlier expressions for white processes by premultiplication of the covariance ex-
pression by Φx(ω1)Φx(ω2), and replacing σ2

x by σ2
e = 1. The following result then appears.

For a Gaussian stochastic process x the periodogram estimator Φ̂x(ω)
satisfies, for sufficiently large N ,

var{Φ̂x(ω)} = Φx(ω)2 ω =
2πk

N
, k = 1, · · ·N − 1

= 2Φx(ω)2 ω = 0, π

Cov{Φ̂x(ω1), Φ̂x(ω2)} = 0, ωj =
2πkj

N
, j = 1, 2;ω1 6= ±ω2

Since the variance does not tend to zero for increasing N , the periodogram
estimator is not consistent.

So the variance of the periodogram estimator at a particular frequency is equal to the
squared valued of the spectral density itself.

Example 7.2 The same stochastic process is considered as in Example 7.1, i.e. a first
order AR process. Five data sets of each N data points are used to generate 5 periodogram
estimates. Figure 7.7 depicts these estimates for data sets of length N = 256 (upper
pictures) and N = 512 (lower pictures), together with the exact (calculated) power spectral
density function. Note that the variance of the estimator is substantial. In the right plots
of Figure 7.7 the average of the 5 periodogram estimates is compared with the exact density
function.

The characteristic phenomenon, as illustrated in Figure 7.7, is that periodogram estimates
generally are erratic and non-smooth functions. If the number of data N increases this
erratic character is not reduced.
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Figure 7.7: Periodogram estimate of 5 realizations of N = 256 (upper plots) and N = 512
(lower plots) datapoints from an AR(1) process, compared with the exact power spectral
density (left plots); average of the 5 periodogram estimates compared with the exact power
spectral density (right plots); frequency axes are in π rad/sec.

The periodogram estimator of a spectral density function is generally an
erratic function of frequency. This erratic character does not diminish
if the number of data N increases; this is reflected in a non-vanishing
variance for each frequency. Rather the frequency resolution increases
with increasing N .

Several options for improving the periodogram estimators will be discussed in subsection
7.4.4.

7.4.3 Extension to cross-spectral densities

For a cross-spectrum Φxy where

x(t) = Hx(q)e(t) (7.32)

y(t) = Hy(q)e(t) (7.33)

and e a unit-variance white noise process, it follows that Φ̂yx(ω) = 1
N YN (ω)XN (ω)∗, while

Φyx(ω) = Hy(e
iω)Hx(eiω)∗.
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With

XN (ω) ∼ Hx(eiω)EN (ω) (7.34)

YN (ω) ∼ Hy(e
iω)EN (ω) (7.35)

it follows that
YN (ω)XN (ω)∗ ∼ Hy(e

iω)Hx(eiω)∗|EN (ω)|2

and so, similar as before1:

Cov{Φ̂yx(ω1), Φ̂yx(ω2)} =

= Hy(e
iω1)Hx(eiω1)∗ · Hy(e

iω2)∗Hx(e
iω2) · Cov{Φe(e

iω1),Φe(e
iω2)}

= Φyx(ω1)Φyx(ω2)
∗ · Cov{Φe(ω1),Φe(ω2)}

and for the variance:
var{Φ̂yx(ω)} = |Φyx(ω)|2,

subject to the same frequency-dependent conditions as mentioned before:

var{Φ̂yx(ω)} = |Φyx(ω)|2 for ω = 2πk/N, k 6= 0, N/2

= 2|Φyx(ω)|2 for ω = 0, π (7.36)

7.4.4 Smoothed periodogram estimators

As shown in the previous sections the periodogram estimator for spectral density functions
is not really ideal. Although it is asymptotically unbiased at every frequency, its variance
is substantial and does not decay to zero for increasing number of data.

Lag windows and frequency windows

The fact that periodogram estimators suffer from this high variance can be understood by
considering that the periodogram can be interpreted as the Fourier transform of the sample
autocorrelation function (7.8). The sample autocorrelation function contains a number of
N terms with finite variance that all are taken into account when constructing the Fourier
transform:

Φ̂x(ω) =

∞∑

k=−∞

R̂x(k)e−iωk.

This implies that for increasing N the number of to-be-estimated parameters increases, and
that an increasing number of terms is involved in the construction of Φ̂x(ω).
We can circumvent this mechanism in the spectral estimate, by applying a so-called lag
window to the sample autocorrelation function before applying the Fourier transform:

Φ̂x(ω) =

∞∑

k=−∞

wγ(k) · R̂x(k)e−iωk. (7.37)

Here, wγ(k) is a positive real-valued window function satisfying

wγ(k) = 0 |k| > γ (7.38)

1Note that since the cross-spectral density is a complex-valued function its covariance involves a complex
conjugate operation: cov(a, b) = E(a − Ea)(b − Eb)∗
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showing that γ > 0 is a variable that determines the width of the window. This lag window
causes wγ(k)R̂x(k) to be regularized to zero. The smaller the value of γ, the bigger the part
of the sample autocorrelation function that is “smoothed out”. The higher the value of γ,
the less smoothing is taking place. A typical choice for a lag window is e.g. a rectangular
form:

wγ(k) = 1 0 ≤ |k| ≤ γ (7.39)

= 0 |k| > γ. (7.40)

However more general choices are also possible, having a more smooth decay of the window
towards zero. Three popular choices of windows are sketched in Figure 7.8 and characterized
in Table 7.1. For an extensive list of windows the reader is referred to Jenkins and Watts
(1968), Brillinger (1981) and Priestley (1981).

The three lag-windows are also sketched in Figure 7.8.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5
Lag windows in spectral estimation

times gamma

Figure 7.8: Lag-windows wγ(k); rectangular window (solid), Bartlett window (dashed), and
Hamming window (dash-dotted).

Design rules for the choice of γ are:

• γ should be small compared to the number of data N , in order to guarantee enough
smoothing operation;

• |Rx(k)| << R̂x(0) for k ≥ γ in order to guarantee that interesting dynamics is not
smoothed out.

The first point refers to a sufficient reduction of variance, whereas the second point refers
to the avoidance of substantial bias.

The application of a lag window in the time domain, has a direct interpretation as a
smoothing operation in the frequency domain. Using the fact that R̂x and Φ̂x are related
through Fourier transform, and using the fact that multiplication in the time-domain relates
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to convolution in the frequency domain, the following derivation becomes trivial

Φ̂x(ω) =
∞∑

k=−∞

wγ(k) · R̂x(k)e−iωk (7.41)

= F{wγ(k) · R̂x(k)} (7.42)

= Wγ(ω) ⋆
1

N
|XN (ω)|2 (7.43)

=
1

2π

∫ π

−π
Wγ(ξ − ω)

1

N
|XN (ξ)|2dξ (7.44)

where the frequency window Wγ(ω) is the Fourier transform of the lag window wγ(k), i.e.

wγ(k) =
1

2π

∫ π

−π
Wγ(ξ)eiξkdξ, (7.45)

and where the ⋆ in (7.43) is the convolution operator.

2π · Wγ(ω) wγ(k), 0 ≤ |k| ≤ γ

Rectangular
sin(γ+ 1

2
)ω

sin(ω/2) 1

Bartlett 1
γ

(
sin γω/2
sin ω/2

)2
1 − k

γ

Hamming 1
2Dγ(ω) + 1

4Dγ(ω − π
γ ) 1

2(1 + cosπk
γ )

+1
4Dγ(ω + π

γ ), where

Dγ(ω) =
sin(γ+ 1

2
)ω

sin(ω/2)

Table 7.1: Windows for spectral estimation in time domain (right column) and frequency
domain (left column).

As a result the introduction of a smoothing window could equally well have been motivated
from the frequency domain perspective. The statistical properties of the periodogram esti-
mator show that it has a nonvanishing variance at each frequency, but also that for different
frequencies the covariance asymptotically tends to zero. This observation supports the in-
troduction of an averaging operation in the frequency domain, where at each frequency ω
the periodogram estimate Φ̂x(ω) is replaces by an (weighted) averaged value over estimates
Φ̂x(ξ) in the neighborhood of ω. The frequency range over which this average should take
place should be dictated by the question whether the underlying real spectrum Φx is con-
stant over the considered range. This averaging operation in the frequency domain is -in
mathematical terms- represented by a convolution operation operation with window Wγ(ω)
where the width of Wγ determines the frequency range that is involved in the averaging. If
the frequency window is chosen too narrow then hardly any smoothing will take place. If
it is chosen too wide, then essential dynamic properties of the spectrum are averaged out,
resulting in a substantial bias of the spectrum estimator.

The frequency-windows Wγ(ω), equivalent to the previously presented lag windows, are
given in Table 7.1 also, and their characteristics are sketched in Figure 7.9. In this plot the
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Figure 7.9: Frequency-windows in spectral estimation. Left: Wγ(ξ), γ = 20 for rectangular
window (solid), Bartlett window (dashed) and Hamming window (dash-dotted). Right:
Wγ(ξ) of Hamming window for γ = 10 (solid), γ = 20 (dash-dotted) and γ = 40 (dashed).

frequency window for the rectangular lag-window has been scaled by 0.5 in order to give
it a similar amplitude as the other two windows. It is clearly illustrated in these figures
how the several frequency-windows perform their smoothing operation. The higher the
value of γ the narrower the window, and the less smoothing operation is performed when
applying the window to the periodogram estimator, as in (7.44). If γ is chosen small, then
the spectrum estimate is a smoothed version of the periodogram, where a wide frequency
region is averaged out. Finding a correct choice of γ is sometimes a difficult task. Choosing
γ too small may result in a spectral estimate in which relatively sharp peaks in the real
spectrum have been smoothed out, and choosing γ too big will result in an erratic spectral
estimate, having too high variance.

The smoothing operation of a Hamming window is illustrated in Figure 7.10, where Ham-
ming windows of different widths are applied to data from the first order process of Examples
7.1 and 7.2.

The results for γ = 8 (first row of plots) show that this smoothing operation is too strong.
A serious bias is introduced, in particular in the low frequency range. The smoothing with
γ = 16 (second row of plots) is very accurate; the variance of the estimator is drastically
reduced and there does not seem to be an apparent bias. The smoothing with γ = 64 leaves
a considerable amount of variance left in the estimator.

Note that in this simulation example the best choice of smoothing operation can be eval-
uated by comparison with the exact spectral density function. This latter function is of
course generally unknown in real-life problems, making the choice of appropriate smooth-
ing operations rather subjective. Since the estimate obtained is very sensitive to the choice
of smoothing operation, one should be cautious in drawing conclusions from the graphi-
cal results. In general it will be a trial and error procedure to arrive at an appropriate
smoothing.

Periodogram averaging - Bartlett’s method

Another approach to the estimation of signal spectra is by averaging periodogram estimates
over several data segments. In this method one decomposes a signal of length N into r
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Figure 7.10: Smoothed periodogram estimates on the basis of N = 256 data points of a
first order AR process. The left plots show 5 realizations of estimates together with the
exact spectrum; the right plots show the average of the 5 realizations together with the
exact spectrum. First row: γ = 8; second row: γ = 16; third row: γ = 64.

sequences of length N0 and constructs a periodogram of each sequence:

Φ̂x,j(ω) =
1

N0
|XN0,j(ω)|2 (7.46)

where j denotes the different sequences, j = 1, · · · r.
A spectral estimate of the signal x is then obtained by averaging over the several peri-
odograms:

Φ̂x(ω) =
1

r

r∑

j=1

Φ̂x,j(ω). (7.47)

This idea refers to the classical way of reducing the variance of an estimate by taking
averages of several independent estimates. Independence of the several estimates will only
be possible when the several data segments do not overlap. However independence is not
guaranteed when choosing non-overlapping segments, due to possibly present dynamics in
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the underlying process. In general the data segments will be chosen with a length N0 that
is a power of 2, in order to facilitate efficient calculation of the periodograms through Fast
Fourier Transform.
Also in this method the conflicting aspects of reducing the variance and obtaining a high
frequency resolution are present. Variance reduction is related to the number of averages
r that is achieved, while the frequency resolution is related to the number of data samples
in a data segment. In finding a satisfactory compromise between these choices, the use of
overlapping data segments is also possible.

This method of periodogram smoothing is applied to the example process of Examples 7.1
and 7.2. In Figure 7.11 results are shown for data sets of length N = 256 that are split into
8 non-overlapping datasets of N0 = 32 samples.
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Figure 7.11: Periodogram estimates obtained by Bartlett’s procedure of periodogram aver-
aging applied to 8 non-overlapping data segments of N0 = 32 of the AR(1) process (7.14).
Periodogram estimates of 5 realizations of data of length N = 256, compared with the
real spectral density function (left plot); average of 5 realizations compared with the real
spectral density function (right plot). Frequency axes are in π rad/sec.

This method of periodogram averaging has some relationship with a windowing operation
related to the windows discussed before. This can be observed from the following derivation.
Let xj(t) denote the signal in the j-th data segment, then

1

N0
|XN0,j(ω)|2 =

∞∑

k=−∞

R̂xj (k)e−iωk =
1

N0

∞∑

k=−∞

N0−1∑

t=0

xj(t)xj(t − k)e−iωk, (7.48)

using the convention that xj(t) := 0 outside the interval [0, N0 − 1].
As a result we can write

1

r

r∑

j=1

1

N0
|XN0,j(ω)|2 =

1

r

r∑

j=1

N0∑

k=−N0

1

N0

N0−1∑

t=0

xj(t)xj(t − k)e−iωk (7.49)

where the interval for k has been limited to its allowed values: [−N0, N0]. When taking the
expected value of this expression, and noting that

E[

N0−1∑

t=0

xj(t)xj(t − k)] = (N0 − |k|)Rxj (k)
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it follows that

1

r

r∑

j=1

E[Φ̂xj(ω)] =
1

r

r∑

j=1

N0∑

k=−N0

N0 − |k|
N0

Rxj(k)e−iωk (7.50)

which with the stationarity of x leads to

E[Φ̂x(ω)] =

N0∑

k=−N0

N0 − |k|
N0

Rx(k)e−iωk, (7.51)

where Rx(k) := E[x(t)x(t − k)] = E[xj(t)xj(t − k)].
Through averaging of periodograms, apparently a lag-window is applied to the covariance
function of the signal, being the same as the (triangular) Bartlett-window discussed in
the previous section. Note the difference however that here the lag window is applied to
the correlation function Rx, while in spectral estimation the lag window is applied to the
sample correlation R̂x. In the frequency domain the effect of the averaging of periodograms
naturally relates to the application of the Bartlett frequency window, convoluted with the
spectral density Φx.
For this reason, the procedure of periodogram averaging is also known as the Bartlett-
procedure. When the averaging mechanism is combined with a data window it is referred
to as the Welch-method, see also Therrien (1992).

Smoothing the periodogram estimator Φ̂x(ω) of a spectral density
function Φx(ω) by either a window operation or an averaging will
generally reduce the variance at the cost of an introduction of bias.

7.5 Non-parametric and parametric models

The (non-parametric) estimators for correlation functions and spectral density functions
as presented in this chapter, provide first and rather rough tools for estimation of these
characteristic properties of stochastic processes. The estimators generally suffer from a
substantial variance, that can be reduced with some engineering tools as the smoothing
and averaging operations discussed in the previous section. Nevertheless, in particular for
the first order AR process:

x(t) = ax(t − 1) + e(t) (7.52)

with e a unit-variance white noise, that is used as a running example in this chapter, it
seems not very convincing that estimators of spectral density suffer from a large variance,
while the basic properties can actually be described by only one real-valued parameter: a.
In spectral estimation, the number of unknowns that is estimated from data actually equals
the number of different frequencies that is considered. When phrasing the estimation prob-
lem as a parameter estimation problem, the correlation functions and spectral densities
can be parameterized by one single parameter, which can be estimated from data. In the
situation of a first order AR process this is reflected in

Rx(k) = a|k|σ2
x =

a|k|

1 − a2
σ2
e (7.53)

Φx(ω) =

∣∣∣∣
1

1 − ae−iω

∣∣∣∣
2

σ2
e =

σ2
e

1 + a2 − 2a cos(ω)
, (7.54)
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as was derived in section 4.3.2. Note that by parametrizing the estimation problem by
the parameter a, the estimated correlation and spectral density functions are enforced to
satisfy the structure as represented in (7.53)-(7.54) and therefore automatically satisfy a
smoothness condition. In other words, smoothness of the estimators is enforced by the
underlying model structure.

To illustrate the potential of parametric spectral estimation, let’s consider once more the
AR(1) process (7.52) that has been used as running example in this chapter. Given an
available data sequence x(t){t=0,··· ,N−1} the problem is to estimate the unknown parameter
a. Note the similarity between (7.52) with the classical linear regression model (5.26), in
the sense that (7.52) expresses x(t) as a linear function of the regressor x(t − 1) with a
acting as the (unknown) regressor coefficient and e(t) as the error term (also known as
the ”residual”). Of course, (7.52) is not identical to the classical regression model since,
as t increases from 0 to N − 1, x(t) simultaneously plays the role of both the dependent
and independent variables. However, since the values of x(t) and x(t − 1) are all observed
there is nothing to prevent us from applying the same least squares procedure used in linear
regression (see Chapter 5). Thus, if we adopt a least squares approach, we estimate a by
finding the value that minimizes

V (a) =

N−1∑

t=1

e2(t) =

N−1∑

t=1

(x(t) − ax(t − 1))2 . (7.55)

Note that we cannot include the term e2(0) in (7.55) since it cannot be computed in terms
of the observed x(t). This is an unavoidable feature of the AR(1) model, but if N is large
compared with 1, the effect of ignoring the first value of e(t) will only be small, and (7.55)
may be regarded as a good approximation of the ”full” sum of squares

∑N−1
t=0 e2(t) (Priestly,

1981). The least squares criterion can (as usual) be justified from a maximum likelihood
approach under the assumption that the residuals e(t) are zero mean Gaussian distributed.
Straightforward calculation (see section 5.3) shows that the least squares estimator of the
parameter a is given by:

âLS =

[
N−1∑

t=1

x2(t − 1)

]−1 [N−1∑

t=1

x(t)x(t − 1)

]
. (7.56)

Note that (7.56) can be rewritten as

âLS =
R̂x(1)

R̂x(0)
, (7.57)

where

R̂x(1) =
1

N − 1

N−1∑

t=1

x(t)x(t − 1), (7.58)

and

R̂x(0) =
1

N − 1

N−1∑

t=1

x2(t − 1) (7.59)

are estimators of the values Rx(1) and Rx(0) of the autocorrelation function Rx(k).
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If the noise variance σ2
e is also unknown, an approximately unbiased estimator of σ2

e can be
obtained by (Priestley, 1981):

σ̂2
e =

∑N−1
t=1 (x(t) − âLSx(t − 1))2

N − 2
=

N − 1

N − 2

(
R̂x(0) − âLSR̂x(1)

)
. (7.60)

If we substitute (7.56) and (7.60) for, respectively, a and σ2
e in (7.53) and (7.54), (smooth)

estimates of the correlation and spectral density function of the AR(1) process are obtained.
The analysis performed can easily be extended to include higher order AR models (Priestly,
1981).
An alternative way to derive an estimator of the parameter a of the AR(1) process (7.52)
is to follow a prediction error estimation approach. In this approach, we look for that value
of a that minimizes the mean squared error criterion

E[(x(t) − x̂(t))2] (7.61)

with
x̂(t) = E[x(t)|x(t − 1)] = ax(t − 1). (7.62)

Straightforward minimization then yields:

â = arg min
a

E[(x(t) − ax(t − 1))2] =
Rx(1)

Rx(0)
. (7.63)

The similarity between the expressions (7.63) and (7.57) is obvious. If we replace the
expectation operator E[·] in (7.63) by the time average operator 1

N−1

∑N−1
t=1 [·], the terms

Rx(0) and Rx(1) in (7.63) will be replaced by their estimators (7.59) and (7.58), respectively,
and (7.63) will become equal to (7.57).
A more comprehensive treatment of the parametric spectral estimation problem is beyond
the current scope of this manuscript, and will be incorporated in a future chapter to be
added.

7.6 Summary

Simple sample-correlation estimators for auto- and cross-correlation functions of stochastic
processes have been analyzed. It has been shown that an asymptotically unbiased esti-
mator can be constructed for which the variance tends to zero for increasing number of
data. By transforming the estimator to the frequency domain, an estimator for the power
spectral density is obtained. However without any additional precautions these frequency
domain estimators suffer from a non-vanishing variance for increasing data. Special -rather
heuristic- smoothing windows can be introduced to reduce the variance however at the cost
of an introduction of bias.
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Appendix

Proof of variance expression for R̆x(k) (7.5)
The variance of the estimator can be analyzed by considering

var(R̆x(k)) = E[R̆x(k) − Rx(k)]2 (7A.1)

= E[R̆2
x(k)] − R2

x(k). (7A.2)

The first term of this expression is given by (for k ≥ 0):

E[R̆2
x(k)] =

1

(N − k)2

N−1∑

t=k

N−1∑

j=k

E[x(t)x(t − k)x(j)x(j − k)]. (7A.3)

The fourth order moment terms E[{x(t)x(t − k)x(j)x(j − k)}] are hard to analyze in the
general situation. Only in the Gaussian case this analysis becomes tractable, by using the
result that for real-valued Gaussian random variables (Shanmugan and Breipohl, 1988, p.
55, eq. 2.69):

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x2x3}E{x1x4} + E{x2x4}E{x1x3}. (7A.4)

Applying this to the above expression for ER̆2
x(k) leads to (restricting attention to the

situation k ≥ 0):

E[R̆2
x(k)] =

1

(N − k)2

N−1∑

t=k

N−1∑

j=k

R2
x(k) + Rx(t − k − j)Rx(t + k − j) + R2

x(t − j). (7A.5)

Substituting this result into (7A.2) shows that

var(R̆x(k)) =
1

(N − k)2

N−1∑

t=k

N−1∑

j=k

Rx(t − k − j)Rx(t + k − j) + R2
x(t − j). (7A.6)

Through variable substitution t − j = m this leads to

var(R̆x(k)) =
1

(N − k)2

N−1−k∑

m=−N+k+1

(N − k − |m|)[Rx(m − k)Rx(m + k) + R2
x(m)]

=
1

N − k

N−1−k∑

m=−N+k+1

(1 − |m|
N − k

)[Rx(m − k)Rx(m + k) + R2
x(m)]. (7A.7)

And since the variance will be the same for either positive or negative values of k it follows
that for any |k| ≤ N :

var(R̆x(k)) =
1

N − |k|

N−1−|k|∑

m=−N+|k|+1

(1− |m|
N − |k|)

[
Rx(m − k)Rx(m + k) + R2

x(m)
]
. (7A.8)
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Proof of variance expression for R̂yx(k)

The variance of the estimator can be analyzed by considering

var(R̂yx(k)) = E[R̂yx(k) − Ryx(k)]2 = E[R̂2
yx(k)] − [ERyx(k)]2. (7A.9)

First considering the situation k ≥ 0 it follows with

R̂yx(k) =
1

N

N−1∑

t=k

y(t)x(t − k)

that

E[R̂2
yx(k)] =

1

N2

N−1∑

t=k

N−1∑

j=k

E[y(t)x(t − k)y(j)x(j − k)]. (7A.10)

With (7A.4) this is written as

E[R̂2
yx(k)] =

1

N2

N−1∑

t=k

N−1∑

j=k

R2
yx(k)+Rxy(t−j−k)Ryx(t+k−j)+Rx(t−j)Ry(t−j). (7A.11)

Then it follows that

var(R̂yx(k)) =
1

N2

N−1∑

t=k

N−1∑

j=k

Rxy(t − j − k)Ryx(t + k − j) + Rx(t − j)Ry(t − j). (7A.12)

Through variable substitution t − j = m this leads to

var{R̂yx(k)} =
1

N

N−1−|k|∑

m=−N+|k|+1

(1 − |k|+|m|
N

) [Rxy(m − k)Ryx(m + k) + Rx(m)Ry(m)] .

(7A.13)
In this expression k = |k| has been substituted, which is justified by the fact that k ≥ 0.
Analysis for k ≤ 0 and using the related expression

R̂yx(k) =
1

N

N−1−|k|∑

t=0

y(t)x(t − k)

shows that exactly the same expression (7A.13) results, which proves that it is valid for all
values of k.

Proof of (co)variance expressions of periodogram estimator for white noise x

The covariance of Φ̂x(ω1) and Φ̂x(ω2) is given by

Cov{Φ̂x(ω1), Φ̂x(ω2)} = E[Φ̂x(ω1)Φ̂x(ω2)] − E[Φ̂x(ω1)]E[Φ̂x(ω2)] (7A.14)

First an analysis will be made of the first term on the right hand side.
With

Φ̂x(ω) =
1

N

{
N−1∑

k=0

x(k)e−iωk

}{
N−1∑

ℓ=0

x(ℓ)eiωℓ

}
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it follows that

E[Φ̂x(ω1)Φ̂x(ω2)] =

=
1

N2

N−1∑

k=0

N−1∑

ℓ=0

N−1∑

m=0

N−1∑

n=0

E{x(k)x(ℓ)x(m)x(n)}e−i(k−ℓ)ω1e−i(m−n)ω2 (7A.15)

Using again (7A.4):

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x2x3}E{x1x4} + E{x2x4}E{x1x3} (7A.16)

expression (7A.15) leads to three separate terms that will be analyzed separately.

• The first term of expression (7A.15) leads to a contribution for k = ℓ and m = n,
leading to

1

N2

N−1∑

k=0

N−1∑

m=0

σ4
x = σ4

x

• The second term of (7A.16) leads to a contribution for k = n and ℓ = m, leading to

1

N2

N−1∑

k=0

N−1∑

ℓ=0

σ4
xe−i(k−ℓ)ω1ei(k−ℓ)ω2 =

=
σ4

x

N2

N−1∑

k=0

e−ik(ω1−ω2)
N−1∑

ℓ=0

eiℓ(ω1−ω2)

=
σ4

x

N2

[
1 − e−iN(ω1−ω2)

1 − e−i(ω1−ω2)

] [
1 − eiN(ω1−ω2)

1 − ei(ω1−ω2)

]

=
σ4

x

N2

eiN(ω1−ω2)/2 · [1 − e−iN(ω1−ω2)]

ei(ω1−ω2)/2 · [1 − e−i(ω1−ω2)]
· e−iN(ω1−ω2)/2 · [1 − eiN(ω1−ω2)]

e−i(ω1−ω2)/2 · [1 − ei(ω1−ω2)]

= σ4
x

[
sin[N(ω1 − ω2)/2]

N · sin(ω1 − ω2)/2

]2

(7A.17)

• The third term in (7A.16) leads to a contribution for k = m and ℓ = n, leading to

1

N2

N−1∑

k=0

N−1∑

ℓ=0

σ4
xe−i(k−ℓ)ω1e−i(k−ℓ)ω2 =

=
σ4

x

N2

N−1∑

k=0

e−ik(ω1+ω2)
N−1∑

ℓ=0

eiℓ(ω1+ω2) (7A.18)

which with a similar analysis as before will lead to

σ4
x

[
sin[N(ω1 + ω2)/2]

N · sin(ω1 + ω2)/2

]2
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Combining the three terms now result in

E[Φ̂x(ω1)Φ̂x(ω2)] = σ4
x

{
1 +

[
sin[N(ω1 − ω2)/2]

N · sin(ω1 − ω2)/2

]2

+

[
sin[N(ω1 + ω2)/2]

N · sin(ω1 + ω2)/2

]2
}

Since
Cov{Φ̂x(ω1), Φ̂x(ω2)} = E[Φ̂x(ω1)Φ̂x(ω2)] − E[Φ̂x(ω1)]E[Φ̂x(ω2)]

and EΦ̂x(ω) = σ2
x for all ω, it follows that

Cov{Φ̂x(ω1), Φ̂x(ω2)} = σ4
x

{[
sin[N(ω1 − ω2)/2]

N · sin(ω1 − ω2)/2

]2

+

[
sin[N(ω1 + ω2)/2]

N · sin(ω1 + ω2)/2

]2
}

(7A.19)

The variance expression can now be derived, by considering ω1 = ω2 = 2πk/N with k
integer, and using the fact that sinα → α for α → 0, it follows that

var{Φ̂x(ω)}ω=2πk/N = σ4
x{1 +

(
sin2πk

Nsin(2πk/N)

)2

}

leading to

var{Φ̂x(f)}ω=2πk/N =

{
2 · σ4

x k = 0, N/2
σ4
x k 6= 0, N/2.

(7A.20)

For the covariance, it follows from (7A.19) that

Cov{Φ̂x(ω1), Φ̂x(ω2)} = 0, for ω1 = 2πk1/N ;ω2 = 2πk2/N ;ω1 6= ±ω2
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Appendix A

Probability Theory

A brief overview is given of the basic definitions and properties that are involved in ba-
sic probability theory. For a more extensive discussion and background material see e.g.
Papoulis (1991).

A.1 Random Experiment

A random experiment or random model is defined as a triplet (S, S, P ) where

• S is a class of events to which a probability can be assigned

• S is the sample space, i.e. the set of possible outcomes of an experiment

• P a probability measure, applied to S

The sample space S is the set of possible outcomes of an experiment. For the experiment
of tossing a die and counting the values, this set is simply {1, 2, 3, 4, 5, 6}. The class of
events S is the set of all events to which a probability can be assigned. It is composed
of elements or subsets of S. For the example of tossing the die, it incorporates elements
as {odd numbers smaller than 6}, {1, 2, 3}, etcetera. S is a family of subsets of S that is
required to be completely additive, i.e.

• The whole sample space S is an allowed event, i.e. S ⊂ S;

• Any union of events is also an event, i.e. if Ak ⊂ S for k = 1, 2, 3, · · · , then
n⋃

k=1

Ak ⊂ S,

for n = 1, 2, 3, · · · ;

• If A is an event, then not A is also an event, i.e. if A ⊂ S, then Ā ⊂ S, where Ā is
the complement 1 of A in S.

1Complement is here considered in a set-theoretic sense.
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A.2 Random Variables

Scalar real random variables
A random variable is a function that connects a real-valued number to each of the elements
of the sample space of a random model. In other words, every outcome of an experiment
is represented by a real-valued number. It is a function S → R, such that for all λ ∈ S,
x(λ) ∈ R satisfies

• The set {λ : x(λ) ≤ x} is an event ∀x ∈ R

• P{λ : x(λ) = ∞} = 0; P{λ : x(λ) = −∞} = 0.

The random variable is denoted with the sans-serif symbol x, while a particular outcome,
also referred to as a realization is indicated by the italic symbol x.
The first condition above guarantees the validity of the expression P (x ≤ x), the probability
that a random variable takes a value that is smaller than a particular real-valued number
x. This function is called the distribution function, defined as

Distribution function: Fx(x) := P (x ≤ x).

Typical properties of distribution functions are that they are non-decreasing functions of
x. Their characteristic properties are:

• Fx(−∞) = 0

• Fx(∞) = 1

• Fx(x1) ≤ Fx(x2) if x1 < x2

• P [x1 < x ≤ x2] = Fx(x2) − Fx(x1).

For a continuous random variable (x can take values in a continuous interval on the real
line) the probability density function (pdf) is defined as:

fx(x) := dFx(x)
dx ≥ 0 ∀ x (A.1)

P (a ≤ x ≤ b) =
∫ b
a fx(x)dx. (A.2)

For a discrete random variable (x can take values in a discrete interval on the real line) the
probability mass function (pmf) is defined as:

P (x = xi) for i = 1, · · · n (A.3)

where xi ranges over the allowed (discrete) values of x.
A random variable maps the sample space S onto a subset Sx of R. This image set Sx is
the set of possible real-valued outcomes of a random experiment, and is also referred to as
the ensemble.

Mean and Variance of scalar random variables

The mean of a continuous random variable is defined as

Mean: µx := E{x} =

∫ ∞

−∞
xfx(x)dx
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and the variance:

Variance: σ2
x := E{(x− µx)2} =

∫ ∞

−∞
(x − µx)2fx(x)dx

The square root of the variance is referred to as the standard deviation σx.

For discrete random variables the corresponding notions are

µx := E{x} =
n∑

i=1

xiP (x = xi)

and the variance:

σ2
x = E{(x − µx)2} =

n∑

i=1

(xi − µx)2P (x = xi).

Functions of two continuous random variables

For two continuous random variables the joint distribution function is determined by the
joint occurrence of two events, that is

Fx,y(x, y) = P [x ≤ x,y ≤ y].

The corresponding joint probability density function is

fx,y(x, y) :=
∂2Fx,y(x, y)

∂x∂y

and as a result

P (x ≤ a,y ≤ b) =

∫ a

−∞

∫ b

−∞
fx,y(x, y)dxdy.

The mean value of any function g of the two random variables x,y is then given by:

E[g(x,y)] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fx,y(x, y)dxdy.

Since Fx,y(∞,∞) = 1 it follows that

∫ ∞

−∞

∫ ∞

−∞
fx,y(x, y)dxdy = 1.

Additionally, from Fx,y(x,∞) = Fx(x) it follows that for any fixed valued x:

fx(x) =

∫ ∞

−∞
fx,y(x, y)dy. (A.4)

By dual reasoning it follows that for any fixed value y, fy(y) =
∫∞
−∞ fx,y(x, y)dx.

Conditional densities and Bayes’ rule
Based on Bayes’ rule for conditional probabilities:

P (A|B) =
P (A,B)

P (B)
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the conditional probability density function for two random variables x, y is defined by

fy|x(y|x) :=
fx,y(x, y)

fx(x)
(A.5)

and thus fx,y(x, y) = fy|x(y|x) · fx(x).
With (A.4) it is noted that

∫ ∞

−∞
fy|x(y|x)dy =

∫ ∞

−∞

fx,y(x, y)

fx(x)
dy =

fx(x)

fx(x)
= 1

for any value of x.
The conditional mean Ey|x[g(x,y)|x = x] is defined by

Ey|x[g(x,y)|x = x] =

∫ ∞

−∞
g(x, y)fy|x(y|x)dy.

From (A.5) then follows that

E{g(x,y)} = ExEy|x[g(x,y)|x].

Moments of scalar real random variables The moments of order (p, r) of two scalar
random variables x, y are defined as

m(p, r) = E[x]p[y]r ,

with p + r referred to as the order of the moment. First order moments are the mean of x
(corresponding to p = 1, r = 0), and the mean of y (p = 0, r = 1). Second order moments
include the correlation between x and y:

Correlation: rxy := E(xy). (A.6)

The central moments of order (p, r) are defined as

mc(p, r) = E[x − µx]p[y − µy]r.

Second order central moments include the variance of x and y, and the covariance:

Covariance: σxy := E{(x− µx)(y − µy)}. (A.7)

A scaled version of this covariance, is denoted as the correlation coefficient between random
variables x and y:
Correlation coefficient:

ρxy =
E{(x − µx)(y − µy)}

σxσy

− 1 ≤ ρxy ≤ 1.

The correlation coefficient directly reflects the statistical relation between the two random
variables x and y. Because of its scaling it takes on real values between −1 en +1. This
latter property can simply be shown by using the Schwartz inequality (A.12).
Two random variables x and y are defined to be
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• independent if fx,y(x, y) = fx(x) · fy(y);

• uncorrelated if σxy = 0 or equivalently E{xy} = µx · µy;

• orthogonal if rxy = 0 or equivalently E{xy} = 0.

Note that two independent random variables are always uncorrelated; however two random
variables that are uncorrelated can be statistically dependent. Therefore independency is
a stronger notion than uncorrelation.

Moments of vector complex random variables

If the random variables are vectors and complex-valued, the above notions simply generalize.
Consider the n-dimensional complex-valued random variable x, denoted by

x =




x1

·
xn


 ; xT = [x1 · · · xn].

The mean of x is denoted by

µx = E{x} = E




x1

·
xn


 .

For an n-dimensional random variable x and an m-dimensional random variable y, the
correlation matrix becomes

correlation matrix Rxy = E{xy∗} (A.8)

and the covariance matrix is denoted as:

covariance matrix Σxy := E{(x− µx)(y − µy)∗}, (A.9)

being matrices with dimensions n × m. The covariance matrix is structured as

Σxy =




σx1y1 σx1y2 · · · σx1ym

σx2y1 σx2y2 · · · σx2ym

...
...

. . .
...

σxny1 σxny2 · · · σxnym


 .

In line with the above notation, for the n-dimensional random variable x, the n×n covari-
ance matrix is denoted as Σxx, also often abbreviated to Σx.
For real-valued random variables, the moments are real-valued also. For complex-valued
random variables, the mean and covariance matrix are complex-valued.
Similar to the scalar case, two vector random variables x and y are defined to be

• independent, if fx,y(x, y) = fx(x)fy(y);

• uncorrelated, if Σxy = 0 or equivalently E{xy∗} = µx · µ∗
y;

• orthogonal, if E{xy∗} = 0.
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For vector-valued real random variables, the complex conjugate transpose operation (·)∗
simply reduces to a transpose (·)T .
Note that for complex-valued random variables, expressions as Fx(x) = P (x ≤ x) have
to be interpreted for complex valued x and x. In this situation P (x ≤ x) has to be
read as P (xr ≤ xr,xi ≤ xi) which leads to a notation and interpretation which is fully
consistent with the framework presented above. The probability density function fx(x) is
then interpreted in a similar way.

A.3 Gaussian distribution

A.3.1 Gaussian probability density function (pdf)

The Gaussian2 or Normal distribution has a probability density function that is given by

fx(x) =
1

σx

√
2π

e
−

(x−µx)2

2σ2
x .

Its mean value equals µx and its variance is σ2
x. A sketch of a Gaussian distribution is given

in Figure A.3.1.

fx(x)

µx x →

Figure A.1: Gaussian probability density function fx(x).

In the multivariate (vector-valued) situation, where x is an n-dimensional random variable,
the distribution function generalizes to

fx1,x2,···xn(x1, x2, · · · xn) = fx(x)

= 1

(2π)n/2
√

det(Σx)
exp

(
−1

2(x − µx)T Σ−1
x (x − µx)

)
. (A.10)

A.3.2 Properties of multivariate Gaussian random variables

Linear combinations of Gaussian random variables
If x is an n-dimensional Gaussian random variable with p.d.f

fx(x) =
1

(2π)n/2
√

det(Σx)
e−

1
2
(x−µx)T Σ−1

x (x−µx)

and the m-dimensional random variable y is constructed from x by

y = Ax

2Johann Carl Friedrich Gauss (1777-1855) was a German mathematician.
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with A an m × n matrix having rank m, then y is also Gaussian with p.d.f.

fy(y) =
1

(2π)m/2
√

det(Σy)
e−

1
2
(y−µy)T Σ−1

y (y−µy)

with µy = Aµx and Σy = AΣxAT .

Partitioning and conditional expectation of Gaussian random variables
Let x have an n-dimensional multivariate Gaussian distribution. If x is partitioned as

x =

[
x1

x2

]
µx =

[
µx1

µx2

]
Σx =

[
Σ11 Σ12

Σ21 Σ22

]

with dim(x1) = k, then

• x1 is a k-dimensional Gaussian random variable with mean µx1 and covariance matrix
Σ11;

• The conditional mean of x1 given x2 is given by

E[x1|x2 = x2] = µx1 + Σ12Σ
−1
22 (x2 − µx2)

being a linear function of x2.

A.3.3 Higher order moments of Gaussian random variables

For a zero-mean Gaussian random variable with variance σ2
x, it follows that

Ex4 = 3σ4
x. (A.11)

This result can be shown as follows:

Ex4 =

∫ ∞

−∞

1√
2πσx

e
− x2

2σ2
x x4dx =

2√
2πσx

∫ ∞

0
x4e

− x2

2σ2
x dx

=
−2 · 2σ2

x√
2πσx

∫ ∞

0
x4 1

2x
de

− x2

2σ2
x =

−2σx√
2π

∫ ∞

0
x3de

− x2

2σ2
x

=
−2σx√

2π

{
x3e

− x2

2σ2
x

∣∣∣∣
∞

0

−
∫ ∞

0
e
− x2

2σ2
x 3x2dx

}

=
2σx√
2π

3

∫ ∞

0
x2e

− x2

2σ2
x dx = σ2

x · 3 ·
∫ ∞

−∞
x2 1√

2πσx

e
− x2

2σ2
x dx = 3σ4

x.

A.4 Schwartz3 inequality

Consider two random variables x and y. Then

(Exy)2 ≤ E(x2) · E(y2). (A.12)

3H. Amandus Schwarz (1843-1921) was a German mathematician.
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The proof of this equation is obtained by considering any a ∈ R, and by verifying that

E(ax− y)2 = a2
E(x2) − 2aE(xy) + E(y2) ≥ 0 ∀a ∈ R.

This actually is a quadratic form in a, and in order to satisfy the inequality for all a its
discriminant should be ≤ 0 so as to avoid that the quadratic form has at maximum 1 point
of a where the equality holds. As a result,

4E
2(xy) − 4E(x2)E(y2) ≤ 0.

A.5 Convergence of random variables

Mean-square convergence

A sequence {xn}n=1,2,··· of random variables is said to converge in mean square sense if
there exists a random variable x such that

E[(xn − x)2] → 0 as n → ∞.

If this equation is satisfied, then the random variable x is called the mean square limit of
the sequence xn, denoted by

l.i.m. xn = x.

Convergence in probability

A sequence {xn}n=1,2,··· of random variables is said to converge in probability to the random
variable x if the probability P{|xn − x| > ε} of the event |xn − x| > ε tends to zero as
n → ∞ for any ε > 0.

Convergence in mean square sense implies convergence in probability.

Convergence almost everywhere or convergence with probability 1

A sequence {xn}n=1,2,··· of random variables is said to converge almost everywhere (a.e.) or
with probability 1 (w.p. 1) if

P{λ : lim
N→∞

xn(λ) = x(λ)} = 1

also denoted as P{xn → x} = 1.
Here λ reflects one outcome of the experiment, inducing a sequence of numbers x1(λ),x2(λ), · · · xn(λ).
For (almost) every outcome λ, the resulting sequence will converge to x(λ).

Convergence almost everywhere implies convergence in probability.

Central limit theorem
Let x1,x2, · · · xn be a sequence of identically distributed independent random variables,
with mean value µ and variance σ2. Then

zn =

n∑

i=1

(xi − µ)/
√

nσ2

converges for n → ∞ in distribution to a Gaussian pdf with mean value 0 and variance 1.
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Linear algebra and system theory

B.1 Vectors, matrices and norms

Identity matrix:

Ir =




1 0 · · · 0

0 1
. . . 0

...
. . .

. . .
...

0 0 · · · 1



∈ R

r×r

Vector norms: For a vector x = [x1 x2 · · · xn]T ∈ R
n the 2-norm is given by

‖x‖2 =
√

xT x =
√

x2
1 + · · · + x2

n.

Matrix norms: Let A ∈ R
n×m then

• ‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

• ‖A‖F =

√√√√
n∑

i=1

m∑

j=1

|aij |2 =
√

tr(AAT )

For a square matrix A ∈ R
n×n with elements aij its trace is defined by

tr(A) =

n∑

i=1

aii.

A square matrix A ∈ R
n×n is positive definite if for all x ∈ R

n, xT Ax > 0. A is positive
semi-definite if for all x ∈ R

n, xT Ax ≥ 0.

B.2 Singular Value Decomposition

Definition B.1 (Singular Value Decomposition) For every finite matrix P ∈ R
q×r

there exist unitary matrices U ∈ R
q×q, V ∈ R

r×r, i.e.

UT U = Iq (B.1)

V T V = Ir (B.2)
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such that

P = UΣV T

with Σ a diagonal matrix with nonnegative diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σmin(q,r) ≥ 0.

An alternative way of formulating the SVD is:

P =

min(q,r)∑

k=1

σkUkV
T
k

where Uk, Vk are the k-th column of U and V respectively.

Proposition B.2 Let P be a q × r matrix with rank n, having a SVD P = UΣV T , and
let k < n. Denote

Pk := UΣkV
T , Σk =

[
Ik 0

]
Σ

[
Ik

0

]
. (B.3)

Then Pk minimizes both

‖P − P̃‖2 and ‖P − P̃‖F (B.4)

over all matrices P̃ of rank k.

Additionally

• ‖P − Pk‖2 = σk+1, and

• ‖P − Pk‖F =




min(q,r)∑

i=k+1

σ2
i




1
2

.

B.3 Projection operations

Let A be an p × r matrix, and B an q × r matrix. Then the orthogonal projection of the
rows of A onto the row space of B is given by

ABT (BBT )−1B = AV V T (B.5)

where V is taken from the singular value decomposition B = UΣV T .

Note that this property is related to the least-squares problem

min
X

‖A − XB‖F (B.6)

where X ∈ R
p×q and ‖ · ‖F the Frobenius-norm defined by ‖Y ‖F = trace(Y T Y ). The

solution X̂ to (B.6) is given by

X̂T = (BBT )−1BAT (B.7)

and the projection is thus given by X̂B = ABT (BBT )−1B.
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Let A be an p × q matrix, and B an p × r matrix. Then the orthogonal projection of the
columns of A onto the column space of B is given by

B(BT B)−1BTA = UUT A (B.8)

where U is taken from the singular value decomposition B = UΣV T .

This property is related to the least-squares problem

min
X

‖A − BX‖F (B.9)

where X ∈ R
r×q. The solution X̂ to (B.9) is given by

X̂ = (BT B)−1BT A (B.10)

and the projection is thus given by BX̂ = B(BTB)−1BT A.

For more details on linear algebra see e.g. Noble (1969) and Golub and Van Loan (1983).

B.4 Partial fraction expansion

Let G be a rational transfer function

G(z) =
A(z)

B(z)
=

a0 + a1z
−1 + a2z

−2 + · · · + amz−m

1 + b1z−1 + b2z−2 + · · · + bnz−n
, (B.11)

with m < n, while

B(z) =
n∏

i=1

(1 − piz
−1).

If all pi are distinct then the partial fraction expansion of G is given by

G(z) =

n∑

i=1

αi

1 − piz−1
(B.12)

with

αi = [(1 − piz
−1)G(z)]z=pi .

If G(z) has distinct poles p1, . . . , pr with multiplicities ν1, . . . νr, then the partial fraction
expansion of G is given by

G(z) =

r∑

i=1

νi∑

j=1

αij

(1 − piz−1)j
(B.13)

with

αij =
1

(νi − j)!(−pi)νi−j

[
dνi−j

d(z−1)νi−j
[(1 − piz

−1)νiG(z)]

]

z=pi

.

For more details see Oppenheim and Willsky (1997).
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B.5 Transfer functions and series expansions

Consider the series expansion
∞∑

k=0

akz−k

with (complex-valued) a, z and |a| < 1. This series is convergent for |az−1| < 1, leading to

∞∑

k=0

(az−1)k =
1

1 − az−1
for |z| > |a|. (B.14)

Since |a| < 1, the rational transfer function has a pole z = a inside the unit circle and the
series expansion (B.14) is convergent for z on the unit circle.

In the dual situation, consider the series expansion

∞∑

k=1

akzk

with |a| < 1. This series is convergent for |az| < 1, leading to

∞∑

k=1

(az)k =
az

1 − az
=

−1

1 − a−1z−1
for |z| <

1

|a| . (B.15)

Since |a| < 1, the rational transfer function has a pole z = 1/a outside the unit circle and
the series expansion (B.15) is convergent for z on the unit circle.

The generic (first-order) component of a causal transfer function G+(z) that converges on
the unit circle is thus given by

b

1 − az−1
with |a| < 1

where constant terms, related to the term z0, are considered to be part of the causal part
of the system.
For analyzing the anticausal part we write

∞∑

k=1

(az)k =
−1

1 − a−1z−1
.

Therefore the generic (first-order) component of an anticausal transfer function G−(z) is
given by

b

1 − a−1z−1
with |a| < 1.

When given a general transfer function G(z) there is a unique expansion of G in powers of
z−1 that is convergent on the unit circle. This expansion decomposes the transfer function
into a causal and a noncausal part as follows:
Let G(z) be written as

G(z) =
b(z)

f(z)
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with b(z) and f(z) polynomials in z−1, and f(z) = a(z) · c(z) with

a(z) = (1 − a1z
−1) · (1 − a2z

−1) · · · (1 − anz−1)

c(z) = (1 − c−1
1 z−1) · (1 − c−1

2 z−1) · · · (1 − c−1
m z−1)

with |ai|, |cj | ≤ 1 for all i, j. Pole locations ai are inside the unit circle, while pole locations
1/cj are outside the unit circle.
Decomposition of G(z) now follows by writing

G(z) =
g+(z)

a(z)
+

g−(z)

c(z)
(B.16)

with g+ and g− polynomials in z−1 such that the two quotient expressions g+(z)
a(z) and g−(z)

c(z)

can both be described as (B.11).

The term g+(z)
a(z) reflects a causal series expansion

∑∞
k=0 g(k)z−k that is convergent on the

unit circle; the term g−(z)
c(z) reflects a strictly anticausal series expansion

∑−∞
k=−1 g(k)z−k that

is convergent on the unit circle.
Each of the two terms can be written as a summation of first order terms, by applying
partial fraction expansion as explained in Appendix B.4. When all roots of a(z) and c(z)
are distinct, it follows from the partial fraction expansion that

G(z) =
n∑

i=1

αi

1 − aiz−1
+

m∑

j=1

βj

1 − c−1
j z−1

The causal part of the system is then given by

G+(z) =
n∑

i=1

αi

1 − aiz−1
=

n∑

i=1

αiz

z − ai

having poles zi = ai within the unit circle, while the anti-causal part is given by

G−(z) =
m∑

j=1

βj

1 − c−1
j z−1

=
m∑

j=1

γjz

1 − cjz

having poles zj = 1/cj outside the unit circle.

B.6 Trigonometric relations

2 · sin(α) · sin(β) = cos(α − β) − cos(α + β)

2 · cos(α) · cos(β) = cos(α − β) + cos(α + β)

2 · sin(α) · cos(β) = sin(α − β) + sin(α + β)

cos(α + β) = cos(α) · cos(β) − sin(α) · sin(β)

cos(α − β) = cos(α) · cos(β) + sin(α) · sin(β)

sin(α + β) = sin(α) · cos(β) + cos(α) · sin(β)

sin(α − β) = sin(α) · cos(β) − cos(α) · sin(β)
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Conditional distribution for
multivariate Gaussian random
variabels

C.1 Determinants and inversion of block matrices

If A and D are square matrices and A is nonsingular, then

det

[
A B
C D

]
= det(A) · det(D − CA−1B). (B.1)

The matrix D − CA−1B is referred to as the Schur complement of matrix A in the block

matrix

[
A B
C D

]
.

If alternatively D is nonsingular then

det

[
A B
C D

]
= det(D) · det(A − BD−1C). (B.2)

Here A − BD−1C is the Schur complement of D within the block matrix.

As a special case it follows that

det

[
A B
0 D

]
= det(A) · det(D). (B.3)

If A is nonsingular, then

[
A B
C D

]−1

=

[
A−1 + A−1BECA−1 −A−1BE

−ECA−1 E

]
with E = [D − CA−1B]−1 (B.4)

This result follows from Gaussian elimination, applied to the block matrix. This can be
understood by reducing the block matrix to the identity matrix through elementary row
operations. Starting with [

A B I 0
C D 0 I

]
. (B.5)
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Premultiplying the first block row with A−1, and subtracting C times the new first block
row from the second, delivers

[
I A−1B A−1 0
0 D − CA−1B −CA−1 I

]
. (B.6)

Multiplying the second block row with E = (D − CA−1B)−1 gives

[
I A−1B A−1 0
0 I −ECA−1 E

]
. (B.7)

Subtracting A−1B times the second block row from the first one, then provides

[
I 0 A−1 + A−1BECA−1 −A−1BE
0 I −ECA−1 E

]
. (B.8)

The above result can equivalently be applied to the situation when not A but D is considered
to be invertible. The related result in that situation is:

[
A B
C D

]−1

=

[
F −FBD−1

−D−1CF D−1 + D−1CFBD−1

]
with F = [A−BD−1C]−1 (B.9)

Equating the two expressions for the inversion of the block matrix leads -among others- to
the matrix inversion lemma :

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1. (B.10)

C.2 Multivariate conditional Gaussian distribution

Proposition B.1 Let random variable z have an m+n multivariate Gaussian distribution,
while z is partitioned according to

z =

[
x
y

]
µz =

[
µx

µy

]
Σz =

[
Σx Σxy

Σ∗
xy Σy

]
(B.11)

with dim(x) = m and dim(y) = n, then the conditional distribution fx|y(x|y) is given by

fx|y(x|y) =
1

(2π)m/2
√

det(Σx|y)
· e−

1
2
(x−µ(y))T Σ−1

x|y
(x−µ(y))

(B.12)

with

µ(y) = µx + ΣxyΣ−1
y (y − µy) (B.13)

Σx|y = Σx − ΣxyΣ−1
y Σ∗

xy. (B.14)

The result of this proposition can be verified by using Bayes’ relation:

fx|y(x|y) =
fx,y(x, y)

fy(y)
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with

fx,y(x, y) =
1

(2π)(m+n)/2
√

det(Σz)
· e− 1

2
[(x−µx)T (y−µy)T ]Σ−1

z [(x−µx)T (y−µy)T ]T(B.15)

fy(y) =
1

(2π)n/2
√

det(Σy)
· e− 1

2
(y−µy)T Σ−1

y (y−µy) (B.16)

The fact that det(Σz) = det(Σy) ·det(Σx|y) follows simply from the determinant rule (B.2),
thus proving the correctness of the coefficient that multiplies the exponential in (B.12).
In order to verify the exponential term, note that the exponential term of the quotient of
(B.15) and (B.16) can be written as

− 1

2
[(x − µx)T (y − µy)T ]

[
Σ−1

z −
(

0 0
0 Σ−1

y

)](
x − µx

y − µy

)
. (B.17)

Applying the matrix inversion (B.9) to Σ−1
z , using the decomposition (B.11), the above

expression reduces to

− 1

2
[(x − µx)T (y − µy)T ]

[(
F −FΣxyΣy−1

−Σ−1
y Σ∗

xyF Σ−1
y Σ∗

xyFΣxyΣ−1
y

)](
x − µx

y − µy

)
, (B.18)

with F = [Σx − ΣxyΣ−1
y Σ∗

xy]−1.
The block matrix in (B.18) now has become singular and it can be decomposed as

(
I

−Σ−1
y Σ∗

xy

)
· F · [I − ΣxyΣ−1

y ]. (B.19)

As a result the full exponential term becomes

− 1

2
[(x − µx)T − (y − µy)T Σ−1

y Σ∗
xy] · F · [x − µx − ΣxyΣ−1

y (y − µy)] (B.20)

showing that m(y) = µx + ΣxyΣ−1
y (y − µy) and Σx|y = F−1.
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