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Abstract—This thesis introduces a frequency domain identi-
fication method for in-circuit testing in Printed Circuit Board
Assembly (PCBA), utilizing diffusively coupled dynamic net-
works. A two-step identification approach is employed: first,
estimating the non-parametric frequency response function and
noise covariance; second, identifying the parametric network
model using either input/output frequency data or the estimated
frequency response. A key advantage of this method is its ability
to accurately recover all the values of the components within
the network. By imposing constraints during the parametric
identification phase, the method preserves the structure of the
network. This method uses estimated noise covariance to min-
imize variance, thus obviating the need to select a parametric
noise model. Experimental results highlight the method’s ability
to consistently estimate component values in the complex network
with single excitation. The approach is extended to subnetworks,
significantly reducing measurement costs in In-Circuit Testing
(ICT). Furthermore, a comprehensive ICT procedure is devel-
oped that is capable of accurately detecting and diagnosing PCBA
defects with minimal excitation. The methodology effectively
maintains the relative parameter error of healthy components
within ±5%. This shows its potential for robust PCBA fault
detection and diagnosis.

Index Terms—System identification, Dynamic network, Inter-
connected systems, Frequency domain, In-Circuit Testing

I. INTRODUCTION

A printed circuit board assembly (PCBA) consists of a board
equipped with numerous components that are widely used in
various electronic devices, such as computers, smartphones,
and televisions. Electronic components are assembled on the
board and then soldered. However, various factors can lead to
the incorrect assembly of a PCBA. It is vital to ensure that
the PCBA is properly assembled before being implemented in
complex production. Recently, many pick-and-place machines
have been widely used to place components automatically,
increasing production efficiency but suffering from the risk
of wrong placement. Moreover, problems such as expired
components or broken solder can occur even with correct
component placement. Consequently, it is imperative to verify
the placement and operational condition of each component in
PCBA manufacturing.

A. PCBA testing
The main content of PCBA testing includes in-circuit testing

(ICT), automated optical inspection (AOI) [1] and automated

X-ray inspection (AXI) [2]. However, neither AOI nor AXI
can detect electrical circuit errors, as they only use images
from the camera or X-ray to analyze the PCBA. The common
ICT method is to connect the PCBA to external measurement
equipment through test points, which are small metal pads
on the PCBs used to access the circuit nodes for testing.
They are usually connected to the ICT machine probes by
spring-loaded pins or needles. The probes can then apply
the voltage or current to the test points and measure the
circuit response. In this procedure, the ICT method can test
the quality of components in PCBA without damaging them.
Although ICT looks at the circuit response, it still suffers
from inaccurate measurement in densely arranged PCBA due
to parasitic effects generated by two closed components with
different voltages. In addition, it is difficult to isolate the defect
by simply looking at the circuit response, as it can affect the
circuit response of other healthy components. Therefore, a
more robust and effective test method can be considered to
improve ICT for PCBA production.

B. System identification and dynamic network identification
The ICT process serves to detect and diagnose faults in

PCBA based on the data set applied and collected from
the probes. Many different types of methods are used for
fault detection and diagnosis (FDD), which can be divided
into three parts: data and signal model methods, process
model-based methods, and knowledge-based methods [3].
One of the model-based methods is to apply data driven
system identification techniques to detect and diagnose faults
in dynamic systems. The idea is to identify the value of each
component, compare it with the expected value, and analyze
the error to verify its correctness. System identification uses
statistical methods to build mathematical models of dynamical
systems from measured data [4]. Dynamic networks can
effectively represent a wide range of dynamic processing
models, including complex electrical circuits [5]. Dynamic
network identification can be used for electrical circuit testing
in PCBA.

Several methods are available to solve this data-driven
physical network identification problem based on the time
domain. For example, black-box prediction error identification



methods can be used to identify transfer functions from input
signals to node signals [6]. State-space models can be used
to describe dynamic network systems [7], and identified state-
space models can be used to extract the physical values of
the components in dynamic networks [8], [9], [10]. However,
these methods do not guarantee the accuracy of the estimates
due to loss of network structures and do not include consis-
tency analysis. If the estimate can incorporate the network
structures, the estimate of interconnection dynamics would
be more accurate. Recently, the diffusively coupled network
model has been developed to describe dynamic models in
which dynamics can be uniquely recovered [11]. A multi-
step algorithm was established to identify the full diffusively
coupled linear network in structured polynomial models that
incorporate the network structure [12] and while they have
been extended to the local module (subnetwork) case in [13].
The structured polynomial model approach [12] was applied
to improve the ICT process in [14]. This diffusively coupled
network model can easily represent the dynamics of electronic
components in a complex electrical circuit. However, given
that the dynamics of physical components are continuous, it is
necessary to explore continuous-time identification methods to
identify continuous-time dynamic network models effectively.

C. Continuous time identification for dynamic network
Continuous-time (CT) system identification focuses on con-

structing continuous-time models for dynamical systems using
sampled input and output data. There are two main methods
in this field: indirect and direct. The indirect approach first
establishes a suitable discrete-time (DT) model, which is sub-
sequently converted into a continuous-time model. In contrast,
the direct approach derives a continuous-time model directly
from the sampled data, avoiding the need for a discrete-
time intermediary. Many instrumental variable-based estima-
tion methods have been applied to identify the continuous-
time model in both approaches [15] [16]. However, meth-
ods for continuous-time dynamic network identification have
scarcely been explored. Indirect and direct continuous-time
identification approaches for dynamic networks are introduced
in [17]. The indirect method introduces errors during the dis-
cretization. Conversion can be performed if a transfer function
has the same frequency response in both representations [18].
The direct method is an extension of the basic closed-loop
instrument variable method (BCLIV) [19] that can be used
in continuous-time dynamic networks [20]. Furthermore, a
two-step frequency domain identification approach has been
developed in [21], which is less complex and scalable for large
networks without parameterizing the noise model. However,
all of these methods are for the identification of the dynamic
network module framework, and there is no guarantee that
the value of the interconnected components can be uniquely
recovered from the transfer function of the module framework.
Thus, a frequency domain identification method was developed
for the diffusively coupled continuous-time network in [22].
The frequency domain-based method has many advantages
in application: (1) it can avoid approximate derivatives for

discretization and directly identify the continuous-time system;
(2) it can use the non-parametric noise model directly in
estimation instead of parameterizing the noise model; (3) it
can directly concatenate multiple experiment data sets; (4) it
only requests data samples in the specified frequency range;
(5) it can provide straight information of the system dynamics
in the frequency response function (FRF).

D. Research goal
The research question of this project: How to estimate

the component value accurately with ICT and lower the
experiment cost by using dynamic network identification?

The frequency domain identification method is more
suitable to solve the ICT identification problem in PCBA,
since it can identify the electronic circuit continuous-time
model directly. Straight information on system dynamics
can be analyzed from the FRF estimation. Moreover, the
noise model is usually unknown for practical applications,
so avoiding defining a proper parametric noise model is
a significant advantage here. The ability of the diffusively
coupled network model identification method to address
parasitic effects during ICT has been demonstrated in [14].
This research focuses on the detection and diagnosis of
various PCBA defects.

Research goal: To achieve a more robust and effective test
method for ICT, the research goal is to develop, implement,
and apply a frequency domain identification method for diffu-
sively coupled networks for ICT. This research goal is divided
into four tasks as follows.

1) In [22], the non-parametric part of applying the fre-
quency domain identification method for diffusively
coupled networks has been studied and tested. The first
task of this project is to develop the parametric part
for identifying full diffusively coupled networks in the
frequency domain.

2) To reduce the measurement cost, the second task of this
project is to extend the frequency domain identification
method for the full network to a part of the network.
This part of the network is referred to as a subnetwork
in this project.

3) The third task is to implement the whole algorithm in
Matlab.

4) The fourth task is to develop a testing procedure for
applying the algorithm to the ICT simulation and test it
by applying different defects in the simulation.

E. Common defects in PCBA
Components in PCBAs are classified into two types: passive

and active components [23]. Passive components, including
resistors, inductors, capacitors, and transformers, are the most
commonly used types in PCBA electrical circuits. Active
components comprise transistors and integrated circuits. They
may also be implemented in the PCBA to achieve different
functions. However, this project focuses on three types of

2



(a) Solder bridge (b) Tombstoning

(c) Lifted pad (d) Cold-soldered joint

Figure 1: Examples of common manufacturing defects [24]

electronic passive components: resistors, inductors, and capac-
itors because they can be easily modeled with the diffusively
coupled linear network. Although various defects can arise in
PCBA production due to various causes, the most common
defects are typically categorized into short circuits, open
circuits, and dynamic changes. This project will test the ICT
with these three types of defects. Fig. 1 provides examples of
these three types of defects.

1) Short circuit: Solder bridges, solder balling, etc; Fig. 1a
shows an example of a solder bridge. The unwanted
solder connections between adjacent pins or pads create
a short circuit.

2) Open circuit: Missing components, lifted pads, tomb-
stoning, insufficient solder, etc; Fig. 1b and Fig. 1c show
the tombstoning and the lifted pad, respectively. The lack
of an electrical connection where it should exist leads
to an open circuit.

3) Dynamic changes: Wrong component placed, skewed
component, cold-soldered joints, component cracking,
contamination, etc. Dust, oils, or other contaminants in
the assembly environment can affect the electrical con-
nection. Fig. 1d shows an example of the cold-soldered
joint, which is caused by insufficient heat during sol-
dering, leading to unreliable and weak connections. In
this case, although the dynamic of the component itself
does not change, the dynamics of the interconnection
between the two nodes changes.

F. Overview of the thesis
The rest of the thesis consists of 5 parts. Section II in-

troduces the preliminary knowledge as the continuous-time
diffusively coupled network model with an electrical circuit
network example, the discrete-time network model, and moves
the network model to the frequency domain. Section III

presents the two-step frequency domain identification method-
ology with the non-parametric part and the parametric part.
The subnetwork identification method in the frequency domain
for the diffusively coupled network is shown in Section IV to
reduce the measurement cost. The ICT procedure for PCBA
with the application of the diffusively coupled network iden-
tification algorithm in the frequency domain and the results
of various experiments are shown and discussed in Section V.
The conclusion and future work discussion are provided in
Section VI.

G. Notation definition
Some notation are defined that will be used throughout the

thesis in this subsection. A(p) is a polynomial matrix with

A(p) =
na∑
ℓ=0

Aℓp
ℓ, it consisting of na + 1 matrices Aℓ and

(j, k)-th polynomial elements ajk(p) =
na∑
ℓ=0

aik,ℓp
ℓ. The aik,ℓ

is the (j, k)-th element of the matrix Aℓ. AJ•(p) is defined
as the polynomial matrix that extracts the first J rows from
A(p).

II. PRELIMINARIES

A. Continuous-time model
From the last section, the literature indicates that physical

networks can often be modeled using undirected graphs with
diffusively coupled connections. Here, diffusively coupled
connections are interactions that depend only on the difference
between node signals, even with a ground or zero node. In
particular, these interactions are symmetric in diffusively
coupled linear networks, which makes the complex network
system easier to analyze. Following the network model in
[12], we can describe the full dynamics and topology of
diffusively coupled linear networks.

Definition 1. (Diffusively coupled network) The diffusively
coupled network consists of L node signals w(t) and K
excitation signals r(t). The diffusively coupled network model
is described in the following,

A(p)w(t) = B(p)r(t) + F (p)e(t), (1)

where, p is the differential operator, i.e. pℓwj(t) = w
(ℓ)
j (t),

w
(ℓ)
j (t) is the ℓ-th order derivative of node signals wj ,

• A(p) =
na∑
ℓ=0

Aℓp
ℓ ∈ RL×L[p],with ajk(p) = akj(p),

∀k, j, and A−1(p) is stable.
• B(p) ∈ RL×K [p] is often chosen to be binary and known,

which represents each excitation signal directly acting on
a distinct node.

• F (p) ∈ RL×L(p) is monic, stable, rational, and the
inverse matrix is also stable.

Here, the dynamics of known excitation signals r(t) is
characterized by the polynomial matrix B(p). Additionally,

3



unknown disturbance signals are modeled as independent
filtered (band-limited) noise. It is assumed that the network
is connected, ensuring that there is a path between every pair
of nodes. In this context, F (p) is a rational matrix, and e(t)
represents a wide-sense stationary white noise process that is
independent and identically distributed (iid) at the sampling
points with band-limited intersampling behaviors.

Remark 1. The diffusively coupled network model results in a
constrained polynomial model, where A(p) is symmetric and
non-monic. This captures the diffusively symmetric dynamics
in the system. Note that premultiplying (1) with A−1(p) yields
the transfer function form model, which is commonly used in
the classical system identification [6]. Moreover, this transfer
function form model can be transferred to the ARMAX-like
or ARX-like model when F (p) is the polynomial or the
identity matrix, respectively. This model structure enables the
unique extraction of the physical dynamics from the network
model. In this project, F (p) is chosen as the polynomial
matrix, resulting in a model of ARMAX-like transfer function.

Definition 2. (Continous-time model) For a more simplified
representation, the symmetric polynomial matrix A(p) =
X(p) + Y (p) is used to represent the dynamic of the dif-
fusively coupled network through which X(p) and Y (p) can
be uniquely recovered. We can represent (1) as

X(p)w(t) + Y (p)w(t) = B(p)r(t) + F (p)e(t), (2)

where X(p) is a diagonal polynomial matrix with xjj(p) =∑nx

ℓ=0 xjj,ℓp
ℓ; Y (p) is the Laplacian [25] polynomial matrix

with yjk(p) =
∑ny

ℓ=0 yjk,ℓp
ℓ. nx and ny are the order of

network dynamics. The terms xjj,ℓ and yjk,ℓ represent the
(j, j) diagonal and (j, k) symmetric elements, respectively, of
the ℓ-th order matrix A(p, ℓ).

Utilizing this network model (2) allows for representing
complex electrical circuits within PCBA.

Remark 2. (Intersample behavior for generated data) In
the identification of continuous-time models, the preferred
choice is often a band-limited (BL) measurement setup
[26]. Here, a BL signal denotes a signal that contains no
frequencies higher than a certain limit, known as the Nyquist
frequency (half the sampling rate). This implies that the
signal can be perfectly reconstructed from its samples if
it is band-limited and sampled above the Nyquist rate. All
continuous-time model identifications in this project use BL
input signals and the BL measurement setup (anti-aliasing
filtered). The experimental process in this project involves
generating time-domain input data, transforming it to the
frequency domain below the Nyquist frequency, simulating
the model within this frequency range, and finally transfer
the input/output frequency data back to the time domain to

establish a continuous-time band-limited data set.

B. A continuous-time example
In this subsection, we present a second-order continuous-

time diffusively coupled network model, which is illustrated
with a real-world example: the classical resistor-inductor-
capacitor (RLC) circuits depicted in Fig. 2.

In Fig. 2, the current flowing through a resistor is
determined solely by the voltage difference between the
nodes it joins. Diffusively coupling in the context of network
theory refers to a type of interconnection between nodes
where the coupling or interaction strength is proportional
to the difference between the node signals, e.g. the current
flow (I13) in R13 is proportional to the voltage difference
(U1 − U3) between node 1 and node 3 (I13 = (U1−U3)

R13
). For

linear components, this kind of coupling results in symmetric
interactions, meaning that the influence of node 1 on node 3
is the same as that of node 3 on node 1.

For the RLC circuits, using Ohm’s law, laws of capacitance
and inductance can provide the current flowing through each
type of component,

IR(t) =
U(t)

R
,

IC(t) = C
dU(t)

dt
,

U(t) = L
dIL(t)

dt
,

(3)

where L is the inductance, R is the resistance, I(t) is the
current, U(t) is the voltage, and C is the capacitance. Ac-
cording to Kirchhoff’s current law (KCL), the total current

R23

C23

R23

C23

R23

C23

L1

GND1

L2

GND2

Input current I

1

2 3

C20
GND3GND3

L3L3

C30
GND3

L3

C30

C10

Figure 2: A RLC circuit network with inductors (Lj), resistors
(Rjk), capacitors (Cjk) and ground nodes(GNDj)
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entering a given node equals the total current leaving that
node. Applying (3) with KCL to the RLC circuit networks,
an integro-differential equation can be derived to describe the
behavior of this RLC circuit in diffusively coupled network
form,

Cj0U̇j(t) +
∑
k∈Nj

Cjk

(
U̇j(t)− U̇k(t)

)
+

1

Rj0
Uj(t)

+
∑
k∈Nj

1

Rjk
(Uj(t)− Uk(t)) +

1

Lj0

∫ t

t0

Uj(t)dt

+
∑
k∈Nj

1

Ljk

(∫ t

t0

Uj(t)dt−
∫ t

t0

Uk(t)dt

)
= Ij(t).

(4)

Differentiating this equation with respect to time produces
a second-order differential equation devoid of integral terms.
Here, the voltage U(t) is considered as the output node signal
and the current I(t) is treated as the input signal,

Cj0Üj(t) +
∑
k∈Nj

Cjk

(
Üj(t)− Ük(t)

)
+

1

Rj0
U̇j(t)

+
∑
k∈Nj

1

Rjk

(
U̇j(t)− U̇k(t)

)
+

1

Lj0
Uj

+
∑
k∈Nj

1

Ljk
(Uj(t)− Uk(t)) = İj(t),

(5)

where Uj(t), j = 1, 2, ..., N are the N interconnected node
signals; Ljk ≥ 0, Rjk ≥ 0, Cjk ≥ 0, Ljj = 0, Rjj = 0, Cjj =
0 are the real-valued coefficients of the whole coefficient
matrix L, R and C; Ljk = Lkj , Rjk = Rkj and Cjk = Ckj

are the diffusively coupled constraints; Nj is the set of
indexes of the node signals Uk(t) with connection to Uj(t),
k ̸= j; Ij(t) are the external input signals and İj(t) are the
first order derivative of the input signals; Üj(t) and U̇j(t) are
the second order and the first order derivative of the node
signals Uj(t) with respect to time t, respectively.

Example 1. To simply illustrate the diffusively coupled
structure of this example RLC circuit in Fig. 2, collect the

components in matrix form according to (5),

A2 =C10 + C12 + C13 −C12 −C13

−C12 C20 + C12 + C23 −C23

−C13 −C23 C30 + C13 + C23

 ,

A1 =

 1
R12

+ 1
R13

− 1
R12

− 1
R13

− 1
R12

1
R12

+ 1
R23

− 1
R23

− 1
R13

− 1
R23

1
R13

+ 1
R23

 ,

A0 =

 1
L10

0 0

0 1
L20

0

0 0 1
L30

 ,

A2

Ü1(t)

Ü2(t)

Ü3(t)

+A1

U̇1(t)

U̇2(t)

U̇3(t)

+A0

U1(t)
U2(t)
U3(t)

 =

10
0

 İ(t).

(6)

From the above matrix form, it can be clearly observed
that Ai, i = 0, 1, 2 is a symmetric matrix with respect to
diffusively coupled constraints; the sums of the diffusively
coupled constraints are shown on the diagonal of the matrices;
the components connected to the ground are only shown on the
diagonal of the matrices. Consequently, each Ai matrix can be
decomposed into two distinct matrices with useful properties:
a diagonal matrix X and a Laplacian matrix Y . For example,
A2 can be separated into X2 + Y2 as

X2 =

C10 0 0
0 C20 0
0 0 C30

 ,

Y2 =

C12 + C13 −C12 −C13

−C12 C12 + C23 −C23

−C13 −C23 C13 + C23

 ,

(7)

where, for the (i, j) -th element of X2 and Y2, (i, k) -th
element of A2, we have

X2ij =


0, i ̸= j

A2ii +
∑
i ̸=k

A2ik , i = j

Y2ij =


A2ij , i ̸= j

−
∑
i̸=k

A2ik , i = j.

(8)

Given the Ai matrices, this observation allows a
straightforward and unique determination of all the values of
the components. Subsequently, the second-order RLC circuit
model demonstrates that a complicated RLC circuit can be
described as a diffusively coupled network. Additionally,
this reveals the core idea of the project: by identifying the
corresponding network model, we can estimate the dynamics
of each individual component in the RLC circuit. Now,
having described the diffusively coupled model in the time
domain, the subsequent step is to transfer it to the frequency
domain. This enables the handling of both discrete-time and
continuous-time models through a unified approach.
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C. Discrete-time model

The discrete-time model is the mapping from the discrete-
time input sequence to the output sequence. To reconstruct
the continuous-time signals from the discrete-time sequence,
digital-to-analog converter (DAC) are been used. Thus, the
DT model below is already incorporating the converter. The
diffusively coupled discrete-time network model is defined
following the same procedure as in [12]. The backward
difference method is used to map the continuous-time model
to discrete-time

dw(t)

dt
≈ w(tk)− w(tk−1)

Ts
, (9)

where with integer k and sampling time Ts, tk = kTs are
the discrete time instants. For ℓ-order backward difference
approximation, the ℓ-th order derivative of node signals w(t)
is given as

wℓ(tk) ≈ T−ℓ
s

ℓ∑
i=0

(−1)i
(
ℓ
i

)
w(tk−i) with

(
ℓ
i

)
=

ℓ!

i!(ℓ− i)!
.

(10)
Notice that the intersample behavior for identifying the DT

model is defined as this first-order approximation for the time
derivative in continuous time to discrete time. Therefore, the
DT model here is already defined as including a kind of first-
order hold linear behavior DAC. The DT data set in this project
is generated from this DT model. In this context, the DT
data set serves to validate the frequency domain identification
outcomes by comparing them with the results obtained using
the time domain multi-step (MS) algorithm described in [12].

Definition 3. (Discrete-time model) The continuous-time
model in (2) is approximated by using the backward difference
method,

X(q−1)w(t) + Y (q−1)w(t) = B(q−1)r(t) + F (q−1)e(t),
(11)

where, q−1 is the time shift operator, e.g. q−1w(tk) =
w(tk−1). Substituting (10) into the (2) and collect the param-
eters of same differential order, xjj(q

−1) =
∑nx

ℓ=0 x̄jj,ℓq
−ℓ

and yjk(q
−1) =

∑ny

ℓ=0 ȳjk,ℓq
−ℓ in the discrete-time model

are given with

x̄jj,ℓ = (−1)ℓ
nx∑
i=ℓ

(
i
ℓ

)
T−i
s xjj,i,

ȳjk,ℓ = (−1)ℓ
ny∑
i=ℓ

(
i
ℓ

)
T−i
s yjk,i.

(12)

Remark 3. Note that discretization would not influence the
matrix property of A(p), so A(q−1) is also the polynomial
matrix that can be uniquely divided into a diagonal polynomial
matrix and a polynomial Laplacian matrix. The parameters in
B(q−1) are no longer binary, B(p) and F (p) will discretize
into B(q−1) and F (q−1) following the same procedure as
above.

D. Frequency domain model
Consider the diffusively coupled network system described

in (1). The discrete Fourier transform (DFT) is used to transfer
the time-domain model into the frequency-domain model. The
DFT W (k),R(k),E(k) of N samples of input-output signals
and noise w(t), r(t), e(t) are defined as

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N ,

with x = w, r, e and X = W,R,E,

(13)

where the DFT E(k) for k = 1, 2, ..., N/2 − 1 has some
important properties as [27]:

1) E(k) is uncorrelated over k, circular complex distributed
(E{E2(k)}=0), for any N if e(t) has finite second order
moments. This property is sufficient to estimate the noise
covariance matrix.

2) E(k) is asymptotically (N → ∞) independent over k,
circular complex normally distributed if e(t) exists mo-
ments of any order. This property is used to calculate the
uncertainty bounds on the measured frequency response
function with a given confidence level (see Section 5 in
[28]).

3) E(k) is independent over k, circular complex normally
distributed for any N if e(t) is Gaussian [28]. This
is needed to use the noise covariance matrix as the
frequency weighting in the parametric identification of
Section III-B .

Definition 4. (Frequency domain model) The model descrip-
tion of the diffusively coupled network in the frequency
domain is defined as,

A(Ωk)W (k) = B(Ωk)R(k) + F (Ωk)E(k) + C(Ωk), (14)

if we take the A−1(Ωk) of both side of the equation, it gives

W (k) = A−1(Ωk)B(Ωk)︸ ︷︷ ︸
G(Ωk)

R(k) +A−1(Ωk)F (Ωk)︸ ︷︷ ︸
H(Ωk)

E(k)

+A−1(Ωk)C(Ωk)︸ ︷︷ ︸
T (Ωk)

,

(15)
where Ωk is the frequency variable corresponding to frequency
index k which is defined as Ωk = jωk in continuous time and
Ωk = ejωkTs in discrete time with Ts is the sampling time,
ωk = 2πkfs/N and fs is the sampling frequency [27], [29];
G(Ωk) is the L×K diffusively coupled network system and
H(Ωk) is the L×L noise model; T (Ωk) is the transient term
as L× 1 vector that include the system and noise transient in
time domain which cause leakage errors in measurements of
FRF in frequency domain [28].

Remark 4. Here, the leakage errors in FRF measurements
can be split into two contributions: one is sudden change
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(transient) errors in the time domain that are not captured well
by the DFT and the other one is the interpolation errors of
the FRF over neighboring frequency points in the frequency
domain [30].

Henceforth, the diffusively coupled network model has
been introduced with the RLC circuit example. This shows the
possibility of estimating the values of the RLC components
by estimating the corresponding diffusively coupled network
model. The common diffusively coupled network in the
time domain and the corresponding frequency domain model
have also been described. The next step is to develop an
identification procedure to estimate the diffusively coupled
network in the frequency domain, which is able to identify
both the DT model and the CT model.

III. FREQUENCY-DOMAIN IDENTIFICATION FOR
DIFFUSIVELY COUPLED NETWORK

This section presents a two-stage identification approach
based on the frequency domain to estimate the diffusively
coupled network. The FRF and noise covariance are estimated
in the first step using a non-parametric methodology. In the
second step, this non-parametric noise variance estimation acts
as the frequency weighting to estimate the parametric network
model. This two-step approach can offer two main advantages:
(1) there is no need to parameterize the noise model so that
we can avoid choosing a proper model structure for the noise
as well as tune the order of the parametric noise model; (2)
once the transient term is suppressed in the non-parametric
model, the FRF estimation can be used for a curve fitting type
procedure with the ”transient-free” FRF curve or extracting
the ”transient-free” input/output data to identify the parametric
model.

A. Non-parametric identification
As mentioned above, the first step is to find the FRF and

the noise covariance estimation. However, when using an
arbitrary excitation (e.g., non-periodic signal white noise) to
estimate the non-parametric FRF and the noise covariance
matrix, the leakage errors of the system and noise will be
introduced by transforming the time domain data to frequency
domain data via the DFT. In the classical method, different
windows are applied to remove the leakage errors. Still, it will
also introduce an extra error due to the averaging process for
neighboring frequencies [31]. It is hard to trade off between
leakage error elimination and noise suppression. Therefore,
we have chosen to implement the Local Polynomial Method
(LPM), a more advanced approach that accurately estimates
the non-parametric FRF and noise covariance matrix, even
under arbitrary excitation.

Following the classical LPM method [27], we can use a
low-order Taylor expansion to locally approximate smooth
frequency functions; see Fig. 3. The FRF G(Ωk) and the
transient T(Ωk) of the network model in (15) are approximated

· · ·

k − n− 1

k − n · · · k − 1 k k + 1 · · · k + n

k + n+ 1

· · ·

Figure 3: The local polynomial method window at frequency
k (blue rectangle) and frequency k + 1 (red rectangle) in the
2n+ 1 DFT frequencies band.

around the selected central frequency k at each frequency band
k + r with r = −n,−n+ 1, ...0, ..., n− 1, n,

W (k) =

[
G (Ωk) +

τ∑
s=1

gs(k)r
s

]
R(k + r) + V (k + r)

+ T (Ωk) +

τ∑
s=1

ts(k)r
s

= ΘZ(k + r) + V (k + r),
(16)

where, τ is the order of the Taylor expansion; gs and ts are the
polynomial coefficients; L× (τ +1)(K+1) matrix Θ collects
all the polynomial coefficients and (τ +1)(K +1)× 1 vector
Zn collects the input data. Collecting (16) in the frequency
band for r = 0,±1,±2, ...,±n (2n+1 samples) into a matrix
version gives the following:

Wn = ΘZn + Vn. (17)

The parameter estimation matrix Θ̂ is obtained by solving
the least squares cost function as,

Θ̂ = min
Θ

[Wn −ΘZn]
H
[Wn −ΘZn] , (18)

such that
Θ̂ = WnZ

H
n (ZnZ

H
n )−1, (19)

where, for any complex matrix M , MH is the Hermitian
conjugate transpose of M . Notice that (19) needs to be solved
using a numerically stable inversion method, e.g., the singular
value decomposition (SVD). Here, the FRF estimation L×K
matrix Ĝ(Ωk) can be extracted from Θ̂ as

Ĝ (Ωk) = Θ̂[:,1:K], (20)

where [:, 1 : K] represents the first K columns extracted from
the matrix Θ̂.

Finally, substituting the estimation of the polynomial co-
efficients into (17), we can get the non-parametric noise
estimation,

V̂n = Wn − Θ̂Zn = Wn[I2n+1 − ZH
n (ZnZ

H
n )−1Zn], (21)

with this, the estimation of the noise covariance ĈV (k) is
given as,

ĈV (k) =
V̂nV̂

H
n

2n+ 1− (τ + 1)(K + 1)
. (22)

Remark 5. In this paper, the non-parametric part is
implemented using the frequency domain toolbox in [32].

7



The order τ of the Taylor expansion is chosen as 3 to
maintain the balance of bias and variance. The quality of the
noise model depends only on the following factors: frequency
band width 2n + 1, and order τ of the local polynomial
approximation. This can prevent tuning and finding a proper
structure for estimating the noise model.

B. Parametric identification

The previous subsection introduced the LPM to estimate
the FRF and the noise covariance of the diffusively coupled
network model. In this subsection, two criteria can be
considered to estimate a parametric network model. The
first approach involves utilizing the input/output data R(k)
and W (k) to formulate a criterion, incorporating the noise
covariance estimation ĈV (k) as frequency weighting, as
detailed in Section III-B2. The alternative method applies
non-parametric FRF estimation for parametric modeling,
treating the noise covariance estimation ĈV (k) as frequency
weighting, as described in Section III-B3. Before we present
the two criteria in the frequency domain, the classical
prediction error method in the time domain is introduced first
to understand the parametric identification criterion better and
compare it with the frequency domain based method.

1) Model set and the prediction error method
The network models that will be identified are collected into

a network model set. The model set is defined as a collection
of mathematical models that are considered candidates for
representing the behavior of the system,

M = {M(θ), θ ∈ Ψ ⊂ Rd}, (23)

M(θ) = (A(p, θ), B(p, θ), C(p, θ), F (p, θ)), (24)

where θ includes all the unknown parameters of the diffusively
coupled network model A,B, F , and C in the frequency
domain. An equivalent network model is also given but in
discrete time,

M(θt) = (A(q−1, θt), B(q−1, θt), F (q−1, θt)), θt ∈ Ψ. (25)

Here, ’equivalent’ refers to the discrete-time model represent-
ing the same mapping as the continuous-time model for the
input/output data set. Furthermore, a data generating system
S is defined by th e model,

S = (A0(p, θ0), B0(p, θ0), F 0(p, θ0)), (26)

if the true parameters θ0 ∈ Ψ, then the data generating system
is in the model set S ∈ M.

From the time domain prediction error method (PEM) [6],
we know that parametric identification can be chosen as

θ̂t = argmin
θ

1

N

N−1∑
t=0

ε(t, θt)
T ε(t, θt), (27)

G0u(t)

H0

e(t)

y(t)

G

H−1

ε(t)

Data generating system

Predictor model+−

+
+

v(t)

Figure 4: The prediction error framework (the data generating
system above, the predictor model below)

where ε(t, θt) is the one-step-ahead prediction error for the
system y(t) = G(q−1)u(t)+H(q−1)e(t), and ε(t, θt) is given
by,

ε(t, θt) = H(q−1, θt)
−1

[
y(t)−G(q−1, θt)u(t)

]
, (28)

where G is the plant model with the time-shift operator
q and the parameter collection θt. The idea is to find the
model parameters that minimize the difference between the
predicted output of the model and the actual measured output
of the real system over a given data set. The structure of the
prediction error framework is shown in Fig. 4.

Note that this kind of prediction error framework
simultaneously identifies the parametric plant model and
the noise model from the data set. It is best to obtain a
consistent noise parametric model to improve the consistency
of the parametric plant model estimation. The multistep
algorithm to parameterize the diffusively coupled network
model in [12] is also based on this time domain prediction
error method, which also requires the identification of the
parametric noise model and S ∈ M. However, PEM is more
commonly applied to discrete-time models, which suffer
from extra discretization errors. Additionally, as network
complexity increases, evidenced by high-order dynamics or
numerous nodes, determining an optimal structure for the
network noise model and fine-tuning its parameters becomes
increasingly difficult. Hence, employing a non-parametric
noise model that maintains its quality independent of the
parametric plant model offers a significant benefit compared
to the prediction error framework. Moreover, since the noise
model is not parameterized, the noise model is independent
of the plant model, and we only need G0 ∈ G for the
consistent estimation, with G0 =

{
A0(p, θ0), B0(p, θ0)

}
and G = {A(p, θ), B(p, θ), C(p, θ)} (G0 and G are the
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subset of S and M, respectively). Next, two frequency
domain identification criteria are discussed for the diffusively
coupled network. The time-domain prediction error method is
transferred to the frequency domain, which can deal with the
continuous-time model without discretization and using the
non-parametric noise model instead of the parametric one.

Before we present the two criteria, it is imperative to
ensure that specific key conditions are met in preparation for
identifying the parametric model.

Condition 1. To satisfy identifiability and consistent esti-
mation, we have the following conditions for the diffusively
coupled network according to [12]:

1) The polynomials A(p) and B(p) are left-coprime.
2) There exists at least one diagonal and full-rank matrix

of the matrix set {A0, A1, ..., Ana , B0, B1, ..., Bnb
}.

3) There exists at least one excitation signal, K ≥ 1.
4) There exists at least one constraint on the parameters of

A(p, θ) and B(p, θ) that ensures that Γθ = γ ̸= 0.
5) The system is excited at all frequencies of interest.

Remark 6. The first condition ensures that there are no
common factors between A(p, θ) and B(p, θ). The non-monic
of the polynomial matrix A(p, θ) is addressed in the second
and fourth conditions, which require the inclusion of at
least one identity matrix in the polynomial, modified by
a constant scaling factor. The second condition has been
relaxed so that there exists a permutation matrix P that leads
to [A0 A1 ... Ana B0 B1 ... Bnb

]P = [D U ] with D square,
diagonal, and full rank in [33]. Normalizing the model with
this specific scaling factor guarantees the uniqueness of this
model representation. Consequently, the fourth condition is
crucial to find a unique representation of this model during
the parametric identification procedure. A more detailed
explanation of optimization with constraints will be provided
in Section III-B4.

2) Identification criterion for f-domain input/output data
One of the identification criteria is to use the frequency

domain data set W (k) and R(k), which is similar to the
prediction error method using the input/output data set in the
time domain. According to Parseval’s Theorem, the prediction
error in the frequency domain with DFT is given based on
(15), (27), and (28),

ε(k, θ) = H(Ωk, θ)
−1 [W (k)−G(Ωk, θ)R(k)− T (Ωk, θ)] ,

(29)
where k is the frequency point index, T (Ωk, θ) is the tran-
sient includes the plant and noise transients. The parametric
estimation for the prediction error in the frequency domain is

given by,

θ̂ = argmin
θ

1

N

N∑
k=1

||ε(k, θ)Hε(k, θ)||2F ,

ε(k, θ) = H(Ωk, θ)
−1 [W (k)−G(Ωk, θ)R(k)− T (Ωk, θ)] ,

(30)
where, for any complex matrix M , ||M ||F is the Frobenius
Norm of M .

Remark 7. With Mij are the elements of M , and m,n are the
dimensions of M , the definition of Frobenius Norm is given
in [34] as

||M ||F =

√√√√ m∑
i=1

n∑
j=1

|Mij |2, (31)

where, |Mij |2 denotes the amplitude square of the complex
number Mij .

Nevertheless, for the unknown noise model, this ARMAX-
like nonlinear-in-parameters structure leads to a nonconvex op-
timization problem which might suffer from local minima, and
the result strongly depends on the initial conditions. To deal
with this computational problem, we can premultiply A(Ωk)
in each step to make it linear in the parameters and then divide
A(Ωk)

i−1 from the last step as a frequency weighting. This
method is well known as the SK-algorithm [35]. Moreover,
since |H(Ωk, θ)|2 only plays a role as frequency weighting
here, the noise covariance estimation ĈV (k) from the non-
parametric estimation can be used to avoid parameterizing the
noise model, but reaches the same goal. Now, if the noise
signals E(k) satisfy the conditions given in Section. II-D, the
noise can be modeled as V (k) = H(Ωk, θ)E(k), then we have
the following proposition,

E{E(k)} = 0, E{E2(k)} = 0, E{|E(k)|2} = σ2
E , (32)

such that
E{V (k)} = 0, E{V 2(k)} = 0,

E{|V (k)|2} = |H(Ωk, θ)|2 σ2
E = σ2

V .
(33)

Since the variance σ2
E is just a constant number, it can be

considered scaling the weightings for the entire frequency
range. If we ignore this term of the cost function, it will
not influence the converged result. Therefore, the criterion
can be given by replacing |H(Ωk, θ)|2 with noise covariance
estimation ĈV ,

θ̂ = argmin
θ

1

N

N∑
k=1

||M1((k), θ)||2F ,

M1(k, θ) =

[
ĈV (k)

1
2A(Ωk, θ)

i−1

]−1

︸ ︷︷ ︸
W

× [A(Ωk, θ)W (k)−B(Ωk, θ)R(k)− C(Ωk, θ)] .

(34)

At first glance, this criterion might work well. However,
the parametric result of this approach is not consistent for the
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normally distributed noise signal v(t), as W (k) and ĈV (k),
although uncorrelated, are not independently distributed.
Since the FRFs are approximated locally in overlapping finite
frequency bands, the transient error and the noise covariance
matrix estimation are correlated over the frequency.

To address this problem, we employ a method that involves
the generalized sample covariance and sample mean. These are
derived from the LPM estimation of the DFT of node signals
W (k) and its associated covariance, given their asymptotic
independence [27]. Utilizing the non-parametric frequency
response estimation matrix Θ̂ in (19), the sample mean Ŵ (k)
of W (k) is calculated as

Ŵ (k) = Ĝ (Ωk)R(k) + T̂ (Ωk) , (35)

where Ĝ (Ωk) is the FRF estimations obtained from Θ̂ in
the non-parametric identification part (20) and T̂ (Ωk) is the
transient term given as T̂ (Ωk) = Θ̂[:,K(R+1)+1] ([:, 1 : K]

represents the first K columns extracted from the matrix Θ̂).
The sample covariance ĈW (k) of Ŵ (k) can be calculated
from the noise covariance model obtained from the non-
parametric part as

ĈW (k) = (ZH
n (ZnZ

H
n )−1Zn)[n+1,n+1]ĈV (k). (36)

Remark 8. The asymptotical behaviors and the proof details
are shown in [36] and Chapter 12 in [27].

By substituting W (k) and ĈW (k) with Ŵ (k) and ĈW (k)
in M1(k, θ) as presented in (34), we can formulate the
concluding criterion for the frequency domain input/output
data as follows,

θ̂ = argmin
θ

1

N

N∑
k=1

||M1((k), θ)||2F ,

M1(k, θ) = W
[
A(Ωk, θ)Ŵ (k)−B(Ωk, θ)R(k)− C(Ωk, θ)

]
,

with W =

[
ĈW (k)

1
2A(Ωk, θ)

i−1

]−1

.

(37)
Collecting all the input/output data for all frequencies with

the network structure, the weighting W in the regression
matrix Q1 and parameters in vector θ1 for each iteration,

M1 = Q1θ1, (38)

where, θ1 includes all the model parameters in A(Ωk, θ),
B(Ωk, θ) and C(Ωk, θ). The parameters are estimated by
solving a least-square optimization as

θ̂ = min
θ1

θH1 QH
1 Q1θ1 (39)

Remark 9. The structures of the regression matrix Q1 and
the parameter vector θ1 are given in the Appendix. VII-A.

3) Identification criterion for FRF data
As the FRF and the noise covariance estimation have been

obtained from the non-parametric part by LPM, these data can
be used as prior knowledge to identify the parametric model,
for the noise and the transient term have been removed
from the FRF. A natural idea would be to use the FRF
estimation Ĝ (Ωk) as the target curve [37] that we want to fit
and consider the parameterized procedure as a curve-fitting
problem with specific constraints on the network structure.
The FRF estimation data Ĝ(k) consist of complex matrices
L × K Ĝij(k) with i = 1, ..., L and j = 1, ...,K, and the
objective is to deduce the most accurate diffusively coupled
network parametric model that complies optimally with the
FRF data.

Following Definition 4, the error M2(Ωk, θ) between the
sampled output without transient and the parametric model
output is aimed to minimize,

M2(k, θ) = H(Ωk, θ)
−1

×

Ĝ(Ωk)R(k)−A−1(Ωk, θ)B(Ωk, θ)︸ ︷︷ ︸
G(Ωk,θ)

R(k)

 ,
(40)

if we directly construct a quadratic optimization problem by
taking the square of M2 and solving it, the result might not
reach the global minima for this ARMAX-like nonlinear-in-
parameters structure. To avoid constructing the non-convex
problem and chase consistency, the same idea as in the first
criterion is considered. Pre-multiply A(Ωk, θ) with (40) to
make the structure linear in parameters and also multiply
the inverse of the last iteration A(Ωk, θ)

i−1 as one of the
frequency weighting. Recall the sample covariance ĈW (k)
in (36), and consider it also as a frequency weighting; the
criterion can be given as

θ̂ = argmin
θ

1

N

N∑
k=1

||M2((k), θ)||2F ,

M2(k, θ) =[
ĈW (k)

1
2A(Ωk, θ)

i−1
]−1

︸ ︷︷ ︸
W

[
A(Ωk, θ)Ĝ(Ωk)−B(Ωk, θ)

]
R(k).

(41)

Remark 10. For this criterion, we have assumed that the
transient term has been estimated as the non-parametric
frequency response function collected in Θ̂ of (19).
Therefore, the transient term can be ignored when the model
is parameterized from the non-parametric FRF estimation Ĝ.

Collecting all the FRF, input data, and the weighting data
W for all frequencies into the regression matrix Q2 and
parameters in vector θ2 for each iteration,

M2 = Q2θ2, (42)
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where, θ2 includes all the model parameters in A(Ωk, θ) and
B(Ωk, θ). The parameters are estimated by solving a least-
square optimization as

θ̂ = min
θ2

θH2 QH
2 Q2θ2, (43)

Remark 11. The structures of regression matrix Q2 and
parameter vector θ2 are given in the Appendix. VII-B.

In conclusion, both criteria follows the idea from SK-
algorithm to premultiply the |A(Ωk, θ)| with the cost function
to make a linear-in-parameters model structure that can find
an analytical solution. Then multiply |A(Ωk, θ)

i−1| from the
last iteration step as frequency weighting, which will not
change the convexity of this optimization problem. Therefore,
the solution of parametric identification for the diffusively
coupled network model is easier to find.

4) Lagrangian multiplier optimization
Since the non-monic property A polynomial matrice and the

parameters in B might be partially known, we cannot construct
a standard least-squares optimization problem. Two constraints
are considered to be added to maintain the symmetric structure
of the A matrices and the binary known B matrices and
to achieve the identifiable condition for the model and the
uniqueness of the solution, which are given in Condition 1.
Based on the criterion (37) and (41), the idea of estimating
the parametric model is to find the parameters that minimize
the cost function with the corresponding criteria, then the
parametric estimation is given by

ϑ̂ = min
ϑ

ϑHQH(ϕ)Q(ϕ)ϑ,

subject to Γϑ = υ,
(44)

where, Q(ϕ) and ϑ can be either Q1 or Q2 with the corre-
sponded θ1 or θ2, Γ is the matrix that selecting the parameters
and υ is the constraint vector.

Remark 12. The structure of the selecting matrix Γ and the
constraint vector υ are shown in the Appendix. VII-C.

Then the Lagrangian multiplier and Karush–Kuhn–Tucker
(KKT) conditions [38] can be used to solve this optimization
problem, which gives

L = ϑHQH(ϕ)Q(ϕ)ϑ+ λ(Γϑ− υ), (45)

with the conditions,

∂L
∂ϑ

= 2Q(ϕ)HQ(ϕ)ϑ+ ΓTλ = 0,

∂L
∂λ

= Γϑ− υ = 0.

(46)

Collecting them into the matrix representation,[
2Q(ϕ)HQ(ϕ) ΓT

Γ Od13×d14

] [
ϑ
λ

]
=

[
Od15×1

υ

]
, (47)

so that the estimation of the parameters ϑ is given as,[
ϑ̂

λ̂

]
=

[
2Q(ϕ)HQ(ϕ) ΓT

Γ Od13×d14

]−1 [
Od15×1

υ

]
, (48)

where O are the zero matrices with the dimension d13 × d14 =
[L(L−1)

2 (na+1)+LK(nb+1)]×[L(L−1)
2 (na+1)+LK(nb+1)]

and d15 × 1 = [L2(nb + 1) + LK(nb + 1) + L(nc + 1)] × 1
with nc = −1 when the transient term is ignored for the
second criterion in Section. III-B3.

5) Computational method
So far, we already have the basic ideas and two optimization

criteria for identifying the parametric diffusively coupled
network model in the frequency domain. The objective in
the parametric phase is to achieve a unique, real parametric
representation of the model despite the complex values of
both input/output and FRF data. The challenge at this stage
is to determine how we can utilize these complex-valued data
to identify the appropriate parametric model.

To find a real value minimizer ϑ̂, we can treat the real and
imaginary parts of the data as separate entities but optimize
them simultaneously. First, since Q(ϕ) collects all data and
weights for all frequency samples in three dimensions L ×
[L2(na + 1) + LK(nb + 1) + L(nc + 1)] × F (nc = −1, if
the transient term is ignored), we can define the number of
parameters in the model as nϑ = L2(na+1)+LK(nb+1)+
L(nc + 1). The third-order regression tensor is reshaped as a
matrix in Lnϑ × F . Extract the real part and imaginary parts
from the regression matrices Q(ϕ) separately, the regression
matrix Qre(ϕ) is defined as

Qre =

[
Re(Q(ϕ))
Im(Q(ϕ))

]
, (49)

where, Re() extract all the real part value and Im() extract all
the imaginary part value, then Qre stacks these parts on top
of each other. Substituted this matrix with real values in (70)
gives[

ϑ̂

λ̂

]
=

[
2Qre(ϕ)

TQre(ϕ) ΓT

Γ Od13×d14

]−1 [
Od15×1

υ

]
. (50)

Defined Q and V as,

Q =

[
2Qre(ϕ)

TQre(ϕ) ΓT

Γ Od13×d14

]
, V =

[
Od15×1

υ

]
.

(51)
In this way, all terms now have real values, so we can

focus on solving this Lagrangian optimization problem.
However, it is important to note that during implementation,
the inversion in (50) tends to be unstable, largely due
to two main factors. One reason is the enlargement of
the matrix Q due to increased constraints, but the upper
left part 2Qre(ϕ)

TQre(ϕ) that contains the data and the
weighting of the last iteration A(ϑ)i−1 is independent of
the constraints. The other elements, filled with 1 or 0, are
for selecting constraint parameters and to shape Q into a
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square matrix. Another reason involves the actual A0(θ0)
network model. When this model encompasses extremely
high or low parameters or is of higher order, it creates a
marked discrepancy in values between the upper left part and
the rest, thus increasing the condition number of the matrix Q.

Notice that since the discrete-time model can be considered
a scaled version compared to the corresponding continuous-
time model, the parameter values across various orders
converge to a similar level, resulting in enhanced numerical
stability compared to the direct use of the continuous-time
model. Therefore, the best way to minimize the condition
number of matrix Q for the continuous-time model is to
find a scale factor that depends on the specific model. A
more effective general approach is to employ the median of
the angular frequencies within the relevant frequency band:
ωscale = median {ω1, ω2, ..., ωF } [39]. For example, the
second-order matrix A2(ϑ)(jωk)

2 could be scaled, giving the
result A2(ϑ)ω

2
scale(jωk/ωscale)

2. Therefore, the estimation
parameters become A2(ϑ)ω

2
scale and the parameters are

scaled to improve the numerical stability.

To further improve the stability of the calculation, we use
the SVD method to calculate the inverse of this matrix. The
singular value decomposition of this matrix is given as,

Q = UQΣQV
T
Q , (52)

such that the numerically stable parametric estimation is given
by

ϑ̂ =
[
UQΣ

−1
Q V T

Q V
]
[1:nϑ,1]

. (53)

Finally, we also scale each column of the matrix Q
by its 2-norm as mentioned in [27], which can benefit
numerical stability. In conclusion, several methods are used
to increase the numerical stability during the implementation
of optimization.

C. Codes checking
Since the key objective is to verify whether the parameters

of the PCBA components are correct, it is crucial to ensure
the correct implementation of the parametric part. Therefore,
we develop some double-checking codes to verify the
implementation. For example, find two different ways to
construct the key matrices in the optimization problem and
then compare the difference between these two-way generated
matrices. In Appendix III-B4, we present a way to construct
the constraint selection matrix; another way to generate the
constraint selection matrix for the symmetric A(Ωk, ϑ) is
introduced in Appendix VII-D.

D. Full network identification Flow
To conclude the frequency domain full network identifica-

tion procedure, the following flow is given:
1) Non-parametric Identification

• Input: The input and output signals data set, fre-
quency range.

• Process: Using LPM method to estimate Θ̂ in (19)
and noise covariance ĈV in (22).

• Output: The estimated FRF Ĝ from Θ̂ and the noise
covariance ĈV .

2) Parametric Identification
• Input: The user-defined parametric model order na

of A(p, θ), nb of B(p, θ), nc of C(p, θ); at least
one constraint on non zero parameter e.g., bij,ℓ = 1;
input/output frequency data; Ĝ and ĈV .

• Process: If nc > −1, using the input/output data
criterion shown in Section III-B2 optimize the
weighted least squares following (37) with con-
straint (44) to estimate parameters ϑ̂, otherwise
using the FRF data criterion shown in Section III-B3
the optimization of the weighted least squares fol-
lowing (41) with constraint (44) to estimate param-
eters ϑ̂.

• Output: Estimation of the full network Â(ϑ̂) and
B̂(ϑ̂).

Remark 13. Notice that this identification flow is fully in the
frequency domain to identify the frequency-domain model.
Therefore, this flow works the same for the identification of
the CT model and the DT model. The differential equations
that describe the model have already been converted to
algebraic equations by substituting the related frequency
variable, as shown in Definition 4.

E. Simulation results for full network identification
Several experiments were done in Matlab simulation to test

the frequency domain identification for the diffusively coupled
full network algorithm. Consider a seven-node RLC network
as shown in Fig. 5, where each node has the measurement
components connected to the ground node (shown in Table I).
The parameters of each component of the interconnections
are given in Table II. The orders of the parametric model are
na = 2 and nb = 1, the same as the Example 1. In addition,
the parametric transient term is also estimated with the order
nc = 0, criterion based on the input/output data shown in
Section III-B2 is used here. The CT and DT models share the
same order settings. Constraints are given as the known input
matrix B(p), the known unconnected parts of the network
represented as zero terms Azeros in the matrix A(p) for the
CT model (B(q−1), A(q−1) for the DT model).

Table I: Seven-node Measurement Component Values

Identifier Value Unit
Cj0 2 µF
Rj0 500 Ω
Lj0 18 mH
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Figure 5: A seven-node RLC network Example with in-
ductors (Ljk), resistors (Rjk), capacitors (Cjk) and ground
nodes(GNDj) [14]

Table II: Seven-node Network Component Values

Resistor Value Unit Inductor Value Unit
R13 100 Ω L12 5 mH
R23 200 Ω L23 10 mH
R34 150 Ω L25 15 mH
R36 180 Ω L34 12 mH
R56 160 Ω L45 20 mH
R57 120 Ω L56 13 mH

Example 2. Giving the excitation signal r(t) as the
independent zero mean white noise with variance σ2

r = 1
entering only node 6, and the normal distributed zero-mean
white noise as the noise signal e(t) with variance σ2

e = 1
entering all nodes. The sampling frequency is set at 20000
Hz to cover all the dynamics of the components, and the
identification frequency band is set between fmin = 500 Hz
and fmax = 6000 Hz to promote estimation performance.
Given the situation that can only excite one node and measure
all nodes, this 7-node RLC circuit can be expressed as a
continuous-time diffusively coupled network model following
the same procedure as in Example 1, and this CT model is
discretized following Definition 3 to obtain the DT model.
The CT and DT data sets are generated from the CT and
DT models, respectively. To show that the parameters can be
consistently identified with a single excitation, we generated
a set of experiments with different lengths of the data N. The
choice of N and the corresponding set are shown in Table III.
Each set of experiments includes 50 Monte Carlo (MC) runs
with independent excitation and noise signals.

The box plots of the relative mean squared error (RMSE)
of the parameters of the components for each experimental set

Table III: Different data length with experiment set

Set 1 2 3 4 5
N 103 2× 103 4× 103 8× 103 16× 103

Set 6 7 8 9 10
N 32× 103 64× 103 128× 103 256× 103 512× 103

1 2 3 4 5 6 7 8 9 10

10
-6

10
-4

Figure 6: Boxplot of the RMSE of the parameters of the
components for each experimental set (CT model)

are shown in Fig. 6 and Fig. 7 with the continuous-time model
and the discrete-time model, respectively. The relative mean
squared error of the parameters of the components is given as

RMSE =
∥θ̂comp − θ0comp∥22
∥θ0comp∥22

, (54)

where θ̂comp collects the estimated parameters of components
and θ0comp collects the actual parameters of components.
From these figures, it can be seen that RMSE decreases as
N increases, which supports the achievement of consistent
identification. When the data length N extends to infinity,

1 2 3 4 5 6 7 8 9 10
10

-8

10
-6

10
-4

Figure 7: Boxplot of the RMSE of the parameters of the
components for each experimental set (DT model)
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the estimated parameters converge to the actual parameters.
In conclusion, the first task of this project is achieved,
a consistent frequency domain identification method is
developed for the diffusively coupled network, and the
consistency of it is shown by the experiments.

IV. SUBNETWORK IDENTIFICATION FOR THE
DIFFUSIVELY COUPLED NETWORK IN FREQUENCY

DOMAIN

As detailed in the previous chapter, the frequency do-
main identification algorithm targets the identification of all
interconnection dynamics in diffusively coupled networks,
demanding full measurement or excitation data. In the context
of ICT procedures, ensuring that two test points are in the
PCBA for each component incurs significant measurement
costs. Such test points occupy space on the PCBA, leading to
increased production costs, complexity in design, and a larger
and more cumbersome PCBA. As a result, more advanced ICT
systems that use specialized testing methods enable component
testing within subnetworks or groups. Testing components
in subnetworks is particularly efficient for PCBAs with a
high density of components. This approach reduces testing
time and can detect certain types of fault more effectively.
Currently, testing the subnetworks in the PCBAs can involve a
combination of time-domain and frequency-domain response
analyses, direct measurement of the component values, etc.
However, direct measurement of component values in subnet-
works typically requires isolating the component from the rest
of the circuit as much as possible. Thus, integrating the ad-
vantages of response analyses and parameter estimation with-
out isolating subnetwork components, this chapter presents
a frequency domain subnetwork identification algorithm for
the diffusively coupled network. This methodology builds on
the full network frequency domain identification algorithm
for diffusively coupled networks, as outlined in the previous
chapter, adapting the time domain subnetwork identification
algorithm from [13] to the frequency domain to reduce errors
in the estimation of continuous-time RLC circuits. In this
section, (1) the immersed network will be introduced to model
the network with partial measurement in Section IV-A; (2) the
subnetwork identification procedure in the frequency domain
will be presented in Section IV-B; (3) this procedure will be
concluded in an algorithm flow in Section IV-C; (4) some
simulation experiments will be shown to test the algorithm in
Section IV-D.

A. The immersed network
Identifying the subnetwork with partial measurement can

save much measurement cost. In contrast to full network
identification, where all nodes are measured, subnetwork
identification requires measuring only a specific subset
of node signals. Those unmeasured node signals can be
removed from the model by using Gaussian elimination.
This Gaussian elimination process is known in scholarly
texts as Kron reduction [40] or immersion [41] [13]. Several

algorithms have been developed to identify the local module
or subnetwork of a dynamic network, but without taking
into account the structure of the undirected network model
[21] [41]. Here, following the literature [13], the immersed
network of a diffusively coupled network can be given as
follows.

Definition 5. (Immersed diffusively coupled network) Con-
sider a diffusively coupled network model as defined in Defi-
nition 1, the node signals w(t) are divided into two groups; one
is the measurement groups wM(t) with the measurement set
M = {j|wj ∈ wM}, the other is the immersion groups wI(t)
with the immersion set I = {j|wj /∈ wI}. The immersed
diffusively coupled network is defined as

Aim(p)wM(t) = Bim(p)r(t) + Fim(p)eM(t), (55)

where Aim(p) and Bim(p) are still polynomial matrices.
Here, since we are using the frequency domain identification
method, there is no need to parameterize the noise model.
We can consider Fim(p)eM(t) as Vim(t).

For the two separate groups of node signals, the diffusively
coupled network defined in Definition 1 can be divided into
the following structure:[

AMM AMI

AIM AII

]
︸ ︷︷ ︸

A(p)

[
wM(t)
wI(t)

]
︸ ︷︷ ︸

w(t)

=

[
BM

BI

]
︸ ︷︷ ︸
B(p)

r(t) +

[
VM(t)
VI(t)

]
︸ ︷︷ ︸
F (p)e(t)

, (56)

to immersed the unmeasured signals, Gaussian elimination is
employed. The immersed signals are expressed as

wI(t) = A−1
II (BIr(t) + VI(t)−AIMwM(t)) , (57)

and then substituted with

AMMwM(t) +AMIwI(t) = BMr(t) + VM(t), (58)

the immersed model can be obtained. For calculating the
inverse of a polynomial matrix, we know that for an arbitrary
polynomial matrix M(p), its inverse is given by

M−1(p) =
adj(M(p))

det(M(p))
, (59)

where adj(M(p)) is the adjugate of M(p) and det(M(p))
is the determinant of M(p). Therefore, the immersed model
matrices are given as

Aim(p) = dII

(
AMM −AMI

adj(AII)

det(AII)
AIM

)
,

Bim(p) = dII

(
BM −AMI

adj(AII)

det(AII)
BI

)
,

Vim(t) = dII

(
VM(t)−AMI

adj(AII)

det(AII)
VI(t)

)
,

(60)

where dII(p) is a scalar polynomial to ensure that the
matrices for the immersed network model become polynomial
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after multiplying the rational matrix A−1
II . Typically, dII(p) is

set as det(AII) if det(AII) and adj(AII) have no common
factors. In cases where a common factor is present, dividing
by the greatest common divisor of these elements is required
to achieve a uniquely represented immersed diffusively
coupled network.

According to [13], we know that to identify the target
subnetwork, it is sufficient to measure at least the node signals
of the target subnetwork and all neighbor node signals. The
immersed network can also be divided into two parts, the
target subnetwork part J = {j|wj ∈ wJ} and the neighbors
D = {j|wj ∈ wD} with J ∩D = M. The partition results of
the immersed diffusively coupled network are:[

ĀJJ ĀJD

ĀDJ ĀDD

]
︸ ︷︷ ︸

Aim(p)

[
wJ(t)
wD(t)

]
︸ ︷︷ ︸

wM(t)

=

[
B̄J

B̄D

]
︸ ︷︷ ︸
Bim(p)

r(t) +

[
V̄J(t)
V̄D(t)

]
︸ ︷︷ ︸
Vim(t)

. (61)

The partition of the original diffusively coupled network is:AJJ AJD 0
ADJ ADD ADI

0 AID AII


︸ ︷︷ ︸

A(p)

wJ(t)
wD(t)
wI(t)


︸ ︷︷ ︸

w(t)

=

BJ

BD

BI


︸ ︷︷ ︸
B(p)

r(t) +

VJ(t)
VD(t)
VI(t)


︸ ︷︷ ︸

V (t)

,

(62)
where

AMM =

[
AJJ AJD

ADJ ADD

]
, AMI =

[
0

ADI

]
, AIM =

[
0 ADI

]
,

BM =

[
BJ

BD

]
, VM =

[
VJ

VD

]
.

(63)

Remark 14. Notice that ĀJD(p) = ĀDJ(p)
T , and we have a

relationship as

ĀJJ = dIIAJJ , ĀJD = dIIAJD,

ĀDJ = dIIADJ , B̄J = dIIBJ ,
(64)

where AJJ(p) contains the target subnetwork dynamics
of the original model A(p), AJD(p) = ADJ(p)

T contains
the dynamics that in the interconnection between the
target subnetwork and the neighbor nodes, BJ(p) contains
the excitation signal dynamics that entering the target
subnetwork. The proof of invariant local dynamics is shown
in [13]. By giving a constraint to find the scalar polynomial
dII, the dynamics of the target subnetwork can be identified.
Additionally, since users assign node serial numbers to
identify a target subnetwork that does not start with the first
serial number, it is simple to rearrange the rows and columns
to match the target subnetwork nodes and the neighbor
measured nodes.

B. The subnetwork identification procedure
Identifying diffusively coupled subnetwork in the frequency

domain involves three steps. (1) The first step follows

Section III the full network frequency domain identification
algorithm, to estimate the FRF and noise covariance of
the immersed network. (2) The second step involves using
them to estimate the parametric immersed network model,
incorporating user-defined constraints. Since the scalar dII
is unknown, at least one constraint on a non-zero parameter
is needed to guarantee a unique solution, which leads to a
scaled estimation of the immersed network in comparison to
the actual immersed network if that parameter constraint is
not equal to the actual one. (3) The last step is to recover the
scaled parameters of the set of target subnetwork by giving
one known parameter of the original model, such as the
parameter in the excitation matrix BM(p). For the first two
steps, the same procedure can be used directly to identify
the scaled immersed network, and the recovery algorithm
(immersed back) is introduced in this chapter, in line with [13].

For employing the full network identification algorithm of
the first two steps, some conditions similar to condition 1 need
to be satisfied. Consider a parametric model set Mim of the
immersed network

Mim = {Aim(p, η), Bim(p, η), Cim(p, η), Fim(p, η)} , (65)

where η collects all the unknown parameters of the
model matrices Aim(p), Bim(p), Fim(p) and the transient
model Cim(p). The data generated immersed network is
denoted by Sim =

{
A0

im(p), B0
im(p), F 0

im(p)
}

. Furthermore,
for the plant model G0im =

{
A0

im(p), B0
im(p)

}
and

Gim = {Aim(p, η), Bim(p, η), Cim(p, η)} are the subset of
Sim and Mim, respectively.

Condition 2. The estimated parameters η̂ give a consistent
estimate of the immersed network if the following conditions
hold [13].

1) The true system is in the model set: Sim ∈Mim

2) The polynomials Aim(p, η) and Bim(p, η) are left-
coprime.

3) There exists a permutation matrix P that leads to
[Aim,0 Aim,1 · · · Aim,naim Bim,0 · · · Bim,nbim

]P =
[D(η) U(η)] with D(η) square, diagonal and full rank.

4) There exists at least one excitation signal, K ≥ 1.
5) There exists at least one constraint on the parameters of

Aim(p, η) and B(p, η) that ensures that Γη = γ ̸= 0.
6) The system is excited at all frequencies of interest.

Remark 15. The proof is given in [13]. However, since the
noise model is not parameterized in this frequency domain
identification algorithm, the noise model is independent of
the plant model. We only care about the parameters of the
network plant, so the first condition for the consistent estimate
can be relaxed to G0im ∈ Gim.

The target subnetwork can be estimated from the identified
immersed network. Given the estimated result of the immersed
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network Âim(η̂) and B̂im(η̂), from the relation in (61) and
(64) the estimated target subnetwork as

ÂJJ(η̂) = αdIIAJJ ,

ÂJD(η̂) = αdIIAJD,

B̂J(η̂) = αdIIBJ ,

(66)

where α is the unknown scaling factor that ÂJJ(η̂) = αĀJJ ,
ÂJD(η̂) = αĀJD and B̂J(η̂) = αdIIBJ . Substitute the first
relation A−1

JJ ÂJJ = αdII into the rest two equation of (66),

AJJ ÂJD(η̂)− ÂJJ(η̂)AJD = M3 = 0,

AJJ B̂J(η̂)− ÂJJ(η̂)BJ = M4 = 0.
(67)

Collected these two equations into the matrix form,

Q3θ3 = 0, (68)

where Q3 collects all the frequency data for the known
estimated part ÂJJ(Ωk, η̂),ÂJD(Ωk, η̂) and B̂J(Ωk, η̂) and θ3
collects all the parameters of the target subnetwork AJJ , AJD

and BJ . Here, since Âim(η̂) and B̂im(η̂) is already estimated
as a known part, the estimation problem leads to a convex
optimization problem. Employing the same idea as before, use
the Lagrangian and KKT conditions to solve the least squares
problem with constraint,

θ̂3 = min
θ3

θH3 QH(η̂)Q(η̂)θ3,

subject to Γ3θ3 = υ3.
(69)

The estimated results are given:[
θ̂3
λ̂3

]
=

[
2Q3(η̂)

HQ3(η̂) Γ3
T

Γ3 O

]−1 [
O
υ3

]
, (70)

Where O are the zero matrices with the corresponding suitable
dimension related to the constraint setting. The structure of
the regression matrix Q3 and the parameter vector θ3 are
given in the Appendix VII-E.

Setting the constraint matrix for identifying the subnetwork
for the diffusively coupled network model is similar to the
previous full network case. We set the constraint to keep the
symmetric structure of AJJ to follow the relation,

aij(p)− aji(p) = 0 with i, j ∈ J (71)

and also at least one parameter of aJ•ij
(p) or bJij

(p) needs to
be known as the constraint to obtain the consistent estimate.
The constraint selection matrix Γ3 and the constraint vector υ3
are given similarly as Γ and υ presented in Appendix VII-C,
but the parameters are collected in a different sequence θ3 as
shown in Appendix VII-E. Thus, the approach involves ap-
plying a similar constraint method, but adapting the constraint
settings to match the parameter sequence in θ3.

C. Subnetwork Identification Procedure Flow

To conclude the subnetwork identification procedure, the
following flow is given:

1) Non-parametric Identification for immersed network
• Input: The input and output signals data set, fre-

quency range.
• Process: Using LPM method to estimate Θ̂ in (19)

and noise covariance ĈV in (22).
• Output: The estimated FRF Ĝim from Θ̂ and the

noise covariance ĈVim
.

2) Parametric Identification for immersed network
• Input: The user-defined parametric model order

naim
of Aim(p, η), nbim of Bim(p, η), ncim of

Cim(p, η); at least one constraint on non zero pa-
rameter e.g., bij,l = 1; input/output frequency data;
Ĝim and ĈVim

.
• Process: If ncim > −1, using the input/output

data criterion shown in Section III-B2 optimize the
weighted least squares following (37) with con-
straint (44) to estimate the parameters η̂, otherwise
using the FRF data criterion shown in Section III-B3
optimize the weighted least squares following (41)
with constraint (44) to estimate parameters η̂.

• Output: Estimation of the immersed network
Âim(η̂) and B̂im(η̂).

3) Target Subnetwork Identification
• Input: Âim(η̂), B̂im(η̂), topology of AJ•, at least

one known non-zero coefficient of A(p, θ3) or
B(p, θ3), the order of target subnetwork na of
A(p, θ3), nb of B(p, θ3).

• Process: Obtain the target subnetwork parameters
θ̂3 by optimizing the least squares with the con-
straint in (70).

• Output: Estimation of the target subnetwork
parameters AJJ(ϑ̂3), AJD(θ̂3) and BJ(θ̂3).

Remark 16. Note that the topology information used in the
last step input is from the first step topology output of the
original network, as immersion will not change the topology
of the target subnetwork. Although topology information is
not essential for identification, it provides information on the
locations of zero terms in A(p) and Aim(p). Incorporating
this into the constraints can enhance convergence speed and
reduce computational complexity. Moreover, this improves
the precision of the estimation by reducing the degrees of
freedom in the parameter space, which can reduce bias and
variance. In addition, this identification flow is fully in the
frequency domain to identify the frequency-domain model.
Therefore, this flow works the same for the identification of
the continuous-time model and the discrete-time model.

D. Simulation results

To test the frequency domain immersed network
identification algorithm, we used the same seven-node
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RLC network as shown in Fig. 5 with the same components
as shown in Table I and Table II to simulate. The orders of
the parametric subnetwork model are na = 2 and nb = 1.
The CT and DT models share the same order settings. The
constraints for the identification of the parametric immersion
network of the procedure flow are given as the known
coefficient on the input node, e.g., b11,1 = 1 for exciting the
first node, and the known unconnected parts of the network
represented as zero terms Azerosim in the matrix Aim(p)
for the CT model (B(q−1), A(q−1) for the DT model). The
constraints for the identification of the target subnetwork of
the procedure flow are given as the known input matrix B(p),
the known unconnected parts of the network represented
as zero terms Azeros in the matrix A(p) for the CT model
(B(q−1), A(q−1) for the DT model).

Example 3. Suppose the target subnetwork is the
interconnection between node 1 and node 2. We measured
nodes 1, 2, 3, 4, and 5, while nodes 6 and 7 are immersed.
Give the excitation signal r(t) as independent zero-mean
white noise with variance σ2

r = 1 entering only node 1,
and the normal distributed zero-mean white noise as noise
signal e(t) with variance σ2

e = 1 entering all 7 nodes. The
sampling frequency is set at 20000 Hz to cover all the
dynamics of the components, and the identification frequency
band is set between fmin = 500 Hz and fmax = 6000 Hz
to promote estimation performance. Furthermore, the orders
of the immersed parametric network model are defined as
naim = 3 of Aim(p, η), nbim = 2 of Bim(p, η), and ncim = 0
for the transient model (CT and DT share the same order
settings). Here, the criterion based on the input/output data
shown in Section III-B2 is used. Similarly to Example 1, we
generated a set of experiments with lengths of data N. The
choice of N and the corresponding set are shown in Table III.
Each set of experiments includes 50 Monte Carlo runs with
independent excitation and noise signals. The results are
shown in Fig. 8 for the continuous-time model and in Fig. 9
for the discrete-time model.

It can also be seen from these figures that, in general,
RMSE decreases as N increases, supporting a consistent
identification. When the data length N is extended to infinity,
the estimated parameters converge to the actual parameters.
Note that the central line of the box, which indicates the
median RMSE, increases from the second experiment to the
third experiment. It seems like convergence around 10−5 of
the first four experiments. This could be due to the insufficient
Monto Carlo runs in each experiment and the data length of
1-4 experiments being insufficient to capture all the model
dynamics. Moreover, there is a noticeable decrease in the
variability of RMSE (indicated by the height of the boxes)
from the first to the last sets, which implies that the estimates
become more accurate as the data length increases.
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Figure 8: Boxplot of the RMSE of the parameters of the
components for each experimental set (CT model immersed
6 and 7)

1 2 3 4 5 6 7 8 9 10

10
-6

10
-4

10
-2

Figure 9: Boxplot of the RMSE of the parameters of the
components for each experimental set (DT model immersed 6
and 7)

Example 4. Suppose that the target network in Fig. 5
is the interconnection between node 1 and node 2; we
measured the target subnetwork nodes 1 and 2 and their
neighbor nodes 3 and 5. Give the excitation signal r(t) as
the independent zero-mean white noise with variance σ2

r = 1
entering only node 1, and the normal distributed zero-mean
white noise as the noise signal e(t) with variance σ2

e = 0.01
entering all 7 nodes. The sampling frequency is set at 20000
Hz to cover all the dynamics of the components, and the
identification frequency band is set between fmin = 500 Hz
and fmax = 6000 Hz to promote estimation performance.
Furthermore, the orders of the parametric immersed network
are defined as naim

= 4 of Aim(p, η), nbim = 3 of Bim(p, η),
and ncim = 1 for the transient model. Here, the criterion
based on the input/output data shown in Section III-B2 is
used. Similarly to Example 1, we generated a different set
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Figure 10: Boxplot of the RMSE of the parameters of the
components for each experimental set (CT model immersed
4, 6 and 7)
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Figure 11: The mean and variance of the RMSE for component
parameters across each experimental set (CT model immersed
4, 6, and 7)

of experiments with a difference in the length of the data
N. The choice of N and the corresponding set are shown
in Table III. Each set of experiments includes 50 Monte
Carlo runs with independent excitation and noise signals. The
results are shown in Fig. 10 for the continuous-time model
with the mean and variance of the RMSE shown in Fig. 11.

From Fig. 10, it can be seen that there is no significant
trend to decrease the RMSE of the component value with
increasing data length in this case. However, we notice that
the number of outliers and the interquartile range decrease
with increasing data length. Also, the median value of each
box is decreasing, except for the fourth experiment. To check
whether the RMSE slowly decreases in this case, the variance
and the mean value of the RMSE are provided with each
experiment in Fig.11. Fig.11 shows that the mean value of
RMSE for each experiment decreases with increasing data

length. This trend suggests that the estimation process is
consistent and improves accuracy as more data are collected.
The variance is mainly decreasing, except for the fourth
experiment. This might be due to numerical problems or
overfitting of the data. The variance value is already very
small in this case and will not continue to increase in
the coming experiments. Generally, the trends are good in
both the variance and mean plots, indicating a consistent
estimation in this example. Notice that the experiment result
for the discrete-time model is not given due to the unstable
calculation of the discrete-time model in Matlab. Especially to
calculate the discrete-time inverse matrix Aim(p) during the
simulation, the more components are immersed, the higher
the value and the orders will be in Aim(p). Furthermore, the
higher the sampling frequency we choose to discretize the
model, the value in Aim(p) will also increase. The discrete-
time matrix Aim(p)−1 calculated by Matlab is unstable in
this case. Thus, the result is not shown. In conclusion, the
second task of this project is achieved, a consistent frequency
domain identification method is developed for the diffusively
coupled subnetwork, and the consistency of it is shown by
the experiments.

V. THE IN-CIRCUIT TESTING PROCEDURE WITH USING
FREQUENCY DOMAIN IDENTIFICATION ALGORITHM

The preceding sections outline the frequency domain identi-
fication algorithm applied to the full network and subnetwork
within a diffusively coupled framework. Some experiments
also showed that this algorithm can be used to identify the
components of the RLC circuit. The last task of this project
is to develop a testing procedure for applying the frequency
domain diffusively coupled network identification algorithm to
ICT simulation and testing it with different defects. This sec-
tion presents an in-circuit testing procedure with the frequency
domain identification algorithm consisting of three parts: the
data level, the feature level, and the parameter level. The
flow diagram of this procedure is shown in Fig. 12. As is
well known, an ideal short circuit is a connection between
two nodes that causes them to have the same voltage signal.
Some time-domain data characteristics, such as magnitude and
power, can be extracted from the data set to judge similar volt-
age signals if there is probably a short circuit. For the feature
level, the frequency domain features: FRF and resonance peaks
will be discussed to detect faults. The parameter level focuses
on comparing the estimated parameters of the components and
the corresponding parameters in a healthy model. Finally, 4
experiments will be shown to demonstrate the ability of this
ICT procedure.

A. Data level
Suppose we have a data set that includes the input signals

r(t) and node signals w(t). The first thing we could check
is the time-domain data set. Observing the data of the node
signal can provide valuable information. For example, as
shown in Fig. 12, a node signal (voltage) that is approximately
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Figure 12: ICT with using frequency domain identification flow diagram (To1, T o2, T o3, T o4, T o5 are the tolerance values,
Ĝij is the FRF estimationm, Gh,ij is the healthy model FRF, ω̂peak is the resonance peak frequency in FRF estimation, ωh,peak

is the resonance peak frequency in healthy model FRF)

zero wi ≈ 0 could indicate that the node is grounded (Short
Circuit to GND) or disconnected from the electronic network
(open circuit); two signals that are approximately the same
wi ≈ wj could indicate that a short circuit is connected
between these two nodes.

Various statistical and numerical methods can be used to
check whether wi ≈ 0. For example, calculating the mean
absolute value (MAV) and the root mean square (RMS) of
the data set for the i− th signal wi to see how small they are,
or setting a threshold value ϵth if all elements of the set are
within 0± ϵth then wi can be considered to be nearly equal to
0. In this project, we calculate the 2-norm of the data set for
i − th signal wi that gives the magnitude of the data vector.
Then, we take log10 of each 2-norm for the corresponding
node signal data set and compare it with the tolerance value.
For the signals wi ≈ wj , we also take log10 of each 2-norm
for the corresponding node signals and calculate the difference
of each other if |log10 ∥wi∥2 − log10 ∥wj∥2| < 0.001 then we
consider these two signals to be approximately the same.

Notice that there is no conclusion on this level about
whether there is a fault. The data level gives some information
that can be used to help users find faults and isolate faults in
the following steps.

B. Feature level
Following the frequency domain identification algorithm,

the Fourier transform is applied to transform the signals
to the frequency domain after collecting the time domain
data. The features of the signal can be obtained, for
example, the amplitudes, phases, and spectrum. When
observed characteristics are compared with healthy behaviors,
differences are considered analytical symptoms to detect
the fault. Here, instead of comparing the signal features
directly, we consider one step further. Since the first step
of the frequency domain identification algorithm shown in
Section III is to estimate the FRF and the noise covariance,
we can use the FRF estimation as the model features of the
RLC circuits and compare it with the FRF of the healthy
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model for the healthy RLC circuits. Changes in the magnitude
of the FRF can indicate potential faults or changes in the
dynamics of the system. For example, an RC series circuit
with a grounded capacitor behaves as a low-pass filter; if
the faults appear in the circuit, the cut-off frequency and the
resonances of the FRF would be changed.

To check whether the FRF is healthy or not, we can directly
calculate the RMS of Ĝij−Gh,ij (Ĝij is the estimation of the
FRF between the input node i and the output node j, Gh,ij

is the healthy FRF between the input node i and the output
node j). In this project, we extract the resonance peaks,
calculate the cut-off frequency of each FRF, and compare the
estimated FRF with the healthy FRF 95% confidence interval.

An example is shown in Fig. 13. This figure shows the
FRF estimation of the CT seven-node defect model with
the true FRF of the healthy model. The defect model is
given as three faults appear in the circuit simultaneously,
including a dynamic change in R13 from 100 Ω to 500 Ω,
an open circuit in L34 and a short circuit in R57. The open
circuit here is considered the inductor with an infinitely large
inductance L34 = ∞ mH, 1

L34
= 0, and the short circuit

here is considered a resistor with a very small resistance as
R57 = 0.001 Ω. Using the same experimental setting as in
Example 2, give the excitation signal r(t) as the independent
zero mean white noise with variance σ2

r = 1 entering only
node 6, and the normal distributed zero-mean white noise as
the noise signal e(t) with variance σ2

e = 1 entering all nodes.
The frequency band is set between 500 Hz and 6000 Hz.

As can be seen in Fig. 13, the FRFs are all outside the
±5% bound of the true FRFs, except for the FRF from
nodes 6 to 6. The resonance peaks estimation also does not
correspond to the peaks of true FRFs, except for the FRF
from node 6 to node 6 and from node 6 to node 1. This
happens because the faulty dynamic might be filtered out
of the FRF estimation, and the estimation is not sensitive
enough to capture it. The feature level information can detect
faults by estimating the FRF and comparing the features with
the true FRF.

Moreover, from many experiments, we can observe that
the defects show a diffusion phenomenon in the network,
like throwing a stone into a calm lake. For input/output
nodes located away from the defect, the variation in the
FRF between faulty and healthy models is less than that for
nodes closer to the defect. For example, the 7-node network
model in Fig. 5 with only an open circuit in L34. The full
excited and full measurement setup with the same types of
excitation signals and noise signals as in Example 2 is given.
The frequency band is set between 500 Hz and 6000 Hz. The
FRF estimations of this CT seven-node faulty model with
the true FRFs of the healthy model are shown in Fig. 23 in
Appendix VII-F. The estimations of FRFs from nodes 2 to 4,
nodes 3 to 4, and nodes 4 to 4 (and their symmetric FRFs)

Figure 13: FRF estimation of defect model with the true FRF
of the healthy model (CT model)

show the greatest difference from the healthy FRFs, while the
estimations of FRFs such as from nodes 1 to 1, 1 to 2, 5 to 5,
5 to 6, 6 to 6, 7 to 7 (and their symmetric FRFs) are almost
the same as the healthy model and stay in the ±5% bound
of the healthy FRFs. According to this FRF information, the
user can speculate that a defect might occur in the component
that connects to node 4. This phenomenon can be explained
as the faulty dynamic might be progressively filtered as the
signals pass through an increasing number of components.
Therefore, by utilizing FRF information, users can narrow
down the potential fault area of the network when there are
few faults.

C. Parameters level
At the parameters level, the idea is to identify all the com-

ponent values and compare them with the true value so that
fault isolation and identification can be done simultaneously.
The relative parameter error of each component is calculated,
which is defined as

RPE =
θ̂compi

− θ0compi

θ0compi

, for i-th component, (72)
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where θ̂compi
is the parametric estimation of i-th component

and θ0compi
is the real parameter value of the i-th component.

This relative parameter error indicates the percentage of
parametric changes. From the literature, we know that the
measurement value of the components should also remain
in ±5% change due to measurement and manufacturing
errors (e.g., temperature will also influence the electronic
components). Therefore, the tolerance value here for defining
the estimation of the relative error of healthy components is
given as Tol5 = 0.05.

D. Simulation results
This section presents the results of 4 simulated experiments

conducted to assess the capability of the ICT procedure using
the frequency domain identification algorithm for diffusively
coupled networks. It is important to note that this project
focuses mainly on three common types of defects in PCBA
production: open circuits, short circuits, and changed dynam-
ics, as discussed in Section I-E. Extensive experimentation
has revealed that short circuits pose the greatest challenge in
analyzing the estimation results. This is because a short circuit
behaves like a minuscule resistor between two nodes, introduc-
ing the term 1

Rshort
, which tends to infinity and consequently

affects optimization calculations in parametric identification.
Moreover, the occurrence of short circuits, especially alongside
parallel paths, results in predominantly disturbance signals
in these routes, complicating the identification of parallel
dynamics due to the weak disturbance signals. In this con-
text, our focus is on scenarios where short circuits occur in
single connections without any parallel path and where one
of the connected nodes is grounded with the measurement
components. We will refer to this situation as the short circuit
between the edge nodes of the network.

The experiment simulation procedure is given as follows:
1) Using defect model Mdefect to generate the data set,

using the band limit measurement setting if the model is
in continuous time and the first-order hold measurement
setting for discrete time.

2) Using this data set and the information of the healthy
modelMhealthy (e.g., topology and order of the model)
to identify the network model M̂defect.

3) Using the list of components of the healthy model to
extract the value of the components θ̂comp from the
estimation of the defect model M̂defect.

4) Calculate the RPE with θ0compi
as the parameter for

each healthy component.

Remark 17. All experiments in this section follow this
setting: the sampling frequency (fs) is set at 20000 Hz, and
the identification frequency band is set between fmin = 500
Hz and fmax = 6000 Hz. The data length N is 20000.

Example 5. This example is set to show the fault detection
and diagnosis of the full network with dynamic changes,
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Figure 14: Relative parameters errors for the 7 node defect
model (CT model for Example 5)

open circuit, and short circuit. The simulation results of
Example 2 show that only one excited node can identify the
full dynamics of the network. Using the same experimental
setting as in Example 2, given the excitation signal r(t) as
the independent zero mean white noise with variance σ2

r = 1
entering only node 6, and the normal distributed zero-mean
white noise as the noise signal e(t) with variance σ2

e = 1
entering all nodes. The defect model is given as three faults
appear in the circuit simultaneously, including a dynamic
change in R13 from 100 Ω to 500 Ω, an open circuit in
L34 and a short circuit in R57. The orders of the parametric
model are na = 2, nb = 1 and nc = 1. The RPE of the
estimation results for the CT model and the DT model are
shown in Fig. 14 and Fig. 15, respectively. The real parameter
of each component and the mean estimated parameter values
of 50 Monte Carlo runs (MC) are shown in Table IV, where
Idx is the index number corresponding to the number of
components in Fig. 14 and Fig. 15, Hvalue is the healthy
(ideal) value of the component in the healthy model, TValue
is the true value of the component in the defect model, CT
est is the mean estimated value based on the CT model for
50 MC, and DT est is the mean estimated value based on the
DT model for 50 MC.

As can be seen in Fig. 14 and Fig. 15, most of the relative
parameter errors stay between ±4 × 10−3 and ±5 × 10−2,
respectively, except for the components R13, R57, L34, C50,
R50, L50, C70, R70, L70, respectively. The open circuit in
L34 and the changed dynamic in R13 faults can be directly
identified, and the mean estimated value of L̂34 increases to a
high value or inf ( 1

L̂34
≈ 0) and the mean estimated value of

R̂13 ≈ 500 ̸= 100 Ω. However, for the short circuit in R57,
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Figure 15: Relative parameters errors for the 7 node defect
model (DT model for Example 5)

Table IV: Seven-node defect Network Component Values

Idx Comp HValue TValue CT est DT est Unit
1 R13 100 500 500.0936 509.2552 Ω
2 R23 200 200 200.0136 199.2637 Ω
3 R34 150 150 150.0022 152.8268 Ω
4 R36 180 180 180.0158 181.6703 Ω
5 R56 160 160 160.0019 164.4294 Ω
6 R57 120 0.001 -1.2578e+3 -0.0144 Ω
7 L12 5 5 5 5.2 mH
8 L23 10 10 10 10.1 mH
9 L25 15 15 15 15.4 mH
10 L34 12 Inf Inf 2252.5 mH
11 L45 20 20 20 20.5 mH
12 L56 13 13 13 13.4 mH
13 C10 2 2 1.9998 1.9302 µF
14 R10 500 500 499.9092 518.7463 Ω
15 L10 18 18 18 18.7 mH
16 C20 2 2 1.9998 1.9840 µF
17 R20 500 500 500.0727 500.6553 Ω
18 L20 18 18 18 18.3 mH
19 C30 2 2 1.9999 1.9811 µF
20 R30 500 500 500.1791 495.8416 Ω
21 L30 18 18 18 18.2 mH
22 C40 2 2 2 1.9661 µF
23 R40 500 500 500.0778 514.5921 Ω
24 L40 18 18 18 18.3 mH
25 C50 2 2 4 4.0298 µF
26 R50 500 500 250.0037 247.4700 Ω
27 L50 18 18 9 8.9 mH
28 C60 2 2 2 1.9992 µF
29 R60 500 500 499.8598 443.8767 Ω
30 L60 18 18 18 17.7 mH
31 C70 2 2 -2.4139e-6 -1.3921e-1 µF
32 R70 500 500 3.5523e+8 -8.0972e+3 Ω
33 L70 18 18 -2.1208e+6 -252.9 mH

the estimated value is not close to the resistance of the short
circuit that we set as 0.001, and the grounded measurement
components connected to nodes 5 and 7 are not correctly
identified. One reason might be due to the small resistance
value Rshort57 = 0.001 of the short circuit, the corresponding
terms A57,1 = A75,1 ≈ A55,1 ≈ A77,1 in the first order
of the polynomial matrix A(p) in (1), and these terms
are significantly larger than the other terms of the matrix,
which could significantly increase the condition number of
the matrix and make it difficult to identify. However, the
physical dynamics changed by the short circuit in the network
and the corresponding solution to identify them still need
further research in future work. We have also done similar
experiments in the RLC network of 3 nodes and 10 nodes
RLC network; the short circuit that appears in the edge
nodes of the network will only cause an incorrect estimation
of the short circuit itself and the measurement components
connected to it. The consistent estimation still holds for the
other components. Moreover, if a short circuit occurs, we can
detect similar two-node signals from the data level, which
also helps the user isolate the short-circuit defect. From these
experimental results, biases occur in the relative parameter
errors, and there are more outlier values for the DT model
compared to the CT model estimation. This small bias of
approximately ±1% from the true values in the defect model
can be attributed to the insufficiently high sampling frequency
and the data length chosen here being not sufficient to use
the DT model.

Example 6. The ability to detect and diagnose faults for
multiple open circuits and dynamic changes that occur
simultaneously in a more complex network will be shown in
this example. This example will be shown in a 10-node RLC
network as in Fig. 16. The measurement components are the
same as in Table I, and the interconnection components of this
network are shown as the HValue in Table V. The topology
information of this complex 10-node circuit is clearly shown
in Fig. 17, where the red path means that there exists one
component on the path, two parallel components on the blue
path, and three parallel components on the yellow path; the
yellow circle is not the self-loop but represents the grounded
path. Given the changed dynamics in R13, R36, R89, L25,
open circuit in R45 and L56. Using the excitation signal r(t)
as independent zero-mean white noise with variance σ2

r = 1
entering only node 3, and normal distributed zero-mean white
noise as noise signal e(t) with variance σ2

e = 1 entering
all nodes. The orders of the parametric model are na = 2,
nb = 1 and nc = 1. The RPE of the estimation results for
the CT model and the DT model are shown in Fig. 18 and
Fig. 19, respectively. The real parameter of each component
and the mean estimated parameter values of 50 MC are
shown in Table V, where the information on the estimation
measurement components is not shown.

As shown in Fig. 18 and Fig. 19, most of the relative
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Figure 16: A ten-node RLC network Example with in-
ductors (Ljk), resistors (Rjk), capacitors (Cjk) and ground
nodes(GNDj)
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Figure 17: The topology of the 10 nodes RLC circuits (red,
blue, and yellow path means that there exists 1, 2, 3 compo-
nents, respectively)

Table V: Ten-node defect Network Component Values

Idx Comp HValue TValue CT est DT est Unit
1 R13 100 200 200.0376 200.1912 Ω
2 R23 200 200 200.0774 200.1183 Ω
3 R34 150 150 149.9639 150.0634 Ω
4 R36 180 500 499.2765 497.4794 Ω
5 R45 350 Inf Inf Inf Ω
6 R38 180 180 179.9800 180.1738 Ω
7 R56 160 160 159.7945 159.1906 Ω
8 R57 120 120 120.3104 120.5180 Ω
9 R89 160 500 500.1714 500.1982 Ω
10 R910 120 120 119.9661 120.2332 Ω
11 L19 5 5 5 5 mH
12 L29 3 3 3 3 mH
13 L23 10 10 10 10 mH
14 L25 15 1 1 1 mH
15 L34 12 12 12 12 mH
16 L45 20 20 20 20 mH
17 L56 13 Inf Inf 119552.6 mH
18 L89 13 13 13 13 mH
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Figure 18: Relative parameters errors for the 10 node defect
model (CT model for Example 6)
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Figure 19: Relative parameters errors for the 10 node defect
model (DT model for Example 6)

parameter errors stay between ±5 × 10−2 for the CT model
experiment and ±3 × 10−2 for DT model, except for the
components R13, R36, R45, R89, L25, L56. The interquartile
range and the whiskers of the box plot of each component
value for the CT model experiment are slightly wider than
the box plot in the DT model result; more outliers of the
CT model experiment are also observed compared to the DT
model result. These observations indicate that the variance
of the CT result is higher than in discrete time. This is
because the length of the data N is not high enough for
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this continuous time model, as shown in Example 2 with
increasing data length, the interquartile range will be narrower
and the number of outliers will also decrease. However, the
box plot of the DT experiment has biases in some of the
values of the components, e.g. C60, R60, L60, C70, R70, L70

(Idx.34 to 39). This observation can also be seen in Table V,
the mean value of the estimated continuous time 50 MC runs
is closer to the true values, and the mean value deviation for
the DT experiments is larger compared to the CT value. This
is because the sampling frequency of the DT model is not
high enough and the discretization causes bias.

Example 7. This example is set up to show the ability to
detect and diagnose faults for the subnetwork with short
circuit between the edge nodes. This example is based on
the same 10-node RLC network as in Fig. 16 but with
immersed nodes 4, 6, and 7. The target is to identify defects
in the subnetwork consisting of nodes 1, 2, 8, 9, and 10.
To identify the dynamics in the subnetwork, we at least
need to measure the nodes in the target subnetwork 1, 2, 8,
9, 10, and the neighboring nodes 3 and 5. Given the short
circuit in R910, and the dynamic change in L19. Using the
excitation signal r(t) as independent zero-mean white noise
with variance σ2

r = 1 entering nodes 1 and 9, and the normal
distributed zero-mean white noise as noise signal e(t) with
variance σ2

e = 0.01 entering all nodes. The orders of the
immersed parametric network model are defined as naim

= 4
of Aim(p, η), nbim = 3 of Bim(p, η), and ncim = 1 for
the transient model. The orders of the parametric model of
the target subnetwork are defined as na = 2, nb = 1. The
RPE of the estimation results for the CT model is shown in
Fig. 20. The real parameter of each component (with Idx the
same index number as in the figures) and the mean estimated
parameter values of 50 MC are shown in Table VI.

As can be seen in Fig. 20 and Table VI, most of the
relative parameter errors stay between ±2× 10−2, except for
the components R910, R19, C90, R90, L90, C100, R100, L100.
Similarly to that in Example 5, the short circuit dynamic
and measurement components connected to the short circuit
nodes cannot be correctly identified. The accurate estimation
still holds for the rest of the components. Analysis at the data
level reveals a similarity between the signals of nodes 9 and
10, and the parametric results suggest the high possibility
of a short circuit occurring between these nodes. Here, the
experiment for the DT model is not given, which is because
the DT model generated in Matlab with fs = 2000 Hz is
unstable (its transfer function exists poles out of the unit
circle).

Example 8. This example is designed to show the ability
to identify defects in the measurement components of the
subnetwork. Based on the same network shown in Fig. 5.
Suppose that the target subnetwork is the interconnection
between node 1 and node 2, we measured nodes 1, 2, 3, 4,
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Figure 20: Relative parameters errors for the 10 node im-
mersed defect model (CT model for Example 7)

Table VI: Ten-node immersed defect Network Component
Values

Idx Comp HValue TValue CT est Unit
1 R89 160 160 159.9984 Ω
2 R910 120 0.001 395.0109 Ω
3 L19 5 10 10 mH
4 L29 3 3 3 mH
5 L89 13 13 13 mH
6 C10 2 2 2 µF
7 R10 500 500 500.0081 Ω
8 L10 18 18 18 mH
9 C20 2 2 1.9999 µF

10 R20 500 500 498.7659 Ω
11 L20 18 18 18 mH
12 C80 2 2 2 µF
13 R80 500 500 498.6697 Ω
14 L80 18 18 18 mH
15 C90 2 2 3.4229 µF
16 R90 500 500 221.7812 Ω
17 L90 18 18 -5.9 mH
18 C100 2 2 -6.0975e+14 µF
19 R100 500 500 2.7973e-12 Ω
20 L100 18 18 4.5600e-15 mH

and 5, while nodes 6 and 7 are immersed. Although node 4
could be immersed, as illustrated in Example 4, it is measured
in this example to prevent the unstable DT model caused by
discretization and to demonstrate the results using the stable
DT model. Giving the excitation signal r(t) as independent
zero-mean white noise with variance σ2

r = 1 entering only
node 1, and the normal distributed zero-mean white noise as
noise signal e(t) with variance σ2

e = 0.01 entering all 7 nodes.
Defects are given as the dynamic change in the measurement
component R10 and the interconnected component L12, the
open circuit in the measurement component R20. The orders
of the immersed parametric network model are defined as
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Table VII: Seven-node immersed defect Network Component
Values

Idx Comp HValue TValue CT est DT est Unit
1 R10 500 200 200.0108 200.0011 Ω
2 R20 500 Inf 3.9987e+5 4.0970e+5 Ω
3 L12 5 10 10 10 mH
4 C10 2 2 2 2 µF
5 L10 18 18 18 18 mH
6 C20 2 2 2 2.001 µF
7 L20 18 18 18 18 mH

naim
= 3 of Aim(p, η), nbim = 2 of Bim(p, η), and ncim = 1

for the transient model. The orders of the parametric model
of the target subnetwork are defined as na = 2, nb = 1. The
RPE of the estimation results for the CT model and the DT
model are shown in Fig. 21 and Fig. 22, respectively. The
real parameter of each component (with Idx the same index
number as in the figures) and the mean estimated parameter
values of 50 MC are shown in Table VII.

As can be seen in Fig. 21 and Fig. 22, most of the relative
parameter errors stay between ±2 × 10−3, except for the
components R10, R20, and L12, respectively. Table VII
shows the values of the components of the healthy model
and the components of the faulty model. After 50 MC
runs, the mean values of the estimated results for these
three components are just in the deviation 5.4 × 10−3% and
5.5 × 10−4% with the true faulty values for using the CT
model and the DT model, respectively. However, there are
still around 1 × 10−3% deviations for all 50 MC runs with
estimated values of the components C20 and L20. These
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Figure 21: Relative parameters errors for the 7 node immersed
defect model (CT model for Example 8)
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Figure 22: Relative parameters errors for the 7 node immersed
defect model (DT model for Example 8)

small biases occur because of the finite data length N and
the numerical calculation in Matlab. This experiment shows
that even for defects L12 that are connected to two faulty
measurement components R10 and R20, these three faulty
components can still be detected and identified simultaneously.

To conclude the experiments we conducted in this section, a
list can be made to show the ability of this ICT procedure with
applying the frequency domain diffusively coupled network
procedure in the ICT simulation.

1) In Example 5, 3 different types of defects occur si-
multaneously in the 7 node network. Using frequency
domain identification for the full network, faults of
dynamic changes and open circuits can be detected and
diagnosed. However, the short circuit between the edge
nodes can only be detected but incorrectly estimated,
and the healthy grounded components that connect to
the short circuit are also incorrectly estimated. Based
on the data-level information, users can infer that the
fault is a short circuit.

2) In Example 6, 4 dynamic changes and 2 open circuits
occur in the 10 node network simultaneously. Using
the frequency domain identification for the full network,
although the network is more complex with more defects
compared to Example 5, faults of dynamic changes and
open circuit can still be detected and diagnosed correctly.

3) In Example 7, 1 short circuit and 1 dynamic change
occur in the 5 node subnetwork of the 10 node network.
Using frequency domain identification for the subnet-
work, dynamic changed fault can be detected and diag-
nosed correctly. However, the short circuit estimation is
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similar to that in Example 5. Short circuit between edge
nodes can only be detected but incorrectly estimated,
and healthy grounded components that connect to the
short circuit are also incorrectly estimated. With the
data-level information, users can infer that the fault is a
short circuit.

4) In Example 8, 1 open circuit and 1 dynamic change in
the interconnection, 1 dynamic change in the grounded
component occur in the 2 node subnetwork of the 7 node
network. Using frequency domain identification for the
subnetwork, dynamic changed in grounded component
and open circuit of the subnetwork can be detected and
diagnosed correctly, even these three faulty components
are connected each other.

Overall, with this three-level ICT procedure that uses the
identification of the diffusively coupled network in the fre-
quency domain, three types of common defects can be detected
in ICT. Dynamic changes and open circuits can be correctly
diagnosed by estimating the parameters. Short circuits that
occur between edge nodes can be detected, but cannot be
diagnosed at the parameter level. Combining the information
from the data level and the feature level, the short circuits can
be isolated.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This thesis introduces a frequency domain identification
method in the dynamic network and uses it for in-circuit
testing in PCBA. This approach is based on the diffusively
coupled network because it captures the values of the
components in the PCBA structurally. A two-step frequency
domain identification method is developed to identify
components, resulting in consistent estimates that are
applicable to the full networks and subnetworks. It has
been shown that all the values of the components in a
full network can be estimated consistently with a single
excitation. Furthermore, the values of the target subnetwork
can be consistently estimated even with a single excitation,
regardless of whether they are based on the CT or DT
model. Finally, an ICT procedure based on this frequency
domain identification method is developed with the dynamic
network. In the simulation, three types of defects in PCBA
are demonstrated: short circuit, open circuit, and dynamic
changes. Experiments show that for faulty full networks or
subnetworks with only open circuits and dynamic changes, the
ICT procedure accurately detects and diagnoses faults. This
precision is maintained even with a single excitation, keeping
the relative error for healthy components within ±5%. In
cases of full networks or subnetworks with short circuits
at the edge nodes, the ICT procedure may not accurately
estimate the values of components connected to the short
circuits. However, it still effectively detects and isolates
the short circuit using data and feature-level information. In
general, the goal of the project has been achieved successfully.

B. Future work
There are some limitations that require further research.

The first is that currently, we only focus on RLC circuits with
passive components. There are also many active components
in PCBA that we did not consider. An idea might be to
use non-linear identification techniques to identify those
components in PCBA [42]. The second is that, for the short-
circuit cases, we only focus on the edge node, but they might
happen everywhere in the PCBA in reality. More research is
required for those tricky cases. The third is that the capacitors
occur only in the interconnection with the ground nodes to
satisfy identifiability. If the network identifiability condition
can be further relaxed, the capacitances between the nodes
without grounding can be estimated. The fourth is various
computationally stable methods that can be employed to
further improve numerically ill-conditioned frequency domain
identification problems [43] [44]. Finally, all experiments
are based on Matlab simulation; experiments in real setups
in the real world can be performed to know about the real
performance of this method.

VII. APPENDIX

A. The structure of Q1 and θ1 for criterion 1
1) Parameters of the structured network model θ1
The polynomial matrix A(p) has been defined in Defini-

tion. 1, for its (i, j) element defined as aij(p) =
∑na

ℓ=0 aij,ℓp
ℓ.

The polynomial matrix B(p) and the vector C(p) also have
a similar definition as bij(p) =

∑nb

ℓ=0 bij,ℓp
ℓ and cj(p) =∑nc

ℓ=0 cj,ℓp
ℓ. θ1 collected all the parameters into a column

vector as θ1 =
[
θTa θTb θTc

]T
. The vectors θa, θb and θc

are given by,

θa =


θa1
θa2

...
θaL

 , θai =


θa1j
θa2j

...
θaLj

 , θaij =


aij,0
aij,1

...
aij,na

 ,

with i, j = 1, .., L
(73)

θb =


θb1
θb2

...
θbL

 , θbi =


θb1j
θb2j

...
θbLj

 , θbij =


bij,0
bij,1

...
bij,nb

 ,

with i = 1, .., L and j = 1, ..,K
(74)

θc =


θc1
θc2

...
θcL

 , θcj =


cj,0
cj,1

...
cj,nc

 , with j = 1, .., L,

(75)
where, θa is a L2(na +1)× 1 vector, θb is a LK(nb +1)× 1
vector, and θc is a L(nc + 1)× 1 vector.

26



2) The structure of the regressor Q1

Recall the frequency weighting part W for (37) as

W =
[
ĈW (k)A(Ωk, θ)

i−1
]−1

(76)

which is a L × L matrix in each frequency point. Since
the polynomial matrix A(Ωk, θa)

i−1 for the last iteration
is known, we can substitute the term Ωk into it so that a
L × L complex matrix is generated by taking the inverse of
A(Ωk, θa)

i−1 and multiplying another L×L complex matrix
Ĉ

− 1
2

W of each frequency sample data. Definition of Ωka, Ωkb,
and Ωkc as a vector that collects the frequency variable of the
matrices A, B, and C,

Ωa =
[
1 Ωk Ω2

k · · · Ωna

k

]
,

Ωb =
[
1 Ωk Ω2

k · · · Ωnb

k

]
,

Ωc =
[
1 Ωk Ω2

k · · · Ωnc

k

]
.

(77)

The polynomial matrix A(p), B(p) and C(p) in frequency
can be defined as A(Ωk), B(Ωk) and C(Ωk), with theirs (i, j)
element defined as,

ãij(Ωk) =

na∑
ℓ=0

aij,ℓΩ
ℓ
k,

b̃ij(Ωk) =

nb∑
ℓ=0

bij,ℓΩ
ℓ
k,

c̃j(Ωk) =

nc∑
ℓ=0

cj,ℓΩ
ℓ
k.

(78)

Then, M1(k) in equation (37) for one frequency point can
be derived as

M1 =


WA11W1 +WA12W2 + · · ·+WA1LWL

WA21W1 +WA22W2 + · · ·+WA2LWL

...
WAL1W1 +WAL2W2 + · · ·+WALLWL



−


WB11R1 +WB12R2 + · · ·+WB1KRK

WB21R1 +WB22R2 + · · ·+WB2KRK

...
WBL1R1 +WBL2R2 + · · ·+WBLKRK



−


WC1

WC2

...
WCL

 ,

(79)

where, WAij , WBij and WCj are given by,

WAij = Wi1ã1j +Wi2ã2j + · · ·+WiLãLj ,

with i, j = 1, ..., L,
(80)

WBij = Wi1b̃1j +Wi2b̃2j + · · ·+WiLb̃Lj ,

with i = 1, ..., L and j = 1, ...,K,
(81)

Wcj = Wj1c̃1 +Wj2c̃2 + · · ·+WjLc̃L,

with j = 1, ..., L.
(82)

Extracting all the parameters defined as the column vector
θ1 in (73), (74) and (75) from M1(k), the regressor Q1 is
given by,

Q1 =
[
ΠA1 −ΠB1 −ΠC1

]
, (83)

where, ΠA1, ΠB1 and ΠC1 are given as the following,

ΠA1 =

 WW11 WW12 · · · WW1L

...
...

...
...

WWL1 WWL2 · · · WWLL


L×L2(na+1)

,

with WWij =
[
WijΩaW1 WijΩaW2 · · · WijΩaWL

]
,

(84)

ΠB1 =

 WR11 WR12 · · · WR1K

...
...

...
...

WRL1 WR12 · · · WRLK


L×LK(nb+1)

,

with WRij =
[
,WijΩbR1 WijΩbR2 · · · WijΩbRK

]
,

(85)
and

ΠC1 =

 W11Ωc W12Ωc · · · W1LΩc

...
...

...
...

WL1Ωc WL2Ωc · · · WLLΩc


L×(nc+1)

.

(86)
By using the Kronecker product, they can be derived as

ΠA1 = W⊗
[
ΩaW1 ΩaW2 · · · ΩaWL

]
,

ΠB1 = W⊗
[
ΩbR1 ΩbR2 · · · ΩbRK

]
,

ΠC1 = W⊗ Ωc.

(87)

The dimensions of Q1 for each frequency point is
L × [L2 × (na + 1) + LK(nb + 1) + L(nc + 1)], and
for the number of F frequency data, Q1 is collected in
L× [L2(na + 1) + LK(nb + 1) + L(nc + 1)]× F .

B. The structure of Q2 and θ2 for criterion 2

1) Parameters of the structured network model θ2
For this case, since the transient term was assumed that has

been sufficiently removed in the non-parametric identification,
the parametric modal will not include the transient term model
parameters. Therefore, θ2 is given by

θ2 =
[
θTa θTb

]T
, (88)

where, the vectors θa and θb have the same structure as the
previous definition (73) and (74), the dimension of them are
also the same as given before.

2) The structure of the regressor Q2

Recall the definition of Ωka, Ωkb in (77) and the definition
of the element (i, j) for polynomial matrix A(p),B(p) for
frequency in (78), M2(k) can be derived as
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M2 =


WA11GR1 +WA12GR1 + · · ·+WA1LGRL

WA21GR1 +WA22GR2 + · · ·+WA2LGRL

...
WAL1GR1 +WAL2GR2 + · · ·+WALLGRL



−


WB11R1 +WB12R2 + · · ·+WB1KRK

WB21R1 +WB22R2 + · · ·+WB2KRK

...
WBL1R1 +WBL2R2 + · · ·+WBLKRK

 ,

(89)
where, WAij , WBij are keeping the same definition in (80)
and (81), while GRj is given by

GRj = (Ĝj1R1 + Ĝj2R2 + · · ·+ ĜjKRK),

with j = 1, ..., L
(90)

Extracting all the parameters defined as the column vector
θ2 in (73), (74) from M2(k), the regressor Q2 is given by,

Q2 =
[
ΠA2 −ΠB2

]
, (91)

where ΠA2 and ΠB2 are given by,

ΠA2 =

 WG11 WG11 · · · WG1L

...
...

...
...

WGL1 WGL2 · · · WGLL


L×L2(na+1)

with WGij =
[
WijΩaGR1 WijΩaGR2 · · · WijΩaGRL

]
,

(92)

ΠB2 =

 WR11 WR12 · · · WR1K

...
...

...
...

WRL1 WR12 · · · WRLK


L×LK(nb+1)

with WRij =
[
WijΩbR1 WijΩbR2 · · · WijΩbRK

]
.

(93)
By using the Kronecker product, they can be derived as

ΠA2 = W⊗
[
ΩaGR1 ΩaGR2 · · · ΩaGRL

]
,

ΠB2 = W⊗
[
ΩbR1 ΩbR2 · · · ΩbRK

]
.

(94)

The dimensions of Q2 for each frequency point
is L × [L2(na + 1) + LK(nb + 1)], and for the
number of F frequency data, Q2 can be collected in
L× [L2(na + 1) + LK(nb + 1))]× F .

C. Lagrangian multiplier optimization constraints

For the diffusively coupled network model, the A matrix
is the symmetric polynomial matrix, which means that for all
i ̸= j we have aij − aji = 0. To build the constraint for this,
Γa and υa are given by

Γa =


Γa,1

Γa,2

...
Γa,(L−1)

 , υa =


0
0
...
0


L(L−1)

2 (na+1)×1

, (95)

where Γa,i with i = 1, ..., L− 1 is given by

Γa,i =
[
Od1×d2 Id3×d4 γi

]
,

with γi =
[
γ1,i γ2,i · · · γ(L−i),i

]
,

(96)

where O is the zero matrix with the dimension
d1 × d2 = (L − i)(na + 1) × (na + 1)(L(i − 1) + i)
and I is the identity matrix with the dimension
d3 × d4 = (L− i)(na + 1)× (L− i)(na + 1). Notice that
γi is the matrix with the change dimension for the change
i, the dimension is defined as (L − i)(na + 1) × (na + 1)L
so that this matrix can be considered as a matrix consisting
of (L − i) × L blocks and each block is a submatrix
(na + 1) × (na + 1). The [(L − i), i]-th block of this
γi matrix is defined as the identity submatrix with the
negative (-) sign. The dimension of Γa is with the dimension
L(L−1)

2 (na + 1)× L2(na + 1). By restricting Γaθa = υa, the
symmetric structure of the polynomial matrix A is guaranteed.

Next, we set the constraint for the partially known dynamics
or known parameters of the model. Here, we assume that all
the dynamics of the input signals are known, which means
that all the parameters of the polynomial matrix B are known.
Therefore, the constraint for B as is given by

Γb =

 Inb+1

. . .
Inb+1

 , (97)

with the dimension LK(nb+1)×LK(nb+1) and υb collects
all the known parameters of B in the same structure of θb
in (74). Moreover, if some component dynamics is already
known, we can also set the constraint with the known real
parameters in the A matrix in the same way. Finally, the
constraints Γ and υ collect all the above constraints, which
are given by,

Γ =

[
Γa Od5×d6 Od9×d10

Od7×d8 Γb Od11×d12

]
, υ =

[
υa
υb

]
, (98)

where, O are the zero matrices with the dimension d5× d6 =
L(L−1)

2 (na + 1) × LK(nb + 1), d7 × d8 = LK(nb + 1) ×
L2(na + 1), d9 × d10 = L(L−1)

2 (na + 1) × L(nc + 1), and
d11 × d12 = LK(nb + 1)× L(nc + 1).

Remark 18. Here, if there is no transient term estimation,
define nc = −1.
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Algorithm 1 Γa Matrix Construction Algorithm

1: Initialize FM1 and FM2 matrices
2: for k = 1 to L ∗ (L− 1)/2 do
3: item← 0
4: flag ← 0
5: for i = 1 to L do
6: for j = 1 to L do
7: item← item+ 1
8: if i < j and FM1(i, j) = 0 and flag = 0

then
9: Γa[k, item]← Identity(na+1)

10: FM1(i, j)← 1
11: FM1(j, i)← 1
12: flag ← 1
13: else if i > j and FM1(j, i) = 1 and

FM2(i, j) ̸= 0 then
14: Γa[k, item]← - Identity(na+1)

15: FM2(i, j)← 0
16: else
17: Γa[k, item]← Zero(na+1)

18: end if
19: end for
20: if i == L then
21: Γ a[k, item+ 1]← Zero(na+1)

22: end if
23: end for
24: end for

D. Code checking example

This example is to double check the constraint selec-
tion matrix Γa. The idea of this example is to select
the Aij,0, ...Aij,na

by using identity matrix Identityna+1

and minus Aji,0, ...Aji,na by using negative identity matrix
- Identity(na+1), FM1 and FM2 are matrices used as flags
to track whether a pair (i, j) or its inverse (j, i) has been
processed. By comparing the difference of matrices in two-
way generating, the code implementation could be checked

E. The structure of Q3 and θ3 for estimating the target
subnetwork

1) The parameters vector θ3

θ3 =
[
θTAjj θTAjd θTBj

]
The vectors θAjj , θAjd and θBj

are given by,

θAjj =


θa1
θa2

...
θaLJ

 , θai =


θa1j
θa2j

...
θaLJj

 , θaij =


aij,0
aij,1

...
aij,na

 ,

with i, j = 1, .., LJ

(99)

θAjd =


θa1
θa2

...
θaLJ

 , θai =


θa1j
θa2j

...
θaLJj

 , θaij =


aij,0
aij,1

...
aij,na

 ,

with i = 1, .., LJ and j = LJ + 1, .., LS

(100)

θBj =


θb1
θb2

...
θbLJ

 , θbi =


θb1j
θb2j

...
θbLJj

 , θbij =


bij,0
bij,1

...
bij,nb

 ,

with i = 1, .., LJ and j = 1, ..,K
(101)

where, LJ × LJ is the dimension of the target subnetwork
matrix AJJ , LJ × LS is dimension of the immersed network
Aim(p), θAjj is a vector L2

J(na + 1) × 1, θAjd is a vector
LJLD(na + 1)× 1 with LD = LS − LJ and θBj is a vector
LJK(nb + 1) × 1. Collecting the parameters θAjj and θAjd

in the matrix A independently can make the construction of
the regressor matrix more convenient.

2) The structure of the regressor Q3

Recall the definition of Ωka, Ωkb in (77) and the definition
of the element (i, j) for the polynomial matrix A(p),B(p) for
frequency in (78) but separated for AJJ and AJD as, element
defined as,

ãJij
(Ωk) =

na∑
ℓ=0

aJJij ,ℓΩ
ℓ
k,

ãDij
(Ωk) =

na∑
ℓ=0

aJDij ,ℓΩ
ℓ
k,

b̃ij(Ωk) =

nb∑
ℓ=0

bJij ,ℓΩ
ℓ
k.

(102)

Define the data vectors for the frequency sample Ωkaim,
Ωkbim for the immersed network, which maintains the same
structure as (77) but with different order as naim

and nbim ,
respectively. The known immersed polynomial matrix Âim(η̂)
and B̂im(η̂) in frequency can be defined as Âim(Ωk, η̂) and
B̂im(Ωk, η̂), with theirs (i, j) element defined as,

âIMJij (Ωk) =

naim∑
ℓ=0

aIMJJij ,ℓΩ
ℓ
k,

âIMDij (Ωk) =

naim∑
ℓ=0

aIMJDij ,ℓΩ
ℓ
k,

b̂IMJij (Ωk) =

nbim∑
ℓ=0

bIMJij ,ℓΩ
ℓ
k,

(103)

where âIMJij
(Ωk) and âIMDij

(Ωk) are the estimation fre-
quency response data with each frequency point for each
element in the estimated ÂJJ and ÂJD, respectively. The first
equation in (67) can be expanded as.
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M3 =

 Ja11 Ja12 · · · Ja1LD

...
...

...
...

JaLJ1 JaLJ2 · · · JaLJLD


−

 Da11 Da11 · · · Da1LD

...
...

...
...

DaLJ1 DaLJ2 · · · DaLJLD

 ,

(104)

where, Jaij and Daij are given by

Jaij = âIMD1j
ãJi1

+ âIMD2j
ãJi2

+ · · ·+ âIMDLJj
ãJiLJ

,

Daij = âIMJi1
ãD1j

+ âIMJi2
ãD2j

+ · · ·+ âIMJiLJ
ãDLJj

,

with i = 1, ..., LJ and j = 1, ..., LD.
(105)

The second equation in (67) can be expanded as

M4 =

 Jb11 Jb12 · · · Jb1K
...

...
...

...
JbLJ1 JbLJ2 · · · JbLJK


−

 Bb11 Bb11 · · · Bb1K

...
...

...
...

BbLJ1 BbLJ2 · · · BbLJK

 ,

(106)

where, Jbij and Bbij are given by

Jbij = b̂IMJ1j
ãJi1

+ b̂IMJ2j
ãJi2

+ · · ·+ b̂IMJLJj
ãJiLJ

,

Bbij = âIMJi1
b̃J1j

+ âIMJi2
b̃J2j

+ · · ·+ âIMJiLJ
b̃JLJj

,

with i = 1, ..., LJ and j = 1, ...,K.
(107)

Extracting all the parameters defined as the column vector
θ3 in (100), (100) and (101) from M3 and M4, the regressor
Q3 is given by

Q3 =
[
ΠA3 ΠB3

]T
, (108)

with
ΠA3 =

[
ΠA31 −ΠA32

]
,

ΠA31 = ILJ
⊗ (ÂJD(Ωk, η̂)

T ⊗ Ωa),

ΠA32 = ÂJJ(Ωk, η̂)⊗ (ILD
⊗ Ωa),

(109)

and
ΠB3 =

[
ΠB31 −ΠB31

]
,

ΠB31 = ILJ
⊗ (B̂J(Ωk, η̂)

T ⊗ Ωa),

ΠB32 = ÂJJ(Ωk, η̂)⊗ (IK ⊗ Ωb).

(110)

The dimensions of Q3 for each frequency point is
[LJ(LD + K)] × [LJLS(na + 1) + LJK(nb + 1)], and for
the number of F frequency data, Q3 can be collected in
[LJ(LD +K)]× [LJLS(na + 1) + LJK(nb + 1)]× F .

F. FRF estimation for a faulty 7 node network
The 7-node faulty network model example with only open

circuit in L34 is shown here. The full excited and full mea-
surement setup with the same types of excitation signals and
noise signals as in Example 2 is given. The frequency band is
set between 500 Hz and 6000 Hz. The FRF estimation of this
continuous-time seven-node defect model with the true FRF
of the healthy model is shown in Fig. 23.
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[15] R. A. González, C. R. Rojas, S. Pan, and J. S. Welsh, “On the rela-
tion between discrete and continuous-time refined instrumental variable
methods,” IEEE Control Systems Letters, vol. 7, pp. 2233–2238, 2023.

[16] H. Garnier, M. Gilson, H. Muller, and F. Chen, “A new graphical user
interface for the CONTSID toolbox for matlab,” IFAC-PapersOnLine,
vol. 54, no. 7, pp. 397–402.

[17] A. G. Dankers, P. M. J. Van den Hof, and X. Bombois, “Direct and
indirect continuous-time identification in dynamic networks,” in 53rd
IEEE Conference on Decision and Control, pp. 3334–3339, 2014.

[18] H. Garnier, L. Wang, and P. C. Young, Direct identification of
continuous-time models from sampled data: Issues, basic solutions and
relevance. Springer, 2008.

[19] M. Gilson, H. Garnier, P. C. Young, and P. M. J. Van den Hof,
“Instrumental variable methods for closed-loop continuous-time model
identification,” Identification of continuous-time models from sampled
data, pp. 133–160, 2008.

[20] A. Dankers, P. M. J. Van den Hof, X. Bombois, and P. S. Heuberger,
“Errors-in-variables identification in dynamic networks by an instru-
mental variable approach,” IFAC Proceedings Volumes, vol. 47, no. 3,
pp. 2335–2340, 2014.

[21] K. R. Ramaswamy, P. Z. Csurcsia, J. Schoukens, and P. M. J. Van den
Hof, “A frequency domain approach for local module identification in
dynamic networks,” Automatica, vol. 142, p. 110370, 2022.

[22] D. Liang, “Continuous-time identification of diffusively coupled net-
works.” Internship Report, 2023.

[23] P. Express, “Basic components overview,” 2021. Available at https:
//www.protoexpress.com/kb/basic-components-overview/.

[24] Seeedstudio, “13 common pcb soldering problems to avoid,”
2021. Available at https://www.seeedstudio.com/blog/2021/06/18/
13-common-pcb-soldering-problems-to-avoid/.

[25] M. Mesbahi and M. Egerstedt, “Graph theoretic methods in multiagent
networks,” in Graph Theoretic Methods in Multiagent Networks, Prince-
ton University Press, 2010.

[26] R. Pintelon, J. Schoukens, and H. Chen, “On the basic assumptions in the
identification of continuous time systems,” IFAC Proceedings Volumes,
vol. 27, no. 8, pp. 1105–1114, 1994.

[27] R. Pintelon and J. Schoukens, System identification: a frequency domain
approach. John Wiley & Sons, 2012.

[28] R. Pintelon, J. Schoukens, G. Vandersteen, and K. Barbé, “Estimation
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