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Abstract—This thesis proposes a local model-based method for
fault detection and diagnosis (FDD) within large-scale intercon-
nected network systems, using the dynamic network framework.
The classical auto- and cross-correlation methods are adapted to
validate the model of the local system, ensuring an accurate model
for the subsequent FDD procedure. Employing the developed
model validation tests, an algorithm based on combinatorial op-
timization is developed to generate the optimal model validation
test for local fault detection. The model validation tests also
serve as the basis for developing a fault diagnosis algorithm that
facilitates accurate fault locating. Additionally, the proposed fault
diagnosis approach specifies the necessary location of external
excitation signals within the local system to achieve such accurate
fault locating. In summary, this research offers a robust, scalable
solution that addresses FDD challenges in interconnected network
systems.

Index Terms—Faults, Interconnected systems, Dynamic net-
work, Model validation, correlation test

I. INTRODUCTION

Large-scale interconnected network systems have become
ubiquitous in modern society, from power grids [1] to dis-
tributed control systems [2], communication networks [3],
and more. These systems are designed to connect different
subsystems and components to achieve specific goals, such as
the efficient transfer of power, data, or goods. However, these
systems are also prone to faults, which can have significant
consequences, including reduced efficiency, increased costs,
and even catastrophic failures. Faults in interconnected net-
work systems can be caused by a wide range of factors, includ-
ing equipment failures, communication errors, environmental
factors, and cyberattacks [4], [5]. Detecting and diagnosing
these faults is essential to maintaining the reliability and
performance of these systems. However, the interconnection of
multiple subsystems and the sheer complexity of these systems
make fault detection and diagnosis a challenging task.

To address this challenge, this research aims to develop
techniques for fault detection and diagnosis (FDD) in inter-
connected network systems. As the first phase of FDD, Fault
detection (FD) involves determining whether the behavior of
a system deviates from its normal state [4]. The detection
of faults is crucial to ensure that a system performs its
functions effectively and to prevent system breakdown. Fault
diagnosis, on the other hand, follows fault detection and entails

identifying the fault’s location, type, and severity. It can also
involve the implementation of measures to rectify the fault.
The primary objective of fault diagnosis is to restore the
system to its normal state as quickly and effectively as possible
[4], [6].

FDD is often carried out using three main types of methods,
data-driven methods, knowledge-based methods, and model-
based methods [6]. Data-driven methods employ training and
learning to forge a representation of system behavior and
analyze historical data from the systems to detect patterns
indicating the presence of faults [6]. The neural network
[7], pattern recognition [8], and fuzzy logic [9] methods are
illustrative of the data-driven FDD methods [10]. Knowledge-
based approaches utilize statistical methods that often employ
graphical models to indicate potential cause-effect relation-
ships of faults. These methods include dependency graphs
[11], Petri nets [12], Bayesian networks [13], fault trees [14],
and binary decision trees [15]. Model-based methods depend
on a mathematical system model for monitoring purposes.
This model is employed to simulate the system behavior, and
deviations from the anticipated behavior are intended to be
detected and potentially diagnosed as faults. The model-based
methods rely on the consistency check between the predicted
and measured time series data, using tools such as parameter
estimation, observers, and analytical redundancy [5], [16].

For large-scale interconnected network systems, FDD is
more challenging due to complex structures and the large
amount of data. At the same time, the presence of loops
in these network systems amplifies the impact of faults and
makes it more challenging to accurately locate and diag-
nose them. Despite the existence of various data-driven and
model-based FDD approaches, each with its advantages and
limitations, none of them currently is sufficient to detect
and diagnose all types of faults in a complex interconnected
system [6], [17]. Data-driven AI approaches are evidenced
as a viable way to address this challenge, demonstrating the
increasing sophistication of current machine learning systems
[6]. However, it relies heavily on the availability and quality of
training data, which can limit their effectiveness in detecting
and diagnosing faults when data is scarce or imbalanced [17],
and there was no discussion of explainable AI, where the de-
cisions made by algorithms could be justified [6]. The model-



based approach incorporates the physical understanding of the
system’s interconnections, making it possible to accurately
reflect the topology of the network system. Additionally, it
is also regarded as a viable approach for tackling the chal-
lenge of FDD in large-scale interconnected network systems.
Nevertheless, there are also evident challenges associated with
employing this approach. Calibrating models for large-scale
systems to align with real systems is more challenging [7],
meanwhile, the scalability of models and FDD methods has
to be ensured which is crucial for their rapid and reliable
application to systems of varying scales [18].

In recent years, there has been a growing interest in utiliz-
ing data-driven modeling for interconnected networks within
the field of system identification, employing the dynamic
network framework. The term ‘dynamic networks’ typically
denotes large-scale spatially interconnected systems, com-
posed of directed interconnections of transfer functions or
modules represented as links or edges, and the interconnecting
signals represented as vertices or nodes. In the case of an
interconnected network system, this dynamic network model
can illustrate the input–output behavior between each pair of
observed signals, as well as the system’s spatial structure,
referred to as the system topology. Research on data-driven
modeling for interconnected systems using the dynamic net-
work framework has yielded several methods that consistently
estimate a multi-input-multi-output (MIMO) model of the
entire network system [19] and a multi-input-single-output
(MISO) model of a local subnetwork within the system [20]–
[23]. Furthermore, the study [24] employs an empirical Bayes
method to reduce the computational cost of the data-driven
modeling procedure for a local MISO subnetwork, ensuring
the scalability of the modeling methods. These studies within
the dynamic network framework offer opportunities to develop
scalable and distributed model-based FDD methods based on
local subnetworks, thus addressing the complexity of FDD in
large-scale interconnected network systems. Consequently, the
central research question in this thesis is: What procedure do
we need to follow to perform local model-based fault detection
and diagnosis for an interconnected network system, using its
model in the dynamic network framework?

In this thesis, we focus on local model-based FDD within
an interconnected network system, relying on MISO models of
specific local parts. Throughout this thesis, these specific local
parts are referred as target MISO subnetworks. Consequently,
to achieve comprehensive FDD across the entire network
system, one can execute FDD for each MISO channel within
the system.

The MISO models of the original healthy systems can
be obtained through estimation procedure using local iden-
tification methods [20]–[23], or other feasible modeling ap-
proaches such first principle modeling or empirical transfer
function estimate (ETFE). If the acquired MISO model is
not sufficiently accurate, denoting the presence of model
errors, the subsequent model-based FDD procedure could be

compromised, potentially leading to inaccurate detection and
diagnosis [25]. One strategy for mitigating or even nullifying
the effects of model error on FDD, as described in [25], is
to use a robust residual generator. This can generate data
that are hardly affected by model errors, which facilitates
the subsequent FDD procedure. However, this technique often
requires significant computational resources and complicated
threshold adjustments. An alternative approach to circumvent-
ing the effects of model error is to evaluate the accuracy of
the model before it is used for subsequent application; this
evaluation process is often referred to as model validation.
Once the model is validated, the influences of model errors in
the FDD process are considered negligible, meaning that any
anomalies discovered later are not due to model errors. For
complicated and large-scale network systems, it is essential to
avoid excessive computation and complicated threshold tuning
during the FDD process.

Therefore, in this study, we begin by performing model
validation for the target MISO network, to facilitate subsequent
FDD procedures. However, the study on model validation
within the dynamic network framework is relatively limited in
the current literature. In my previous internship work, I demon-
strated that classical standard auto- and cross-correlation tests
[26] could be adapted to the dynamic network framework.
Nevertheless, the performance of those standard correlation
tests is suboptimal in the dynamic network framework, and
conservative assumptions on the network systems are required
at the same time. Additionally, there are other validation tools
for the open- and closed-loop systems in current literature
[27], [28] that can be generalized to the dynamic network
framework. Consequently, the first objective of our research
is to develop a validation technique for local dynamic net-
work scenarios that outperforms conventional auto- and cross-
correlation tests in flexibility, stability, and efficiency.

Following the successful validation of the local MISO
subnetwork model, it becomes imperative to develop a model-
based FDD procedure based on the dynamic network frame-
work. Model-based FDD operates on the principle of model
invalidation. By utilizing an accurate model of a fault-free sys-
tem, one can assess whether new data continues to validate this
model. If the model remains validated by the updated data, it
suggests the system is still in a healthy state. Conversely, inval-
idation may indicate potential faults, possible with information
for further diagnosis. For model-based FDD, the two primary
techniques for model invalidation are parameter estimation
and residual analysis [25]. The parameter estimation method
uses a reference model for a healthy system and re-identifies
the local subnetwork based on updated data. Deviations from
the reference model serve as the basis for fault detection
and further diagnosis [25]. However, this approach demands
heavy computational resources and conservative conditions on
the input excitation signals, and is therefore not explored in
this study. The residual analysis method compares the system
measurements to analytically computed values from the model,
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the discrepancy between them is indicative of the presence of
faults in the system [25]. Relative to parameter estimation,
residual analysis has fewer requirements on excitation and
computation sources, making it better suited for large-scale
network systems. By organizing the subsequent study on the
FDD into the fault detection phase and the diagnosis phase,
we set the second objective of this study to develop a fault
detection approach based on residual analysis.

In interconnected network systems, structural complexity
significantly complicates fault diagnosis, which makes these
systems vulnerable to faults that can propagate through their
interconnected structure. Following the detection of a fault
in the target MISO subnetwork, pinpointing the origin of the
fault becomes the primary task for fault diagnosis that leads to
subsequent system maintenance. Therefore, the third objective
of our study is to develop a fault diagnosis procedure using
residual analysis within the target MISO subnetwork, aiming
to accurately determine the root cause of the detected fault.

The paper begins by laying the preliminary knowledge
of dynamic networks and faults in engineering systems in
Chapter II. In Chapter III, we present the developed model
validation tests for local subnetworks, along with numerical
illustrations of test performance. Chapter IV introduces our
model-based fault detection methods, supported by the algo-
rithms we have developed. Chapter V addresses additional
algorithms tailored to model-based fault diagnosis, focusing
on localizing the fault’s root cause with minimal scope. The
proposed model-based FDD procedure is illustrated numeri-
cally in Chapter VI. Concluding remarks and future research
directions are provided in Chapter VII.

II. PRELIMINARIES

A. Dynamic network

Following the setup as in [20], a dynamic network model is
built up of L node signals wj(t), j 2 L with L = [1, L] the
index set of all node signals. Then the network can be written
in an MISO structure as:

wj(t) =
X

k2Nj

G0
jk
(q)wk(t) +R0

j
rj(t) + vj(t), (1)

where q�1 is the delay operator, i.e. q�1u(t) = u(t� 1);

• G0
jk
(z) is a rational module transfer function which

is referred to as a module in the dynamic network,
representing a direct causal connection from wk to wj ;

• Nj is the set of indices of node signals wk, k 6= j,
for which G0

jk
6= 0, representing the set of indices of

measured signals with direct causal connections to wj ,
as referred as the in-neighbors of node wj [20];

• rj is an external excitation signal which is quasi-
stationary and can be manipulated by users [29];

• R0
j

is a binary selection variable, R0
jl

= 1 indicates the
excitation signal rj(t) is present and R0

j
= 0 indicates

rj(t) is not present;
• vj is a process noise, where the vector process v =

[v1 · · · vL]
> is modeled as a stationary stochastic process

with rational spectral density, such that there exists a
p-dimensional independent white noise process e :=
[e1 · · · ep]

> , p  L, with covariance matrix ⇤0 > 0 and
variance of each innovation source �2

ei
> 0, i 2 [1, p].

The proper rational transfer function matrix H0(q) such
that v(t) = H0(q)e0(t).

We will assume that the standard regularity conditions on
the data are satisfied that are required for the convergence of
the prediction error identification method and the convergence
in distribution1.

Omitting q, t and combining the L node signals, the full
dynamic network can be written in a single matrix equation:
2

6664

w1

w2
...

wL

3

7775
=

2

66664

0 G0
12 · · · G0

1L

G0
21 0

. . . G0
2L

...
. . . . . .

...
G0

L1 G0
L2 · · · 0

3

77775

2

6664

w1

w2
...

wL

3

7775

+R0

2

6664

r1
r2
...
rL

3

7775
+H0

2

6664

e1
e2
...
ep

3

7775

= G0w +R0r +H0e

=
�
I �G0

��1
(R0r +H0e).

(2)

Additionally, the noise transfer function matrix H0 satisfies
the following:

• When p = L, referred to as the full-rank noise case, H0

is square, stable, monic and minimum-phase [19], [20];
• When p < L, referred to as the singular or rank-reduced

noise case, H0
2 R

L⇥p(z) is stable and has a stable left
inverse H† that satisfies H†H = I 2 R

p⇥p [19], [23].

The dynamic networks and their components considered in
this research are further restricted by the following assumption.

Assumption 1. We consider a dynamic network with the
additional properties that,

a. All module transfer functions in the network are strictly
proper and stable;

b. The network is well-posed in the sense that all principal
minors of (I �G0(1)) are nonzero [31];

c. (I �G0)�1 is proper and stable;

1See [26] page 249 and [30] Lemma B.3. This includes the property that the
noise signals e(t) and applied excitation signals r(t) have finite forth-order
moments.
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d. All node signals w are nonzero and no nodes are noise-
free;

e. Each node can only be directly influenced by one innovation
source.2

Assumption 1 guarantees the properness and stability of the
mappings from the network’s external signals r and v to its
internal signals w. Furthermore, based on item e that all node
signals w are nonzero, the assumption ensures that each node
gets passed through by at least one of the existing external
signals r and v. In this study, for the model validation in the
dynamic network framework, the internal node signals do not
necessarily require sufficient excitation by the external signals
r and v, they only need the nonzero assumption of item e.

B. Network and noise topology

To streamline the discussion of network interconnection
structure (topology) in subsequent chapters, we introduce the
following definitions. To specify the network topology, we
utilize a directed graph that captures both the locations and
causal directions of module transfers within the network. This
graph can be mathematically represented by a binary matrix,
TG 2 R

L⇥L, as defined in [20]:

TG(j, i) = 0, if G0
ji
⌘ 0;

TG(j, i) = 1, elsewhere.
(3)

Because of the interconnection structure that we consider as in
Eq. (1) it follows that TG(i, i) = 0, 8i 2 L. In this study, the
network topology TG of the data-generating system is assumed
to be known.

Similarly, we define another adjacency matrix TH 2 R
L⇥p

to represent the noise topology of the network as follows:

TH(j, i) = 0, if H0
ji
⌘ 0;

TH(j, i) = 1, elsewhere.
(4)

To streamline the utilization of information derived from
the network and noise topology, we further introduce the
subsequent set definitions.

Definition 1. We define the following sets of node indices
based on the network topology TG and noise topology TH :

• Set Ci is defined as the set of node indices k for which
either a directed path through modules exists from wk to
wi, or from wi to wk with k 6= i, or both wk and wi are
influenced by the same innovation source. The index of
the node wi itself will always be in Ci. With respect to
correlation, the set Ci encompasses all node signals that
exhibit correlation with wi;

• Set Ji is defined as the set of node indices k where a
directed path through modules exists from wi to wk and

2The item e and f of Assumption 1 allow us to construct the full MISO
predictor model for the model validation purpose around any chosen output
node wj .

the index of the node wi itself will also be in Ji. Notably,
set Ji is a subset of Ci by definition, i.e. Ji ⇢ Ci;

• Set Vj is defined as the set of node indices k for which
an innovation source ej that directly influences wj has a
path to wk

3.

To clarify the defined notations, consider Fig. 1, where the
MISO subnetwork centered around the output node w3 serves
as our target subnetwork. In this case, we have j = 3, Nj =
{2, 4} and Vj = {1, 2, 3, 4}. From the in-neighbours w2 and
w4, we derive the sets C2 = J2 = {1, 2, 3, 4} and C4 = J4 =
{1, 2, 3, 4} based on the definition.

G
0
21

H
0
11 G

0
42

w1 w2
G

0
32

w3

w4

G
0
34G

0
14

H
0
41

e1

H
0
22 H

0
32

e2

Fig. 1. Example network with target local MISO subnetwork around output
node w3.

C. One-step-ahead prediction error

The parameterized models {Gjk(q, ✓), Hj(q, ✓)}4 for k 2
Nj as described by Eq. (1) can serve as the basis for predicting
the output wj(t) of the local subnetwork. For this study of
model validation in the local MISO subnetwork, we utilize
the MISO one-step-ahead predictor model from [20]. Consider
the node signal wj(t) to be the variable subject to prediction,
the predictor uses known variables, specifically wNj , i.e. wk

for k 2 Nj , along with rj and prior values of wj . The one-
step-ahead predictor for wj is defined as ŵj(t | t � 1; ✓) :=
Ē{wj(t) | w

t�1
j

, wt�1
Nj

, rt
j
; ✓}5. Subsequently, the structure of

the MISO predictor for model validation, which uses full input
signals, i.e. wk, 8k 2 Nj , is as follows:

ŵj(t | t� 1; ✓) = (1�H�1
j

(q, ✓))wj(t)

+H�1
j

(q, ✓)(
X

k2Nj

Gjk(q, ✓)wk(t) + rj(t)). (5)

Remark 1. The choice of predictor model can vary when
changing to the identification scenario. Depending on different

3A directed path through wj can induce delays in the dynamic transfer due
to the strict properness of G, while a directed path disjoint from wj may
result in no delays of the dynamic transfer since H can be monic.

4Without losing generalizability, we assume the Box-Jenkins (BJ) model
structure [26] for the obtained plant and noise models.

5
Ē refers to limN!1

1
N

P
N

t=1 E, and w`

j
and w`

Nj
refer to signal

samples wj(⌧) and wk(⌧), k 2 Nj , respectively, for all ⌧ 6 `.
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assumptions about network structures and noise properties, the
predictor structure can change from MISO structure to MIMO
structure [19], [32], and also from full input setup to partial
input setup [33], [34]. However, although a dynamic network
model can be obtained from different identification methods
using different predictors, the validation procedure of the
model can always be done with the MISO predictor as the Eq.
(5) under Assumption 1. Particularly in this study, we select
all in-neighbors of the variable to be predicted, based on the
network topology TG, to formulate the MISO predictor. This
selection strategy could be extended to scenarios involving
partial inputs in a MISO predictor for model validation.

Following from the predictor in Eq. (5), the subsequent
prediction error is defined as "j(t, ✓) := wj(t)�ŵj(t | t�1; ✓)
and can also be expressed in a MISO setup as follows:

"j(t, ✓) =

Hj(q, ✓)
�1(

X

k2Nj

�Gjk(q, ✓)wk(t) +H0
j
(q)ej(t)),

(6)

where �Gjk(q, ✓) = Gjk(q, ✓) � G0
jk
(q). Having obtained

both the module transfer function models and the noise model
{Gjk(q, ✓̂N ), Hj(q, ✓̂N )}, we can consider the prediction error
as an estimate of the innovation source ej(t) at node wj . In
this study, this error will also be referred to as the residual
signal at node wj .

Remark 2. The notations for the noise model Hj(q, ✓)
and the innovation source ej are adopted from [20], which
assumes full-rank uncorrelated noise for the dynamic network
framework. In this study, which considers the reduced-rank
correlated noise framework, we can continue to use the same
notations Hj(q, ✓) and ej for simplicity. This is justified under
Assumption 1, stipulating that each node is influenced by a
single disturbance. This assumption implies that each node
is directly influenced by only one single innovation source
and one noise model, even for the scenario with reduced-rank
correlated noise, where the innovation source ej and noise
model Hj(q, ✓) may not be unique for each node wj . However,
when our focus is on predicting the output of a specific node
wj within the target MISO subnetwork, the noise model and
innovation source are always present solely. Therefore, we can
unambiguously use ej and Hj(q, ✓) to refer to the specific
innovation source and noise model for the chosen target MISO
subnetwork. And to guarantee a unique representation of Eq.
(6), the noise model Hj(q, ✓) of the target MISO subnetwork
is restricted to be monic for the subsequent residual analysis.

Building upon existing work in local dynamic network
identification [20], [21], [23], it is possible to have accurate
models of both the module and noise transfer functions
{Gjk(q, ✓), Hj(q, ✓)}. The accurate models are obtained from
consistent estimations achieved by minimizing the quadratic

prediction error criterion VN (✓) = 1
N

P
N�1
t=0 "2

j
(t, ✓) � �2

ej

6.
The criterion reaches its unique minimum when the estimated
parameter:

✓̂N = arg min
✓

VN (✓). (7)

Under standard -weak- assumptions1, the estimated param-
eter converges in the number of data N , to satisfy [35]:

✓̂N ! ✓⇤ w.p.1 as N !1, (8)

with ✓⇤ = arg min✓ Ē "2
j
(t, ✓), where Ē := 1

N

P
N�1
t=0 E

and E is the expectation operator. A consistent estimate is
obtained if {Gjk(q, ✓⇤), Hj(q, ✓⇤)} = {G0

jk
(q), H0

j
(q)} [20],

[36]. In such cases, the residual signal "j(t, ✓⇤) is identical
to the innovation source ej(t), as dictated by Eq. (6). We
refer to the situation that "j(t, ✓⇤) = ej(t) by saying that the
innovation source ej(t) is also consistently estimated.

Assuming that only the models Gjk(q, ✓) are obtained for
the target local subnetwork, the prediction error in Eq. (6) turns
into an estimation of the disturbance vj on node wj which is
expressed as:

vj(t, ✓) =
X

k2Nj

�Gjk(q, ✓)wk(t) +H0
j
(q)ej(t). (9)

In this research, vj(t, ✓) is also referred to as the predicted
disturbance. There are certain identification algorithms, such
as the Two-Stage method [20] and the Instrumental Variable
method [37] which can give accurate models of module
transfer functions Gjk(q, ✓) without consistently estimating
the noise model Hj(q, ✓). Therefore, under the scenario that
only the accurate model of {Gjk(q, ✓)} is obtained, i.e.
Gjk(q, ✓⇤) = G0

jk
(q), the equation vj(t, ✓⇤) = vj(t) holds

based on Eq. (9). Therefore, the disturbance vj(t) on node wj

is said to be also consistently estimated.

Remark 3. For model-based FDD, models consistently
estimated using dynamic network identification can serve as
the accurate models for the ensuing FDD procedure. However,
within the target MISO subnetwork, some transfer function
models can be obtained through other modeling techniques
such as first principle modeling or ETFE, and some transfers
can be known already, e.g. controllers with known dynamics.
These models can also be used for the FDD procedure in
this research, provided their accuracy. Meanwhile, the pre-
dictor model given by Eq. (5), alongside the construction of
the residual "(t, ✓) and the predicted disturbance v(q, ✓) as
described in Eq. (6) and Eq. (9) respectively, is adaptable to
models derived from the above methods.

For simplicity of notation, we use the notation Ĝjk(q) and
Ĥj(q) to denote the module transfer models and the noise

6The local transfer functions {Gjk(q, ✓), Hj(q, ✓)} can also be obtained
by doing a MIMO network identification with the criterion V̄ (✓) =
1
N

P
N�1
t=0 ">(t, ✓)Q"(t, ✓), with " = ["1, ..., "L]> and the weighted matrix

Q � 0 [19].
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model used for FDD, which can be obtained from identifi-
cation, first principle modeling, ETFE, known dynamics, etc.
Additionally, we will denote the residual from Eq. (6) as "̂j(t)
and the predicted disturbance from Eq. (9) as v̂j(t).

D. Fault in dynamic network framework

Real-world system faults exhibit varying temporal behaviors
and can be categorized into three primary types: abrupt,
intermittent, and incipient faults, as delineated in the literature
[4], [5]. These faults f(t) can be represented as deviations of
the internal system behavior or measured signals from their
nominal conditions. Within the context of a dynamic network
framework, an abrupt fault manifests as a sudden and lasting
deviation in the network, often modeled as a step change, as
illustrated in Fig. 2 (a). Intermittent faults arise at irregular
intervals and are typically modeled as a composite of impulses,
as depicted in Fig. 2 (c). Incipient faults gradually evolve
within the system and are commonly modeled as a ramp
change, as shown in Fig. 2 (b).

b
a

f

t

c

f

t

Fig. 2. Time dependency of faults: (a) abrupt; (b) incipient; (c) intermittent
[4].

Beyond their temporal behaviors, faults in real-world sys-
tems can also be classified as either additive or multiplicative,
as established in previous studies [4], [5]. Additive faults
influence process variables by introducing an external bias,
often correlating with sensor faults in real-world systems.
Multiplicative faults impact the system’s transfer behavior, typ-
ically manifesting as parameter changes. Within the dynamic
network framework, we postulate that additive faults first affect
the node signals w in the data-generating system and may
propagate through the network’s paths and loops depending
on whether the faulty node is connected to a feedback loop.
The additive fault is as shown in Fig. 3 (a). Conversely, we
propose that multiplicative faults influence the module transfer
function G0, consequently propagating through the network to
impact other node signals. The multiplicative fault is as shown
in Fig. 3 (b).

w0(t)

f(t)

wf (t) = w0(t) + f(t) w0(t)

f(t)

wf (t) = (G(q) + f(t))w0(t)
G(q)

(a) (b)

Fig. 3. Basic fault models: (a) additive fault for an output signal; (b)
multiplicative fault [4].

To streamline the problem scope without undermining its
generality, we focus solely on abrupt multiplicative faults
within the dynamic network framework. In this study, we
classify these abrupt multiplicative faults into a generalized
category, formulated as the following assumptions:

Assumption 2. Consider a nonzero module G0
jk
(q) in the

data-generating system, a fault f(t) leads to module G0
jk
(q)

turning into a faulty module Gf

jk
(q), which is denoted as

G0
jk
(q)  Gf

jk
(q). The faulty module Gf

jk
(q) 6= G0

jk
(q), and

it is assumed to be strictly proper and stable.

When the faulty module Gf

jk
(q) = 0, the fault f(t) can be

interpreted as a topology change, indicating the removal of
an edge in the network. In the general case where Gf

jk
(q) 6=

0, the faulty module Gf

jk
(q) is assumed to be strictly proper

and stable, in accordance with Assumption 1. Given that an
improper and unstable Gf

jk
(q) could result in system instability

and potential failure, such cases are deliberately excluded from
the fault detection and diagnosis scenarios considered in this
study.

In response to faults under Assumption 2, the statistics of
the residual "̂j(t) and the predicted disturbance v̂j(t) diverge
from those of ej(t) and vj(t) as in Eq. (1). Consequently,
we opt for utilizing the residuals and predicted disturbances
in constructing tests, which help to invalidate the dynamic
network model when the system is no longer identical to the
model. Ideally with a validated model of the target MISO
subnetwork for FDD, the divergence of the residual "̂j(t) and
the predicted disturbance v̂j(t) from ej(t) and vj(t) can only
be obtained when a faulty module Gf

jk
(q) occurs.

Thus, we begin by introducing a model validation approach
for local dynamic network models which ensures the accuracy
of the models used in the FDD process. When using a
validated, accurate model in the fault detection phase, any
data deviations that invalidate the accurate model directly
indicate a detected fault. At the same time, the residuals
generated between the faulty system and the accurate model
provide better insight into the fault, unaffected by model
errors, enriching the subsequent fault diagnosis protocol.

III. LOCAL SUBNETWORK MODEL VALIDATION

A. Problem definition

The model validation procedure assesses whether the model
of a dynamic system aligns with its intended application.
Regarding local MISO subnetwork model validation for the
application of FDD, the primary aim is to ascertain the
accuracy of all transfer function models within the MISO
subnetwork.

Consider a data-generating system denoted by
{G0(q), H0(q)} and specific models {Ĝjk(q), Ĥj(q)}
for k 2 Nj corresponding to all modules with the target
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MISO subnetwork. The local subnetwork model validation test
aims to determine if the measured data set {wNj (t), wj(t)} -
potentially together with external input data ri(t) - provides
evidence to reject at least one of the null hypotheses:

• Hypothesis Ha: In the target MISO subnetwork, the
obtained models {Ĝjk(q), Ĥj(q)} of all transfers are identi-
cal to the corresponding transfers from the data-generating
system {G0(q), H0(q)} such that Ĝjk(q) = G0

jk
(q) and

Ĥj = H0
j
(q), thus "̂j(t)

4
= ej(t) is white noise of zero mean

and variance denoted by �2
ej

. Consequently, it is uncorrelated
with itself and independent of the historical values of the input
signals.

• Hypothesis Hb: In the target MISO subnetwork, the
obtained models Ĝjk(q) of all modules are identical to the
corresponding modules from the data-generating system G0(q)

such that Ĝjk(q) = G0
jk
(q), thus v̂j(t)

4
= vj(t).

If the models of the local subnetwork pass the model valida-
tion test, the obtained models of the target MISO subnetwork
{Ĝjk(q), Ĥj(q)} (or Ĝjk(q)) are considered validated by the
data {wNj (t), wj(t)} [38]. Users can select their test objective
based on either of the above two hypotheses, depending on
their requirement for an accurate local noise model, Ĥj(q).

Remark 4. In the context of this thesis, it is important to
note that strictly speaking, a certain hypothesis or model can
only be invalidated based on the available data and tests.
However, for the sake of simplicity, we will use the term
’validated’ to describe a hypothesis or model that could not
be invalidated through our testing procedures.

The validity of Ha and Hb can be checked using tests on the
sample autocorrelation function of the residual "̂j(t) and the
sample cross-correlation function between either the residual
"̂j(t) or the predicted disturbance v̂j(t, ), and the historical
values of the predictor inputs wk(t) or ri(t).

Consequently, this chapter is structured as follows: Sec-
tion B introduces tests based on autocorrelation and cross-
correlation functions, Section C discusses the relationship
between these test results and the null hypotheses for sub-
network model validation, and Section D provides numerical
illustrations to support the theoretical findings.

B. Hypothesis testing

1) White noise test (autocorrelation test): Given the esti-
mated residual signal "̂j(t), derived from Eq. (6), we employ
the white noise test to evaluate whether "̂j(t) is asymptotically
self-independent, thereby can be considered a realization of a
white noise process. The theoretical foundation for the white
noise test is as follows:

Consider a white noise sequence "̂j(t) of length N , with
zero mean and variance �2

ej
. Then it follows from a variant of

the central limit theorem as in [35] and [30] that the following
distribution holds:

1
p
N

NX

t=1

2

64
"̂j(t� 1)

...
"̂j(t�M)

3

75 "̂j(t) ⇠ As N

⇣
0,�2

ej
· I

⌘
. (10)

where M represents the number of time lags under con-
sideration, which also serves as the degrees of freedom for
subsequent hypothesis tests.

For the time lag ⌧ 2 [1,M ], the ⌧ :th row of this vector
is
p
NR̂N

"̂j
(⌧), where R̂N

"̂j
(⌧) is the estimated autocorrelation

function defined as follows:

R̂N

"̂j
(⌧) :=

1

N

NX

t=1

"̂j(t)"̂j(t� ⌧). (11)

The asymptotic normal distribution in Eq. (10) consequently
means that the sum of the scaled and squared version of the
statistic R̂N

"̂j
(⌧) over ⌧ will converge to a �2-distribution with

the freedom equal to the total number of the time lags M [35]:

N

�2
ej

MX

⌧=1

⇣
R̂N

"̂j
(⌧)

⌘2
⇠ As �2(M). (12)

Replacing the unknown �2
ej

with the estimate:

�2
ej

=
1

N

NX

t=1

"̂j(t)
2, (13)

does not change the distributions in Eq. (10) and Eq, (12),
asymptotically [35]. Consequently, the hypothesis Ha can be
evaluated using the asymptotic distribution of R̂N

"̂j
(⌧). Tests

established from the literature can be applied for this purpose.

Hypothesis test 1-1 (The standard white noise test) [26].

Given a residual signal "̂j(t) of data length N , the standard
white noise test procedure of testing Ha is:
8
>>>><

>>>>:

if
���R̂N

"̂j
(⌧)

��� 
p
�2/NcN (↵), 8 |⌧ | M, ⌧ 6= 0,

then accept Ha;

if
���R̂N

"̂j
(⌧)

��� >
p
�2/NcN (↵), 9 |⌧ | M, ⌧ 6= 0,

then reject Ha,

(14)

where the residual variance � is estimated from Eq. (13)
and cN (↵) corresponds to the Gaussian distributed process
x ⇠ N (0, 1), such that Pr(x  cN (↵)) = ↵. Commonly, the
probability level ↵ is chosen as 0.95 or 0.99 [28], and the
number of considered lags M remains at the user’s choice.

Remark 5. Theoretically, the risk of rejecting the null
hypothesis when it is actually true, also known as the false
alarm rate, is equal to (1� ↵).

The standard cross-correlation test is considered as a point-
wise test [38]. As demonstrated in Eq. (14), the test evaluates
each sample point of R̂N

"̂j
(⌧) individually to determine if
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it remains within the confidence bounds, while it fails to
consider the correlation between the terms of R̂N

"̂j
(⌧) over

lags ⌧ [38]. A consequence of this is that the many models
with an under-modeling error will not be invalidated by the
test since the correlation in R̂N

"̂j
(⌧), as a result of the under

modeling, remains undetected [27]. Conversely, the subsequent
test treats all samples in R̂N

"̂j
(⌧) as a collective vector. This

approach constructs a vector-valued statistic for hypothesis
testing, based on the distribution presented in Eq. (12).

Hypothesis test 1-2 (The vector-valued white noise test)
[35].

Given a residual signal "̂j(t) of data length N , the vector-
valued white noise test is based on the statistic QBP (N,M)
which is defined as:

QBP (N,M) =
N

⇣
R̂N

"̂j
(0)

⌘2

MX

⌧=1

⇣
R̂N

"̂j
(⌧)

⌘2
, (15)

and the procedure of testing Ha is:
⇢

if QBP (N,M)  c�(↵,M), then accept Ha;
if QBP (N,M) > c�(↵,M), then reject Ha,

(16)

where c� (↵,M) corresponds to the 1�↵ quantile of the �2-
distribution with M degrees of freedom, i.e. for x ⇠ �2 (M)
it follows that Pr (x  c� (↵,M)) = ↵.

The difference between the sample-wise and vector-valued
tests lies in the testing statistics each employs. The sample-
wise test uses each R̂N

"̂j
(⌧) to evaluate only the variance of

each sample point, whereas the vector-valued test employs
QBP (N,M) to evaluate the entire covariance across multiple
lags [38]. Consequently, the outcome of the sample-wise test
is significantly influenced by the sample variance, which in
turn is highly dependent on the system’s signal-to-noise ratio
(SNR). In practical applications, it is also required to manually
inspect the plot of autocorrelation R̂N

"̂j
(⌧) to identify any latent

correlations among sample points, even when they all stay
within the confidence bounds. Despite the infrequent appli-
cation of vector-valued tests in traditional model validation
tasks, as indicated by [38], the limitations of sample-wise test
us enough motivation to move to the vector-valued test for the
model validation task in the dynamic network framework.

A improvement can be made for the statistics QBP (N,M)
following the reasoning of the Ljung-Box test [39]:

QLB(N,M) =
N(N + 2)
⇣
R̂N

"
(0)

⌘2

MX

⌧=1

⇣
R̂N

"
(⌧)

⌘2

N � ⌧
, (17)

and it is shown that the distribution for the Ljung–Box statistic
is closer to a �2(M) distribution than is the distribution for
QBP (N,M) statistic for all sample sizes including small ones.

Hypothesis test 1-3 (The Ljung-Box white noise test).

Given a residual signal "̂j(t) of data length N , the Ljung-
Box white noise test the procedure of testing Ha is:

⇢
if QLB(N,M)  c�(↵,M), then accept Ha;
if QLB(N,M) > c�(↵,M), then reject Ha,

(18)

where QLB(N,M) is calculated as in Eq. (17).

The Ljung-Box white noise test is also a vector-valued
test, but it has not traditionally been employed for classical
model validation tasks. We introduce it in this context as a
supplementary tool for model validation within the dynamic
network framework. For either statistic between QBP (N,M)
and QLB(N,M), there is no clear guide to the choice of
M . If M is chosen too small, there is a danger of missing
the existence of higher-order autocorrelations, but if M is
chosen too large relative to the sample size, its finite-sample
distribution is likely to deteriorate, diverging greatly from the
�2 distribution [40]. According to [30], it is recommended that
the selected value for M should at least exceed the number
of estimated parameters in the model.

For clarity, the three white noise test methods will be
referred to below as Test 1-1, Test 1-2, and Test 1-3.

2) Cross-correlation test: Given a residual signal "̂j(t)
generated from Eq. (6) or a predicted disturbance signal v̂j(t)
generated from Eq. (9), the cross-correlation test is used to
determine whether the residual signal "̂j(t) (or v̂j(t)) can be
considered independent with the prior values of a chosen input
signal uk. The input signal uk is usually chosen within wk

or rk for k 2 Nj . The theoretical foundation for the cross-
correlation test can be outlined as follows:

Consider a residual signal {"̂j(t)}N independent of the past
input signal uk(t), based on [35] and [30], the properties of
the statistic R̂N

"̂juk
are given by:

R̂N

"̂juk
=

1

N

2

64
uk(1) uk(2) · · · · · · uk(N)

. . . · · · · · ·
...

uk(1) · · · uk (N �M + 1)

3

75

| {z }
Puk

⇥

2

64
"̂j (1)

...
"̂j (N)

3

75

| {z }
"̂j

,

(19)
are expected to asymptotically converge to a zero-mean Gaus-
sian distribution as N increases:

R̂N

"̂juk
⇠ As N (0, P ) , (20)

the associated asymptotic covariance matrix is given by:

P =
1

N2
Puk⇤"̂jP

>
uk
, (21)
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with the residual auto-covariance matrix ⇤"̂j = E

h
"̂j "̂

>
j

i
. Eq.

(19) implies that, when scaled and squared, the statistic R̂N

"̂juk

is expected to asymptotically converge to a �2 distribution
with M degrees of freedom [27]:

h
R̂N

"̂juk

i>
P�1

h
R̂N

"̂juk

i
⇠ As �2(M). (22)

The distributions in Eq. (19) and Eq. (22) remain consis-
tent for R̂N

v̂juk
when substituting the residual "̂j(t) with the

predicted disturbance v̂j(t), as per Eq. (19) and Eq. (22).
Subsequently, the hypotheses Ha and Hb can be assessed
through the asymptotic distributions of R̂N

"̂juk
and R̂N

v̂juk
.

Unlike the white noise test, the cross-correlation test within
the dynamic network framework typically cannot directly test
the very basic null hypotheses for the local subnetwork model
validation, Ha and Hb. This is because Ha and Hb assume
that all module transfer functions in the target subnetwork are
accurate. This consequently leads to "̂j(t) and v̂j(t) being
uncorrelated with past values of certain input signals within the
network. Nevertheless, the converse is not guaranteed; demon-
strating that "̂j(t) and v̂j(t) are uncorrelated with past values
of certain input signals can only validate certain modules
within the target MISO subnetwork, which is not sufficient
to validate Ha and Hb. Thus, we need another hypothesis that
focuses only on the signal dependency but not the validity of
all modules in the MISO subnetwork, so that it can be directly
tested by the cross-correlation test. Therefore, we introduce the
following hypothesis, Hc, for subsequent hypothesis testing
involving residual "̂j(t) (or v̂j(t)) and a specific input uk:

• Hypothesis Hc: The residual "̂j(t) (or v̂j(t)) is indepen-
dent of the past values of the input signal uk.

The hypothesis Hc can be directly validated or rejected
using the following established tests from the literature. After
validating Hc, Ha and Hb are possible to be further validated,
which will be illustrated in the following section.

Hypothesis test 2-1 (The standard cross-correlation test).
[35]

Given a residual signal "̂j(t) and an input signal uk(t) of
data length N , the standard cross-correlation test procedure
of testing Hc is:
8
<

:
if

���R̂N

"̂juk
(⌧)

��� 
p
p⌧/NcN (↵), 8⌧ 6= 0, then reject Hc;

if
���R̂N

"̂juk
(⌧)

��� >
p
p⌧/NcN (↵), 8⌧ 6= 0, then accept Hc,

(23)
where p⌧ is the (⌧, ⌧) entry of the asymptotic covariance
matrix P in Eq. (21) and cN (↵) corresponds to the Gaussian
distributed process x ⇠ N (0, 1), such that Pr(x  cN (↵)) =
↵.

The standard cross-correlation test is a sample-wise test,
similar to the standard white noise test, for the same under-

lying reasons. The vector-valued cross-correlation test is as
follows:

Hypothesis test 2-2 (The vector-valued cross-correlation
test). [27]

Given a residual signal "̂j(t) and an input signal uk(t)
of data length N , the vector-valued cross-correlation test is
based on the statistic Qc(N,M) which is defined as:

Qc(N,M) =
h
R̂N

"̂juk

i>
P�1

h
R̂N

"̂juk

i
, (24)

and the procedure of testing Hc is:
⇢

if Qc(N,M)  c�(↵,M), then accept Hc;
if Qc(N,M) > c�(↵,M), then reject Hc,

(25)

where c� (↵,M) corresponds to the 1�↵ quantile of the �2-
distribution with M degrees of freedom, i.e. for x ⇠ �2 (M)
it follows that Pr (x  c� (↵,M)) = ↵.

Similar to the sample-wise white noise test, the sample-
wise cross-correlation test shares the same limitations when
validating the hypothesis Hc, when compared to its vector-
valued counterpart. However, both of the cross-correlation tests
can only validate specific modules within the target MISO
subnetwork can be validated. Consequently, the following
subsection will discuss the specific module transfer functions
within the target MISO subnetwork that each of these corre-
lation tests can validate.

For clarity, the two cross-correlation test methods will be
referred to below as Test 2-1, and Test 2-2.

C. Model validation in the MISO subnetwork

1) Target module set of correlation tests: In the context
of dynamic network frameworks, the correlation test result
usually depends on the accuracy of multiple estimated transfer
functions, primarily because the residual signal "̂j(t) and the
predicted noise v̂j(t) originate from all the Ĝjk(q) functions
within a chosen MISO subnetwork. To streamline the notation
for model validation in MISO subnetworks, we introduce the
following concept:

Definition 2. We define the target module set of a specific
correlation test as the set of all module transfer function
models that can be validated by this test. Based on the signals
used by the correlation test, a signal m(t) or two signals m(t)
and n(t), we denote the corresponding target module set as
Sm or Smn.

Therefore, the target module set of the autocorrelation test
using residual "̂j(t) is denoted by S"̂j , the target module set
of the cross-correlation test using "̂j(t) and wk(t) is denoted
by S"̂jwk . The target module set serves as a crucial attribute
for each correlation test and has strong associations with both
the network topology TG and the noise topology TH .
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We examine two distinct scenarios: one in which a correla-
tion test is passed, and another where it is failed. The following
assumption is applied when a correlation test is passed:

Assumption 3. When a correlation test with the target
module set Smn is successfully passed, we assume that all
associated transfer function models within Smn are validated
with a probability of ↵. Specifically, while errors from mul-
tiple inaccurate models within the target module set could
theoretically cancel each other out and still yield a passed
test, we operate under the assumption that such a scenario is
practically unlikely. Therefore, we assume that the probability
of successfully validating all modules in the target module set
coincides with the theoretical probability ↵ of validating the
null hypothesis when it actually holds true.

Consequently, a failed test implies the presence of at least
one invalidated transfer function model within the target
module set. Therefore, efforts to enhance model quality should
be focused on the modules in the target module set of the failed
test.

Remark 6. In addition to the accuracy of the estimated
module transfer functions, the accuracy of the noise model will
also influence certain tests. To illustrate, consider the white
noise test using residual "̂j(t); even if the transfer functions
of all the modules within the target module set are modeled
correctly, an incorrect noise model Ĥj(q) would lead to the
residual failing to pass the white noise test. In the context of
this study, it is important to note that noise modeling is not
always mandatory and that the accuracy of the noise model
is not always required. To develop model validation methods
that are more universally applicable across different modeling
scenarios, we only include the module transfer functions
Ĝjk(q) in the target module set for validation. Instead of
treating the noise model Ĥj(q) also as a transfer function to
be validated, we consider the accuracy of Ĥj(q) as the extra
prior information that can be used to assist model validation
within local subnetworks.

To augment our decision-making process, we incorporate
noise information, the accuracy of the noise model Ĥj(q),
and network noise topology TH , to appropriately guide the
selection of different tests. In the following subsections, we
will sequentially introduce the target module sets associated
with various types of correlation tests and the required prior
noise information for each test.

2) White noise test: The white noise test can be executed
using three methods: Test 1-1, Test 1-2, and Test 1-3, and
it directly tests the hypothesis Ha for the MISO subnetwork
validation purpose. Therefore, an accurate noise model Ĥj(q)
is necessitated for a white noise test to pass, in addition to the
accurate module models Ĝjk(q). Subsequently, we define the
prerequisites and target module set for the white noise test in
the following corollary:

Corollary 1. The white noise test, utilizing "̂j(t), is appli-
cable only when the accurate estimated noise model Ĥj(q)
can be obtained. Additionally, the target module set for the
white noise test is denoted by

S"̂j = {Gjk | k 2 Nj}.

Proof: See Appendix A.

The target module set of the white noise test includes all
module transfer functions in the target MISO subnetwork.
However, employing the white noise test necessitates the
accurate noise model Ĥj(q) of the target MISO subnetwork,
thereby implicitly demanding knowledge of the noise topology
TH . Hence, the prerequisites to use the white noise test include
the accurate noise model Ĥj(q) and the noise topology TH .

3) Cross-correlation test using node signals: The cross-
correlation test performed using "̂j(t) (or v̂j(t)) with node
signals wi(t) from the target subnetwork MISO, can apply the
methods test 2-1 or test 2-2 to evaluate the hypothesis Hc.
While it can not directly validate the null hypotheses Ha or Hb

for the full MISO subnetwork validation purpose, the cross-
correlation test validates modules within its target module set.
The following corollary defines both the target module set and
the noise prerequisites for the cross-correlation test using node
signals:

Corollary 2. The cross-correlation test using "̂j(t) (or v̂j(t)
and wi is applied differently according to different levels of
the noise information, each with its own set of available node
signals for conducting the test:

1) When the accurate noise model Ĥj(q) and the noise
topology TH of the network can be obtained, all node
signals wi where i 2 Nj can be used;

2) When the noise topology TH of the network is available
but the accurate noise model Ĥj(q) is not, node signals
wi, where i 2 Nj \ Vj , can be used.

While the use of wi(t) might be limited with less noise
information, the target module set of the cross-correlation test
using "̂j(t) (or v̂(t)) and wi stays the same, which is defined
by:

S"̂jwi = Sv̂jwi = {Gjk | k 2 Nj \ Ci}.

Proof: See Appendix B.

4) Cross-correlation test using external excitation signals:
Analogous to the cross-correlation test using node signals, the
test using external excitation signals utilizes with "̂j(t) (or
v̂j(t)) and ri(t) from the target subnetwork MISO. Again, the
methods Test 2-1 or Test 2-2 can be used to evaluate the
hypothesis Hc, which can only validate the modules from its
target module set. The following corollary defines both the
target module set and the noise prerequisites for the cross-
correlation test using external excitation signals:
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TABLE I
THE NOISE PREREQUISITES AND TARGET SETS OF DIFFERENT MODEL VALIDATION TESTS

Tests
Target sets Noise information

Ĥj(q) & TH TH None

White noise test with "̂j S"̂j
, 8j ; ;

Cross-correlation test with "̂j (or v̂j ) and wi S"̂jwi
, i 2 Nj Sv̂jwi

, i 2 Nj/Vj ;

Cross-correlation test with "̂j (or v̂j ) and ri S"̂jri
, i 2 Nj Sv̂jri

, i 2 Nj Sv̂jri
, i 2 Nj

Corollary 3. The cross-correlation test using "̂j(t) (or v̂j(t)
and ri can be used independent of the accurate noise model
Ĥj(q) or the noise topology TH . The target module set of the
cross-correlation test using "̂j(t) (or v̂j(t)) and ri is defined
by:

S"̂jri = Sv̂jri = {Gjk | k 2 Nj \ Ji}.

Proof: See Appendix C.

We consolidate the prerequisites and target module sets of
various tests in Table I. Following the above analyses, we
present the relationships among the target module sets for the
various tests:

Proposition 1. For dynamic network models with different
network and noise topology, it always holds for the target
module sets of different tests that:

S"̂jri ✓ S"̂jwi ✓ S"̂j

Proof: For a given node wi, it naturally follows that Ji ✓

Ci. Therefore, (Nj \ Ji) ✓ (Nj \ Ci) ✓ Nj . Consequently,
{Gjk | k 2 Nj \ Ji} ✓ {Gjk | k 2 Nj \ Ci} ✓ {Gjk | k 2
Nj}, so the proposition is proved. ⌅

Based on the preceding analysis, it becomes evident that
among the three tests, the white noise test imposes the most
strict noise prerequisites, and simultaneously gives the largest
target module set which contains all modules in the target
MISO subnetwork; the cross-correlation test using ri signals
does not require additional noise information and always gives
the smallest target module set; the cross-correlation test using
wi signals falls between these two extremes.

To realize the purpose of full MISO subnetwork model
validation, if we can obtain the accurate noise model Ĥj(q)
along with the noise topology TH , the white noise test can be
directly used to evaluate the null hypothesis Ha. In the absence
of sufficient noise information, we can only resort to the cross-
correlation tests to evaluate the hypothesis Hc. The validation
of Hc allows validation of the models within the target
module set of the corresponding cross-correlation test, which
includes either a subset or the entire subnetwork, as specified
in Proposition 1. Thus, if a single test is insufficient, multiple
cross-correlation tests can be performed to validate all modules
within the target MISO subnetwork, effectively testing the
null hypothesis Hb. This ensures that even with limited noise

information, full MISO subnetwork model validation remains
achievable via cross-correlation tests.

It is important to note that the cross-correlation test using ri
signals requires the intentional introduction of the excitation
signals ri on the real-world system for the validation experi-
ments. This stands in contrast to the other two tests, which do
not require active incorporation of ri signals. Therefore, the
cross-correlation test using ri signals is classified as an active
test, while the remaining two are considered passive tests7.
Compared to the passive test, the active test carries a higher
experimental cost due to the introduction of additional ri
signals. However, it compensates by allowing for more lenient
noise prerequisites. As seen in Table I, active tests are always
available, irrespective of the noise information, whereas the
other two passive tests are constrained by specific noise
information. This observation points to a trade-off between
noise information and the cost of validation experiments.
More noise information can make the validation procedure
more passive, while limited noise information will make the
validation more reliant on r signals, thus necessitating a more
active approach. Additionally, Proposition 1 indicates that the
active test involves the smallest target module set for the target
module, which implies that when the test is not passed, the
invalidated module can be confined within a narrower scope.
This scope containing the invalidated module is defined as
the resolution for model invalidation. Consequently, a trade-
off exists between the resolution for model invalidation and
the cost of validation experiments. Active tests consistently
provide higher resolution for model invalidation, whereas
passive tests offer lower resolution.

D. Numerical illustration

1) Experiment setup: To evaluate the performance of all
the proposed hypothesis tests in Section B, three sets of sim-
ulation experiments are conducted: the first experiment aims
to compare the effectiveness of various tests in validating the
local subnetwork; the second experiment shows the robustness
of the test performance against different hyperparameters; the
third seeks to evaluate the sensitivity of the hypothesis tests
to discrepancies between the real system and its models. The
experiments utilize a data-generating network as depicted in

7When the cross-correlation test utilizes an existing r signal from the
data-generating system, the test can also be classified as a passive test, as
it eliminates the need for additional excitation signals.
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Fig. 4. The target MISO subnetwork is selected with w3

as the output, encompassing in-neighbors w2 and w4, and
modules G0

12 and G0
13. The white noise sources e1 and e2

are designed with zero mean and variance V ar(e1) = 0.1 and
V ar(e2) = 0.2, respectively. The specifications for the module
transfer functions and noise models are provided in Appendix
D. The external excitation signal r2(t) is designed as a white
noise signal with zero mean and variance V ar(r2) = 5 during
the simulation. For simplicity of the simulations, we assume
the models are provided and take the accurate module transfer
function equal to the corresponding real transfer function. All
modules outside of the target MISO subnetwork are considered
to be accurate in the following experiments to eliminate
additional interference.
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Fig. 4. Data-generating network with target local MISO subnetwork around
output node w3. The potential invalidated model G0

32 is marked in red.

2) Simulation experiment 1: In the first simulation ex-
periment, we aim to compare the effectiveness of different
hypothesis test methods. The following experiment scenarios
are adopted:

• Validated Scenario: In this scenario, all modules within
the target MISO subnetwork are accurate, such that
Ĝ32(q) = G0

32(q) and Ĝ34(q) = G0
34(q).

• Invalidated Scenario: In this scenario, only the module
G32 is inaccurate among all the modules within the target
MISO subnetwork. Specifically, the inaccurate module
is Ĝ32(q) = 0.312q�1

1�0.8q�1+0.2q�2 , while the true module is
G0

32(q) =
0.39q�1

1�0.8q�1+0.2q�2 .

When using a hypothesis test to validate or invalidate the
modules in the target subnetwork. A failed test is labeled
as a positive alarm for the invalidation, while a passed test
is labeled as a negative alarm. Let Pnum represent the total
count of validated scenarios, and let Nnum represent the total
count of invalidated scenarios during the entire experiment.
Furthermore, in the case that a test fails under an invalidated
scenario, the result is classified as a true positive alarm (TP );
in the case that a test fails under a validated scenario, the
result is classified as a false positive (FP ). The performance
of various hypothesis tests is evaluated using the receiver

operating characteristic (ROC) curve [41]. It is used to
compare the true positive rate (TPR) against the false positive
rate (FPR) over tuning hyperparameters, where

TPR =
TP

Pnum

, FPR =
FP

Nnum

.

The hyperparameters for the different hypothesis tests are
the confidence level ↵ and the degrees of freedom M . As men-
tioned in Section B, no definitive guidelines exist for selecting
the value of M . For our experiments, we set M = 100 and
allow the confidence level ↵ to vary within the range [0.001, 1],
serving as the tuning parameter for all tests to construct full
ROC curves. Additionally, to make the sampling points on
every ROC curve uniformly distributed, we sample the ↵
value densely within the range [0.9, 1] and sparsely within
[0.001, 0.9], culminating in a total of 30 samples for ↵.

Every point on the ROC curve signifies a (FPR, TPR)
pair, with the point (0, 1) denoting the ideal outcome in model
validation, wherein all positive alarms are indeed true posi-
tives. Accordingly, the performance of different tests can be
compared by examining how close their respective points on
the ROC curve are to the ideal (0, 1) point, typically by com-
puting the distance metric dis =

p
FPR2 + (1� TPR)2. A

lower value of dis indicates better test performance.

We carry out 1000 Monte Carlo simulations for both the val-
idated and invalidated cases, setting Pnum = Nnum = 1000
and varying the data lengths N to be 500, 2500, and 5000. The
resulting ROC curves for various white noise tests using the
residual signal (t) and different data lengths are presented in
Fig. 5. The pink curves with square markers denote Test 1-1,
the red curves with circular markers denote Test 1-2, and the
blue curves with triangular markers denote Test 1-3. Guided
by the invalidated module G32 in the invalidated case, we
select the residual signal "̂3(t) and the input signal r2(t) for
the cross-correlation tests, since the target module set S"̂3r2

includes the invalidated module G32. The corresponding ROC
curves for varying data lengths are displayed in Fig. 6. The
blue curves with triangular markers denote Test 2-1, while the
red curves with circular markers denote Test 2-2.

As observed in Fig. 5 and Fig. 6, the test curves tend to
converge towards the (0, 1) point as the data length increases.
This trend towards convergence corroborates the theoretical
analysis of hypothesis tests. Additionally, the curves in Fig.
6 representing the active cross-correlation tests using the
excitation signal r2(t), converge more rapidly than the curves
in Fig. 5, which represents the passive white noise tests relying
solely on the residual signal "̂3(t). The faster convergence is
attributed to the incorporation of the r signal, which improves
the signal-to-noise ratio (SNR) and allows for more accurate
testing with a smaller amount of data.

Notably, while the curves associated with the vector-valued
tests (Test 1-2 and Test 1-3) in Fig. 5 approach the point
(0, 1) as the data length grows, the curve for the sample-
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Fig. 5. TPR vs FPR for different white noise tests over tuning parameters ↵ 2 [0.001, 1] for different data length: N = 500 (left), N = 2500 (middle),
N = 5000 (right). The ideal (0, 1) point is marked in a black square. The dashed diagonal represents the test using a random guess, where the TPR is
always equal to FPR. Thus the ROC curves of functional tests should at least be above the diagonal.
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Fig. 6. TPR vs FPR for different cross-correlation tests using r(t) over tuning parameters ↵ 2 [0.001, 1] for different data length: N = 500 (left),
N = 2500 (middle), N = 5000 (right).
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Fig. 7. TPR vs FPR for the sample-wise white noise tests with different numbers of outlier tolerance over tuning parameters ↵ 2 [0.001, 1] for different
data length: N = 500 (left), N = 2500 (middle), N = 5000 (right).

wise test (Test 1-1) tends to stay close to the diagonal. The
reason for this difference is that the sample-wise test mandates
each sampling point to stay within the confidence interval to
pass the test, implying a 0 tolerance for outliers. As a result,
the sample-wise test curves exhibit a high FPR, indicating
that the 0 tolerance for outliers is an excessively conservative
criterion for dynamic network model validation. One potential
explanation for this could be the low SNR in the test signals,
attributable to multiple disturbance sources unique to dynamic
networks, absent in classical open and closed-loop systems.

Following the above analysis, we can conclude that for the
dynamic network model validation, the 0 outlier tolerance for

the sample-wise test proves to be too conservative, leading
to suboptimal performance. Therefore, we conducted a subse-
quent experiment with varied outlier tolerances for the white
noise sample-wise test, maintaining the same conditions as in
previous experiments. The results are shown in Fig. 7. The
figure reveals that through elevating the outlier tolerance to
5 and 10, while keeping the degree of freedom M fixed at
100, the ROC curves get notably closer to (0, 1), signifying
a substantial improvement in test performance. To summarize,
for effective dynamic network model validation using sample-
wise tests, tuning the outlier tolerance as an additional hyper-
parameter is needed to optimize test performance. Nonethe-
less, this additional hyperparameter tuning requires further
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experimentation and still does not enable the sample-wise test
to match the performance of the vector-valued tests under
identical conditions. For a direct comparison, the minimum
distances to the point (0, 1) for each test are compiled in Table
II.

TABLE II
MINIMUM DISTANCE OF DIFFERENT ROC CURVES TO (0, 1)

N = 500 N = 2500 N = 5000

Test 1-1 (0 outlier tolerance) 0.66 0.71 0.75

Test 1-2 0.46 0.14 0.01

Test 1-3 0.48 0.15 0.01

Test 2-1 (using r) 0 0 0

Test 2-2 (using r) 0.22 0 0

Test 1-1 (5 outlier tolerance) 0.58 0.35 0.08

Test 1-1 (10 outlier tolerance) 0.52 0.37 0.22

The table indicates that for white noise tests (Test 1-1,
Test 1-2 and Test 1-3), vector-valued tests (Test 1-2 and
Test 1-3) generally outperform sample-wise tests (Test 1-1).
However, in the case of cross-correlation tests, both types of
tests exhibit similar performance. When considered alongside
Fig. 6, it becomes evident that the sampling points on the
curves of the vector-valued test are more densely clustered
around the point (0, 1) compared to the sample-wise test.
This suggests greater robustness of the vector-valued tests
against variations in confidence levels ↵. We should note that
while the thesis omits the experimental results for the cross-
correlation test using w(t), our experiments indicate that the
vector-valued test still outperforms the sample-wise test in that
scenario as well. In summary, for the purpose of dynamic
network model validation, vector-valued tests generally offer
superior performance over sample-wise tests, making them our
preferred choice.

3) Simulation experiment 2: In the second simulation
experiment, we aim to show the robustness of the test per-
formance against varying hyperparameters. The experiment
only considers the invalidated scenario, where the module
G32 is inaccurate among all the modules within the tar-
get MISO subnetwork. Specifically, the inaccurate module
is Ĝ32(q) = 0.312q�1

1�0.8q�1+0.2q�2 , while the true module is
G0

32(q) =
0.39q�1

1�0.8q�1+0.2q�2 .

As evidenced by the results of experiment 1, the outcomes
of each correlation test within this data-generating network
stabilize when the data length reaches N = 5000. Thus, in
this experiment, we set the data length to N = 5000 and
varied two hyperparameters, probability level ↵ and degrees
of freedom M , to analyze their influence on the test outcomes.
We selected five distinct values for the hyperparameter ↵:
{0.6, 0.7, 0.8, 0.9, 0.99} and ten for M : {10, 20, ..., 100}.

Our primary focus is on three distinct vector-valued tests:
the white noise test using "̂3 (Test 1-2), and the cross-

correlation tests using w2 and r3 (Test 2-2). Given the similar-
ity between Test 1-2 and Test 1-3 observed in experiment 1,
we exclusively present the results of Test 1-2. The confidence
threshold c�(↵,M) for each vector-valued test depends on
both ↵ and M 8, whereas the calculation of the test level Q
solely hinges on the degree of freedom M . Thus, for each
unique value of M , we carry out 100 Monte Carlo simulations
across the three tests. Fig. 8 displays the results from the
three distinct tests. Within Fig. 8, the subplots (a), (b), and (c)
showcase the results of the white noise test, cross-correlation
test using w, and cross-correlation test using r, respectively. In
each plot, every sample point represents the test level Q for
a particular M of the corresponding test. The central circle
of each sample point denotes the mean value from 100 Monte
Carlo simulations, while the vertical line length indicates their
variance. The dotted lines depict the confidence threshold for
varying values of ↵ and M .

From Fig. 8, it is evident that, for a constant ↵ value,
there’s a linear positive correlation between the confidence
threshold and M within the [10, 100] range. Simultaneously,
for ↵ values between [0.6, 0.99], the threshold’s variation
is relatively minimal. Moving on to the test results: The
outcomes of the three tests largely lie outside the confidence
interval for varied M and ↵ values. This suggests accurate test
results, discrediting the incorrect module, except in the case of
the cross-correlation test using r at M = 10. This underscores
the robustness of our tests across diverse hyperparameter
selections. For the outcomes of the cross-correlation test using
r at M = 10, they are suboptimal because the chosen M
value is too small. Furthermore, the test level Q for all three
tests, analogous to the confidence threshold, shows a positive
correlation with M . Notably, the growth patterns of the test
level and the threshold appear to be synchronized. Based on
this, we anticipate that with a continued increase in M , both
the test levels and confidence thresholds for the various tests
will rise in tandem, ensuring the reliability of our test results
for this experiment.

This experiment underscores the robustness of vector-valued
test performance against varied hyperparameter selections,
obviating the need for preliminary tuning to ensure test
efficacy. To utilize the test, simply select values within the
recommended range of ↵ and M ; this ensures reliable test
outcomes. The inherent adaptability of the vector-valued test
enhances its user-friendliness, offering a significant advantage
in the following automatic FDD processes.

4) Simulation experiment 3: In the third simulation ex-
periment, we aim to evaluate the sensitivity of the hypothesis
tests to discrepancies between the real system and its models.
The following setup is adopted:

The transfer functions in the data-generating network adhere
to those detailed in Appendix D, except for the module transfer

8Refer to the standard chi-square distribution for c�(↵,M).
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Fig. 8. Different test level Q against different confidence threshold. Each sample point represents a set of Q for a particular M ; The central circle of each
sample point denotes the mean value from 100 simulations, while the vertical line length indicates the variance. Dotted lines depict the threshold for varying
values of ↵ and M . (a) The white noise test using "̂3; (b) The cross-correlation test using "̂3 and w2; (c) The cross-correlation test using "̂3 and r2.

function G0
32(q), which is defined as follows:

G0
32(q) =

1

1� 2 ⇤ � ⇤ cos(⇡4 )q
�1 + �2q�2

.

The parameter �0 is set to 0.9 for the data-generating system.
For the validated local subnetwork, we set the model parameter
�̂ = �0 = 0.9, while for the invalidation case, we set the
model parameter �̂ = 0.9 � d where d varies within the
range of [0.001, 0.019]. The module G32 is constructed in this
manner to focus the deviation between the true module and
its models around the resonance peak.9

To assess the sensitivity of the hypothesis tests, particularly
for vector-valued tests, we chose 20 distinct values of d evenly
distributed over the interval [0, 0.0019]. For every value of d,
we performed 100 Monte Carlo simulations, applying four
different vector-valued tests to the target subnetwork. We
conducted tests with a data length of N = 5000, ensuring
sufficient length for test result convergence. Mirroring the
experiment 1, we fixed the degree of freedom at M = 100.
The four tests encompass the vector-valued white noise test
(Test 1-2) with the test level Qbp, Ljung-Box white noise
test (Test 1-3) with the test level Qlb, vector-valued cross-
correlation test (Test 2-2) using w2 with the test level Qew,
and vector-valued cross-correlation test using r2 with the test
level Qer. The module G32 is always included in the target set
for all selected tests, leading us to anticipate test failures when
d 6= 0. Fig. 9 illustrates variations in the dynamic behavior of
the transfer function G32, as well as changes in the test levels
for the various vector-valued tests for different values of d.

As depicted in the figures, the resonance peak of the
transfer function G32 gradually escalates with an increase
in d. Concurrently, consistent with our theoretical analysis,

9This simulation mimics a real-world fault in dynamic systems character-
ized by behavioral deviations at the resonance frequency.
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there is a gradual rise in the test level Q for every vector-
valued test. For the two white noise tests, the test values
Qbp and Qlb exceed the test threshold at d = 0.003, and
exhibited a significant increase as d ascended. The two cross-
correlation test values Qer and Qew exceed the test threshold
already at d = 0.002, while the subsequent increases in d
result in a smaller ascendance of test levels compared to the
white noise test. The parameter � has the change ratio of
d/�0 = 0.22% at the point where tests initiate a failure alarm.
Thus, it is evident that even minimal parameter mismatches
can trigger alarms in vector-valued tests, confirming their
sensitivity. Moreover, compared to the cross-correlation test,
the white noise test shows a consistent sensitivity to parameter
mismatches. Notably, after surpassing the test threshold, the
white noise test level continues to rise significantly with
increasing mismatches. This inherent property of the white
noise test holds potential applications in future fault detection
and diagnosis.

Generally, in the context of local network model validation,
different vector-valued tests exhibit high sensitivity to invali-
dated modules that are included in their target module sets. Ad-
ditionally, these vector-valued tests demonstrated strong con-
vergence properties and alignment with theoretical predictions
throughout the experiments. Consequently, we can consider
that local subnetwork models that pass their respective vector-
valued tests are deemed validated and suitable for subsequent
model-based fault detection and diagnostic tasks.

IV. LOCAL FAULT DETECTION USING DYNAMIC
NETWORK FRAMEWORK

A. Problem definition

Fault detection (FD) is defined as the detection of the
occurrence of faults in functional units of the process, which
lead to undesired or intolerable behavior of the local system
or even the entire system [5]. The FD task is to recognize that
something is wrong, but this realization alone does not neces-
sarily categorize or analyze the problem [6]. For the dynamic
network system with the potential fault under Assumption
2, we first define the task of local fault detection using the
dynamic network model as follows:

Definition 3. For the target MISO subnetwork with the
output node wj , the universal set U is defined as the set that
contains all the module transfer functions that needed to be
monitored during the FD procedure, where U ✓ {Gjk | k 2
Nj}. Then the local fault detection utilizes:

• the dataset {wNj (t), wj(t)}, potentially together with the
external input data ri(t), from the data-generating system
{G0

jk
(q)} for k 2 Nj and,

• the validated model {Ĝjk(q)} for the local subnetwork
together with specific noise information,

to detect whether there is a fault appearing in any module in
set U , i.e. if G0

jk
(q) Gf

jk
(q) happens.

As elucidated in Section A, Chapter III, the target MISO
subnetwork model validation aims to validate all models
{Ĝjk(q)} in the MISO channel. Consequently with the vali-
dated models {Ĝjk(q)}, the null hypothesis that {Ĝjk(q)} =
{G0

jk
(q)} is accepted. If a fault on module G0

jk
(q) causes

it changing to Gf

jk
(q), i.e. G0

jk
(q)  Gf

jk
(q), it follows

that Ĝjk(q) 6= Gf

jk
(q). With the validated model of the

healthy data-generating system, we can apply the proposed
model validation (invalidation) tests to detect the mismatch
between the data-generating system and its healthy model,
which detects faults that occur in the local subnetwork.

Experiment 1, as detailed in Section D, Chapter III, es-
tablishes that among the three categories of model validation
tests, vector-valued tests consistently outperform their sample-
wise counterparts. As a result, the ensuing discussions in
this chapter, as well as in the subsequent chapter on fault
diagnosis, will exclusively utilize vector-valued tests for model
invalidation tasks. Concurrently, Experiments 2 and 3 from
Section D, Chapter III confirm that these vector-valued tests
can detect subtle system changes with minimal hyperparameter
tuning. While the advantages of these vector-valued tests can
guarantee their performance for the FD task, it should be noted
that each test has its own prerequisites and target module sets.
Hence, the primary challenge in using model invalidation for
fault detection in local subnetworks lies in the wise selection
of tests, tailored to specific network topology and the noise
information. The remainder of this chapter will be devoted to
addressing the issue of test selection.

B. Fault detection using model invalidation

Within the local network fault detection framework employ-
ing model invalidation, it is crucial that every module in U the
user wishes to monitor is encompassed in the target module set
of at least one chosen model validation test. This stipulation
guarantees comprehensive fault detection coverage of the
universal set U within the target MISO subnetwork. When an
accurate noise model Ĥj(q) and noise topology TH are both
accessible, the passive white noise test, utilizing residual "̂j(t),
is a viable choice for fault detection. This is because the target
module set S "̂j encompasses all module transfer functions in
the target MISO subnetwork, i.e. U ✓ {Gjk | k 2 Nj} = S"̂j .
Conversely, if the accurate noise model Ĥj(q) and noise
topology TH are not simultaneously available, the white noise
test becomes infeasible for fault detection. Under such circum-
stances, one can only resort to cross-correlation tests, though
they do not guarantee full coverage of all modules in the
target MISO subnetwork. Consequently, employing multiple
cross-correlation tests might be essential to ensure coverage
of the universal set U . In such instances, the ensuing goal
is to minimize the number of tests employed. Among those,
passive tests are preferred over active tests.
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To adopt an algorithmic method for generating optimal fault
detection tests, our first step entails producing all potential
model validation tests based on the available noise informa-
tion. Subsequently, we aim to employ a different algorithm to
select the most suitable test(s) from the available options for
local subnetwork fault detection. For clarity in notation, we
present the subsequent definition:

Definition 4. In the specified local subnetwork with node
wj as the output, we define the aggregate set Sj as the
set comprises the target module sets associated with all
model validation tests that can be used under the given noise
conditions.

Before generating the aggregate set Sj , the index sets which
directly follow from the network and noise topology, namely
Nj , Vj , Ci and Ji, are necessary to construct the target module
sets. Algorithms for generating these index sets, based solely
on the network and noise topology TG and TH , can be found
in Appendix E. Once the required index sets are obtained, the
target module sets corresponding to the applicable tests can
be generated following Table I.

Subsequently, for the situation with both an accurate noise
model Ĥj(q) and the noise topology TH , although all tests can
be used, based on Table I, a single passive white noise test is
already sufficient to detect faults in the entire local subnetwork
(include set U ) with minimal experiment cost. Therefore, in
this case, we only need to add the white noise test into the
set Sj ; for the situation with only the noise topology TH

or the situation without any noise information, we need to
add the target module sets of all applicable tests in the target
subnetwork based on the information in Table I into the set Sj .
At the same time, in order to facilitate the distinction between
active and passive test target module sets when selecting the
optimal test(s) in the following step, we will add a nonzero
selection cost C"̂jwi (or Cv̂jwi ) to the target module sets of all
passive tests, and a selection cost C"̂jri to the target module
sets of all active tests where C"̂jri > C"̂jwi . We summarize
the detailed procedure to generate the set Sj in Algorithm 1.

Given the aggregate set Sj , encompassing the target module
sets of all applicable tests for fault detection in a specific sce-
nario, the task of choosing the optimal test(s) with respect to
quantity and passivity can be reformulated as a combinatorial
optimization problem, resembling a variant of the classic NP-
hard weighted set cover problem [42].

Definition 5. Within the target MISO subnetwork, for any
module transfer function G that needs to be monitored and
is part of the universal set U , there must exist at least one
target module set of a selected test containing G, denoted
by G 2 Smn. Furthermore, given that a cost Cmn is as-
signed with each target module set, the second objective is
to minimize the cumulative cost of the selected sets. This
optimization problem can be formally defined as a Linear

Algorithm 1 Generate all the aggregate set Sj for fault
detection which contains the target module sets of applicable
model validation tests in the target MISO subnetwork model
with the output node wj .
Input: Network topology TG, the level of noise information:

with Ĥj(q), with TH or with no noise information, the
target MISO subnetwork with the output node wj

Output: Set Sj , with each element in it assigned with a
selection cost

1: Generate the sets associated with network topology, Nj

and Ci, Ji, 8i 2 Nj as defined in Section B, Chapter II
using algorithms in Appendix E;

2: Initialize an empty aggregate set Sj = ;;
3: Based on the certain level of noise information, switch

among the following different situations:
a. With Ĥj(q) and TH ;
b. With TH ;
c. No noise information;

4: if Case a then
5: Add set S"̂j into Sj , with assigned cost C"̂j = 1. The

cost is assigned to make the data structure of Case a
consistent with it of Case b and Case c;

6: else if Case b then
7: Add sets S"̂jwi , 8i 2 Nj/Vj into Sj , with assigned

cost to each set Cv̂jwi ;
8: Add sets Sv̂jri , 8i 2 Nj into Sj , with assigned cost

to each set Cv̂jri ;
9: else if Case c then

10: Add sets Sv̂jri , 8i 2 Nj into Sj , with assigned cost
to each set Cv̂jri ;

11: end if

Integer Programming (LIP) problem, detailed below:

min
xmn2{0,1}

X

Smn2Sj

xmnCmn

s.t.
X

G2Smn2Sj

xmn � 1, 8G 2 U

The criterion that each module in U needs to be included
within the target module set of at least one selected test is
formalized as the constraint

P
G2Smn2Sj

xmn � 1. Moreover,
the optimization objective minxmn2{0,1}

P
Smn2Sj

xmnCmn

is designed to prioritize passive tests over active tests when
the first criterion is already satisfied.

Furthermore, we focus on an algorithmic approach to solve
this combinatorial optimization problem. Utilizing the set Sj ,
which encompasses all target module sets of the applicable
tests, we employ a greedy algorithm based on the weighted
set covering problem which is detailed in Definition 5 and
originally proposed by [43]. We aim to construct a list denoted
as Sselected that encompasses the selected target module sets
for FD, ensuring full coverage of the MISO subnetwork with
the fewest sets and maximum passivity. During the algorithm’s
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design phase, we introduced the following intermediate vari-
ables:

• UE: A set that stores all the uncovered module(s) in
universal set U ;

• BestSet: The best target module set which covers the
most modules in UE with the least selection cost;

• BestSetCov: The number of modules that is covered by
the BestSet in set UE;

• BestSetCostEf : The cost to covering efficiency of the
BestSet which is defined as CBestSet/CurrentSetCov;

To fully cover the universal set U , the set UE must be
emptied, ensuring no module in U remains uncovered. When
the set UE is non-empty, the algorithm iteratively searches the
target module set from the aggregate set Sj that can maximize
module coverage with the least cost. During this search, we
employ BestSet to denote the optimal set, BestSetCov
to denote its coverage modules, and BestSetCostEf for
covering efficiency. Simultaneously, each target module set
Smn in the set Sj is compared to BestSet. If Smn surpasses
BestSet in module coverage and efficiency, then BestSet is
updated to the current Smn. Once an optimal set is determined
after a round of search in Sj , it is added to Sselected.
Subsequently, if UE becomes empty, indicating complete
coverage of U , the algorithm concludes and outputs Sselected.
Otherwise, the search continues in Sj to select another target
module set. The detailed procedure to address the problem
defined in Definition 5 can be found in Algorithm 2.

Algorithm 2 Optimal test(s) generating for fault detection
based on weighted set covering problem [43]
Input: The universal set U , the aggregate set Sj

Output: The set Sselected

1: Initialize an empty set Sselected, and initialize the set UE
by populating it with all elements in set U ;

2: while UE 6= ; do
3: Initialize the intermediate variables BestSet = ;,

BestSetCov = 0 and BestSetCostEf =1;
4: for Each Smn 2 Sj with a cost Cmn do
5: Calculate the current number of covered modules in

Smn \ UE;
6: Calculate the current covering efficiency as Cmn

divided by the number of elements from step 5;
7: if The current covering efficiency from step 6 is

smaller than BestSetCostEf then
8: Update BestSet to be Smn;
9: Update BestSetCov to be the current num-

ber of covered modules from step 5, and
BestSetCostEf to be the current covering effi-
ciency from step 6;

10: end if
11: end for
12: Add BestSet to Sselected;
13: Remove all elements of BestSet from UE;
14: end while

Remark 7. In real-world scenarios, it is possible that
certain w signals are not measurable or some r signals can
not be allocated to the system. Under such circumstances, not
all model validation tests for the local subnetwork can be
performed. However, the primary objective of this study is to
provide an optimal test selection strategy for fault detection,
solely based on the network and noise topology, as well as
available noise information. The user has the option to remove
target module sets corresponding to unusable tests from the
set Sj generated by Algorithm 1, before executing Algorithm

2.

Example 1. If our objective is to detect a possible fault that
occurs in the local MISO subnetwork with node w1 being the
output, with the data-generating system shown in Fig. 10. With
the network and noise topology known, all the target module
sets of the applicable tests can be generalized from Algorithm

1 as follows:

1) The scenario with an accurate noise model Ĥ1(q)
and the noise topology TH : S1 = {S"̂1 =
{G12, G31} with C"̂1 = 1};

2) The scenario with only the noise topology TH : S1 =
{Sv̂1r2 = {G12, G31} with Cv̂1r2 = 2, Sv̂1r3 =
{G12, G31} with Cv̂1r3 = 2};

3) The scenario with no noise information: S1 =
{Sv̂1r2 = {G12, G31} with Cv̂1r2 = 2, Sv̂1r3 =
{G12, G31} with Cv̂1r3 = 2}.

In the first scenario, the only target module set S"̂1 of the
white noise test encompasses all modules within the target
MISO subnetwork, thus it will be selected by Algorithm 2. In
the remaining two scenarios, a minimum of one active test is
included in Sselected for fault detection by Algorithm 2.

G0
32 G0

13

G0
31

G0
12

w2 w3 w1

v2

v3

v1

G0
21

Fig. 10. Example of a 3-node data-generating network, the target MISO
subnetwork contains G12 and G13 and is marked in blue. We assume the r
signals can be added to the data-generating network to apply the active test.

C. Passive fault detection

The applicability of the proposed FD method is constrained
by the prerequisites of the model validation tests. Specifically,
in the second and third scenarios detailed in Example 1, if the
active test is the only viable approach for model validation, it
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is consequently also required for fault detection. Consequently,
the required r signals that are not in the data-generating system
need to be allocated for the FD experiment.

However, allocating extra r signals often causes interrup-
tions to normal system operations, thereby raising deployment
challenges and risks in real-time environments. In contrast,
passive methods are generally more cost-efficient with no need
for extra external excitation signals. Therefore, passive meth-
ods are well suited for continuous monitoring with minimal
resource burden.

The passivity of the fault detection procedure, when utiliz-
ing the model validation tests proposed in this study, hinges
on the comprehensiveness of available noise information. As
discussed in Section C, Chapter III, there exists a trade-off
between the noise information and the experimental costs
associated with fault detection. More sufficient noise informa-
tion can render the detection process more passive, whereas
limited noise information tends to make the procedure reliant
on r signals, requiring a more active detection strategy. In the
absence of both an accurate Ĥj(q) and the noise topology TH ,
our proposed fault detection process shifts entirely to an active
approach.

To maintain a passive fault detection approach despite
limited noise information, one could integrate model-based
residual analysis with data-driven techniques like machine
learning and pattern recognition. If an accurate noise model
Ĥj(q) is not available, it precludes the use of passive white
noise tests for monitoring the full MISO subnetwork; this
limitation arises because only the predicted disturbance v̂(q)
can be estimated from Eq. (9). Nonetheless, signal processing-
based fault detection methods can also be employed. These
signal-based methods first extract relevant features from v̂(q)
and then leverage these features to monitor the full MISO
subnetwork. Feature extraction can primarily occur in the time
domain, frequency domain, or time-frequency domain [44],
[45]. A fault can be detected in the target MISO subnetwork
when the chosen feature of v̂(q) deviates from its nominal
level and surpasses a preset confidence bound. While this
enhancement in the passivity of the FD procedure will not
be covered in this thesis, it is identified as a topic for future
research.

Thus far, we have established a fault detection procedure
based on the local dynamic network model validation. Initially,
Algorithm 1 and Algorithm 2 autonomously select model
validation tests, considering the system topology and available
noise data. This process ensures the selection of the minimal
tests with optimal passivity for fault monitoring and detection.
Subsequently, users can engage in online fault monitoring
or conduct offline fault detection experiments based on the
chosen tests, after allocating the r signals that are requisite
but absent in the data-generating system.

V. FAULT DIAGNOSIS USING DYNAMIC NETWORK
FRAMEWORK

A. Problem definition

Upon detecting an error in the target subnetwork, our
subsequent step is to identify its root cause. In the context
of the dynamic network model, this refers to the module
responsible for the fault. The process to determine the location
of a fault that follows fault detection is defined as fault
isolation [4], [46]. Fault isolation is a fundamental component
of the fault diagnosis process, serving as the primary objective
in our model-based diagnosis within the dynamic network
framework.

The task of fault isolation within a target subnetwork can be
also addressed by the proposed model validation tests as the
fault detection step. The model validation tests have their own
target module set, and the size of these sets and the elements
they contain are different as mentioned in Proposition 1. This
allows us to locate the detected faults in the target module set
of a certain test or even on a specific module by combining
the results from different tests.

Example 2. Suppose we detect a fault in the target sub-
network as shown in Fig. 11. Based on the network topology
and a certain level of noise information, we have generated a
set S5 that contains all target module sets corresponding to
applicable tests. The set S5 in this case contains the following
non-repeating elements:

S"̂5 : {G51, G52, G53, G54},

S"̂5w1 : {G51, G52, G53},

S"̂5r3 : {G53, G54}.

Assuming that there is only one fault in this target subnetwork,
we can try to isolate the fault on a certain module by
combining the applicable tests.

First, we consider the situation where the fault occurs on
G54, and we can combine tests 1 and 2 to isolate the fault.
According to the relationship between the target module sets
of these two tests S"̂5/S"̂5r3 = {G54}, when test 1 fails and
test 2 passes, we can determine that the fault location is on
G54.

Consider another situation where the fault occurs on G53,
we can use test 2 and test 3 to isolate the fault. According to
the relationship between the target module sets of these two
tests S"̂5w1 \ S"̂5r3 = {G53}, when tests 2 and 3 fail at the
same time, we can determine that the faulty module is G53.

Finally, we consider the situation where the fault occurs on
G51. In this case, we can not isolate the fault on G51 by using
the model validation test. Because no matter how we combine
and operate the combination (taking union, intersection, or
difference set) of the above three target module sets, we can
not obtain a set that only contains module G51. The smallest
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Fig. 11. Example of a target MISO subnetwork with 4 in-neighbors.

set we can get that contains module G51 is {G51, G52}, that
is, we use test 1 and test 3 S"̂5/S"̂5r3 = {G51, G52}. When
test 1 fails and test 3 passes, we can isolate the fault in set
{G51, G52}, but we can not know which module is the faulty
one specifically.

As can be seen from Example 2, for a target MISO
subnetwork, after we obtain all the target module sets Sj

of applicable model validation tests, we can try to find
smaller sets by performing set operations such as taking union,
intersection or difference set, using all elements in Sj . The
smaller set Spq contains fewer modules or even one module
after sufficient set operations. In the process of obtaining the
set Spq , the tests corresponding to the used target module sets
are the tests we need to use in the process of fault isolation. At
the same time, we also found that through this set operation,
for some modules Gja, we can find a set that only contains one
module Gja solely; but for other modules Gjb, we cannot find
a set that only contains one module Gjb solely through these
set operations. This shows that for the kind of modules Gja,
one fault can be completely isolated to a single module; but
for kind of modules Gjb, the fault can only be isolated within
a range containing Gjb and other modules. To facilitate further
discussion, we give the following definitions:

Definition 6. Within the context of model-based fault isola-
tion using model invalidation, if a module set {Gji} that only
contains Gji can be derived by using every pair of target
module sets Spq and Smn from the set Sj to do the following
set operations:

• taking union: Spq [ Smn,
• taking intersection: Spq \ Smn,
• taking difference: Spq/Smn, Smn/Spq ,

then we determine the fault as isolable on module Gji.
Conversely, if such a set {Gji} cannot be derived for module
Gji, the fault is deemed non-isolable on Gji.

Fault isolability is differently defined in existing literature
[5], [47]. Conventionally, two faults are considered isolable if

their induced changes in system output can be differentiated. A
pair of isolable faults can be different in terms of location, time
of occurrence, severity, etc. Nonetheless, within the dynamic
network framework, where structural propriety is emphasized,
our primary focus is on the spatial location of the fault.
Consequently, we define fault isolability solely on the basis of
whether a fault is spatially distinguishable from other faults.

Remark 8. In this study, to streamline our fault isolation
analysis while maintaining generalizability, we operate under
the assumption that only one fault is detected at a time in
the target subnetwork. This assumption offers the potential
for relaxation in subsequent research.

As defined in Definition 6, fault isolability on each module
can be analyzed by taking operations on all target module
sets in the aggregate set Sj , which initially depends solely
on the network and noise topology TG, TH , and the available
noise information. This enables the analysis of the isolability
of each module in the target MISO subnetwork prior to any
FDD experiment, which means we are able to know on which
modules a fault can be isolated only with topology and noise
information of the system. Therefore, we initially examine
each module’s fault isolability within the target MISO subnet-
work in the following section, subsequently proposing a fault
diagnosis procedure informed by this isolability information.

B. Fault isolation synthesis

1) Isolability analysis: In this section, our objective is to
formulate an algorithmic approach that uses the topology of
the target system and available noise data to determine the
isolability of every module within the target MISO subnet-
work. As highlighted in Definition 6, the isolability analysis
depends on set Sj , which includes the target module sets for
all applicable model validation tests. Given that the set Sj

generated in Algorithm 1 is designed for the fault detection
algorithm, the selection cost allocated to each target module
set within set Sj is not required during fault isolation analysis.
Consequently, focusing on the fault isolation phase, we con-
struct a set comprising the target module sets for all pertinent
tests from Algorithm 3. This algorithm mirrors Algorithm 1,
albeit without assigning a selection cost to each target module
set. The resulting set from Algorithm 3 is labeled Sfull

j
,

distinguishing it from set Sj from the fault detection phase.

As the cross-correlation tests using r signals have the
smallest target module sets compared to the other two kinds
of tests as mentioned in Proposition 1, they are preferable
for fault isolation to pinpoint more accurate fault locations.
Therefore, the target module sets of all the cross-correlation
tests using r signals are added in set Sfull

j
even if certain r

signals are not presented.

Once the aggregate set Sfull

j
is obtained, a combinatorial

optimization algorithm can complete the fault isolability anal-
ysis for each module transfer function in the target MISO
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Algorithm 3 Generate all the aggregate set Sfull

j
for fault iso-

lation which contains the target module sets of all applicable
model validation tests in the target MISO subnetwork model
with the output node wj .
Input: Network topology TG, the level of noise information:

with Ĥj(q), with TH or with no noise information, the
target MISO subnetwork with the output node wj

Output: Set Sfull

j

1: Generate the sets associated with network topology, Nj

and Ci, Ji, 8i 2 Nj as defined in Section B, Chapter II
using algorithms in Appendix E;

2: Initialize an empty aggregate set Sfull

j
= ;;

3: Based on the certain level of noise information, switch
among the following different situations:
a. With Ĥj(q) and TH ;
b. With TH ;
c. No noise information;

4: if Case a then
5: Add set S"̂j into Sfull

j
;

6: Add sets S"̂jwi , 8i 2 Nj into Sfull

j
;

7: Add sets S"̂jri , 8i 2 Nj into Sfull

j
;

8: else if Case b then
9: Add sets Sv̂jwi , 8i 2 Nj/Vj into Sfull

j
;

10: Add sets Sv̂jri , 8i 2 Nj into Sfull

j
;

11: else if Case c then
12: Add sets Sv̂jri , 8i 2 Nj into Sfull

j
;

13: end if

subnetwork {Gjk} which is denoted as the universal set U .
The following definition is required for further isolability
analysis:

Definition 7. The fault isolation resolution for module Gji is
defined as the smallest module set for that module, generated
through set operations over the elements in Sfull

j
.

We aim to develop an algorithm that computes the resolution
for each module Gji within U . If the resolution for module
Gji consists solely of the module itself, then, by definition, a
fault is isolatable on Gji; otherwise, a fault is not isolatable
on Gji. Subsequently, to streamline our notation, we introduce
the following variables:

• The list S contains the resolution for every module Gji in
U . The function S[Gji] retrieves the resolution associated
with Gji.

• The list O encompasses all set operations performed to
obtain the resolution for every module Gji in U . The
function O[Gji] retrieves all the set operations involved
in determining the resolution for module Gji.

Example 3. To clarify the defined notations, consider the
target MISO subnetwork in Fig. 11, where the set Sfull

5

contains the following non-repeating elements:

S"̂5w1 : {G51, G52, G53},

S"̂5r1 : {G51},

S"̂5r2 : {G52}.

When analyzing the isolability on module G53, the list S

will give the resolution S[G53] = {G53} which indicates a
fault is isolable on module G53. The set operations to reach
this isolability is shown in list O, where O[G53] contains the
following elements:

Step 1: S"̂5w1/S"̂5r1 = {G52, G53},

Step 2: {G52, G53}/S"̂5r2 = {G53}.

The task of determining the resolution for each module
with the corresponding set operations can be solved in an
algorithmic approach. The approach involves a specialized
search for all elements in set U , derived from set operations
applied to the initial sets within Sfull

j
. Our objective is to

identify a ’minimal’ set for each module Gji in the universal
set U — a set which includes Gji and is derived from unions,
intersections, or differences of sets in Sfull

j
. Our proposed

algorithm employs a breadth-first search strategy, iterating
over all possible set operations for each pair of sets within
the aggregate set Sfull

j
. Subsequently, sets resulting from

these operations, if smaller, are incorporated into the aggregate
set Sfull

j
, forming the foundation for subsequent resolution

searches. Ultimately, if no further smaller sets are identified,
the search concludes, yielding the resolution for each module
within set U . The procedure is detailed in Algorithm 4, though
it might not be optimized for computational efficiency.

2) Allocation of extra r signals for fault isolation: The
lists S and O, obtained from Algorithm 4, denote the fault
isolability for each module and the essential tests to achieve
this isolability. As the algorithms generating S and O employ
all active tests to attain the smallest resolution, the selected
tests for the fault isolation procedure may require some r
signals absent in the data-generating system. Consequently,
we must allocate those additional excitation signals r to the
data-generating system for effective fault isolation.

The challenge of allocating additional excitation signals r
to aid fault isolation can be framed as: Given a consistently
estimated model of a data-generating local MISO subnetwork
and its corresponding sets S and O derived from Algorithm
4, for a given target module Gji, how should we allocate
external excitation signals to subsequent model validation tests
to precisely isolate any potential fault on Gji?

To address this problem, we adopt a step-by-step method-
ology:

1) For the target module Gji, we consult its resolution
S[Gji] to ascertain if the fault can be isolated on Gji;

2) If a fault is isolatable on Gji, we examine the set oper-
ations documented in O[Gji] and identify the test target
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Algorithm 4 Fault isolation resolution search

Input: The universal set U , the aggregate set Sfull

j

Output: The list S and the list O
1: Initialize S so that the isolation resolution for each module

equal to U ;
2: Initialize O as an empty list with the proper structure;
3: repeat
4: Initialize a flag variable Updated = False;
5: for Each pair of sets Spq , Smn in Sfull

j
do

6: Compute the union, intersection, and difference:
Spq [ Smn, Spq \ Smn, Spq/Smn, Smn/Spq . Mark
the result as set Snew;

7: for Each computed Snew do
8: if Snew = ; or Snew 2 {S}

full

j
then

9: Skip to the next iteration;
10: end if
11: Add Snew to Sfull

j
;

12: for Each module G 2 Snew do
13: if size(Snew) < size(S[G]) then
14: Update S[G] to be Snew;
15: Record the operations used to obtain Snew

from step 5 as ‘Spq operation Smn = Snew’
and save it in O[G];

16: Set Updated = True to indicate a smaller set
is found in this iteration;

17: end if
18: end for
19: end for
20: end for
21: until not Updated, as no smaller sets can be found.

sets used in the set operations with their corresponding
cross-correlation tests using r signals;

3) Verify if the r signals, identified from tests in step 2,
were previously present in the data-generating subnet-
work. Any r signals not found within the data-generating
subnetwork represent the extra r signals required for the
fault isolation experiment.

Example 4. Consider the data-generating MISO subnet-
work depicted in Fig. 11, where the set Sfull

5 contains the
following non-repeating elements:

S"̂5 : {G51, G52, G53, G54},

S"̂5r2 : {G51},

S"̂5r3 : {G53, G54}.

For module G52 under fault isolation task, an isolation reso-
lution of S[G52] = G52 from set S indicates the feasibility of
isolating a potential fault on module G52. Concurrently, if the
associated O[G52] represents the following:

Step 1: S"̂5/S"̂5r3 = {G51, G52},

Step 2: {G51, G52}/S"̂5r1 = {G52}.

it suggests that excitation signals r1 and r3 are required to
isolating a potential fault on module G52. Given that solely r3

is present in the data-generating system, there’s a necessity to
allocate an additional r signal on node 1 for the fault isolation
procedure.

C. More accurate fault isolation based on test levels

Based on the above analysis, Algorithm 4 aids in evaluating
the isolability of the target module Gji within a specified
target MISO subnetwork. It becomes feasible to determine
the requisite external excitation signals for the fault isolation
procedure and allocate extra signals as needed for the isolation
experiment. It should be noted, though, that in certain dynamic
network models, isolability is not guaranteed for some module
transfer functions.

Example 5. Consider the data-generating network in Fig.
12, the focus is on the target MISO subnetwork surrounding
the output node w3. For the target MISO subnetwork, there
exist validated models for the module transfers; however, there
is an absence of prior knowledge regarding noise information.
The set Sfull

3 only contains two elements in this case:

S"̂3r2 : {G32, G34},

S"̂3r4 : {G32, G34}.

Consequently, fault isolation is limited to the scope of
{G32, G34} by utilizing cross-correlation tests based on "̂3, r2
or "̂3, r4, while both tests have the same target the module set
{G32, G34}.
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Fig. 12. Example network with target local MISO subnetwork around output
node w3. A potential fault might occur on module G32 (marked in red).

In Example 5, the presented case highlights the absence
of fault isolability for the target module G32. The reason for
this is that within the target subnetwork, the target module sets,
S"̂3r2 and S"̂3r4 , from applicable correlation tests are identical.
Consequently, Algorithm 4 can not produce a smaller set
through its set operations. If a fault occurs on module G32,
both the test employing "̂3, r2 and the one using "̂3, r4 would
conclude a test failure. Based on this result, one can only
conclude that a fault occurs within the {G32, G34} scope.
Despite the target module sets S"̂3r2 and S"̂3r4 being identical,
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Fig. 13. Different test levels Q against the confidence threshold with
↵ = 0.95. The blue line shows the test levels Q"̂3r2 of the cross-correlation
test using "̂3, r2, and the red line shows the test levels Q"̂3r4 of the cross-
correlation test using "̂3, r4. The central circle of each sample point denotes
the mean value from 100 simulations, while the vertical line length indicates
the variance.

the corresponding tests exhibit differences in their test levels
during experiments. As illustrated in Fig. 13, we conducted
experiments with the data-generating network from Fig. 12,
using tests based on "̂3, r2 and "̂3, r4. This experiment were
carried out under the same conditions as Experiment 2 from
Section D, Chapter III, wherein the module G32 is faulty
and the other modules are healthy. In Fig. 13, the blue line
indicates the test level Q"̂3r2 for the test using "̂3, r2, while
the red line represents Q"̂3r4 for the test employing "̂3, r4.
We conducted 100 Monte Carlo simulations, with the mean
and variance of these displayed at each sample point in Fig.
13. Observably, both tests indicate failures, as their test levels
surpass the confidence threshold. Yet, a marked distinction is
evident between the test levels of the two tests, a disparity that
amplifies with increasing data length N . The variability in test
levels among different tests with the same target module sets
can be attributed to the relative positions of the test signals and
the fault in the system. r2 is closer to the faulty module G32,
and the corresponding test level Q"̂3r2 stays larger than Q"̂3r4 .
The observed difference can aid in further fault isolation,
especially when a module lacks isolability. While this study
does not delve into the specific relationship between relative
position and fault isolation, we consider its exploration crucial
for future work.

Although the quantitative information of test levels hasn’t
been applied to fault isolation yet, we have developed a
fault diagnosis procedure using local dynamic network model
validation, with a focus on fault isolation in this chapter.
Initially, Algorithm 3 and Algorithm 4 establish the isolation
resolution for each module in the target MISO subnetwork,
which uses only the information about system topology and
available noise information. This stage also documents the
necessary tests to achieve this resolution. Users then must allo-
cate the additional excitation signals r to the data-generating

system, in order to isolate faults in the target module Gji.
Ultimately, the combined results of all chosen tests determine
whether the detected fault falls within the resolution scope of
Gji.

VI. NUMERICAL ILLUSTRATION

A. Experiment setup

In this chapter, we provide a numerical illustration of our
proposed model-based fault detection and diagnosis procedure,
utilizing the data-generating network depicted in Fig. 14.
We have chosen the target MISO subnetwork with w1 as
the output. This includes in-neighbors w2, w3, and modules
G0

12, G0
13. Disturbances v1, v2, v3 on each node originate from

independent innovation sources, detailed as:
2

4
v1
v2
v3

3

5 =

2

4
H0

11 0 0
0 H0

22 0
0 0 H0

33

3

5

2

4
e1
e2
e3

3

5, (26)

where V ar(e1) = 0.1, V ar(e2) = 0.2, V ar(e3) = 0.3.
Specifications regarding the module transfer functions and
noise models can be found in Appendix F. For a streamlined
simulation, we assume that the models are given and that the
validated module transfer function matches the real transfer
function. To prevent any additional interference, we assume
that all modules outside the target MISO subnetwork are
accurate in the subsequent experiments. If the target module
G0

12 in the data-generating system is healthy, we assume its
consistency with the validated model. However, when a fault
arises in the target module G0

12, the module changes with a
damping effect on the resonance peak of the original module
transfer function, as shown in Fig. 15.

G0
32 G0

13

G0
31

G0
12

w2 w3 w1

v2

v3

v1

Fig. 14. Example of a 3-node data-generating network, the target MISO
subnetwork contains G12 and G13, which is marked in blue. The target
module for fault isolation is G12 which is marked in red.

To simplify notation, we will conduct the complete fault
detection and isolation procedure across three scenarios, each
reflecting a different level of noise information:

• Case 1: The accurate noise model Ĥ11(q) for the target
MISO subnetwork is available, with known noise topol-
ogy TH ;

• Case 2: Only the noise topology TH is available;
• Case 3: There is no available noise information.
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Fig. 15. The bode plots of the healthy module G0
12 and designed faulty

module Gf

12.

The FDD procedure will encompass fault detection, fault
isolability analysis, allocation of extra r signals, and fault
isolation experiment across all three cases.

B. Numerical Illustration on Fault Detection

Prior to conducting the fault detection experiments, we
can employ Algorithm 1 and Algorithm 2 as outlined in
Section B, Chapter IV, to select the optimal test for fault
detection. Utilizing the network topology TG from Fig. 14,
and integrating it with noise information from Case 1, Case
2, and Case 3, we can derive the aggregate sets S1 for fault
detection via Algorithm 1.

Subsequently, Algorithm 2 processes S1 for each case,
producing the optimal test for fault detection. Table III sum-
marizes the output set S1 and the optimal tests across all
three cases. For Case 1, the algorithm selects the white noise
test when there is sufficient noise information since the test
has the largest target module set to cover the entire MISO
channel with optimal passivity. In Case 2, the chosen test is the
cross-correlation test using "̂1 and w2. However, an alternative
could be another cross-correlation test employing "̂1 and w3,
given their identical target module sets that encompass the
complete MISO channel. The tests based on w signals also
have lower experiment costs compared to other active tests
in set S1. For Case 3, since set S1 exclusively comprises
active tests, the algorithm opts for the cross-correlation test
that uses "̂1 and r2, with a target module set capable of
covering the full MISO channel. Given that r2 is absent from
the data-generating network (see Fig. 14), it is necessary to
add the r2 signal during fault detection experiments for Case
3. For subsequent fault detection experiments, the introduced
r2 signal is designed as a white noise signal, characterized by
V ar(r2) = 5.

Subsequently, we employ the selected fault detection tests,
for each case, to perform a fault detection simulation ex-
periment that monitors the entire target subnetwork. The
simulation runs with a total data length of N = 10000.
Initially, the module G0

12 in the data-generating system is
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Fig. 16. Monitoring a fault with the validation tests in the target MISO
subnetwork as in Fig. 14. Different test levels Q against the confidence
threshold with ↵ = 0.95. The central circle of each sample point denotes
the mean value from 100 simulations, while the vertical line length indicates
the variance. (a) The test level Q"̂1 for Case 1; (b) The test level Qv̂1w2 for
Case 2; (c) The test level Qv̂1r2 for Case 3.

configured to a healthy state. However, post N = 5001, it
transitions to the faulty state Gf

12, as depicted in Fig. 15.

Test levels are computed at intervals of 500 steps during
the whole experiment. Each time before N  5000 when
computing the test level, all measured data is used; after N >
5000, the test level is computed only based on the newest
5000 data point. The experiment results for all three cases are
illustrated in Fig. 16. The experiment incorporated 100 Monte
Carlo simulations, the center of each sample point in Fig. 16
denotes the mean value of 100 simulations, while the vertical
line indicates its variance. As shown in Fig. 16, prior to the
fault onset at N = 5001, all three case test levels consistently
stay below the confidence threshold. Post the fault event at
N = 5001, the test levels for all cases swiftly surpass the
confidence threshold, indicating that a fault within the local
subnetwork is detected. The white noise test depicted in Fig.
16 (a) demonstrates greater sensitivity compared to the cross-
correlation tests in Fig. 16 (b) and Fig. 16(c), given its faster
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TABLE III
THE OUTPUTS OF DIFFERENT ALGORITHMS IN THE FDD PROCEDURE

S1 FD Test(s) Sfull

1 FI Test(s)

Case 1 S"̂1 = {G12, G13} S"̂1

S"̂1 = {G12, G13},
S"̂1r2 & S"̂1r3S"̂1w2 = {G12, G13},S"̂1w3 = {G12, G13},

S"̂1r2 = {G12, G13},S"̂1r3 = {G13}

Case 2
Sv̂1w2 = {G12, G13},Sv̂1w3 = {G12, G13}, Sv̂1w2

Sv̂1w2 = {G12, G13},Sv̂1w3 = {G12, G13}, Sv̂1r2 & Sv̂1r3Sv̂1r2 = {G12, G13},Sv̂1r3 = {G13} Sv̂1r2 = {G12, G13},Sv̂1r3 = {G13}
Case 3 Sv̂1r2 = {G12, G13},Sv̂1r3 = {G13} Sv̂1r2 Sv̂1r2 = {G12, G13},Sv̂1r3 = {G13} Sv̂1r2 & Sv̂1r3

growing test level. No evident performance difference in fault
detection is shown between the active test in Fig. 16 (c) and
the passive tests in Fig. 16 (a) and Fig. 16 (b).

Therefore, we conclude that this experiment validates the
effectiveness of Algorithm 1 and Algorithm 2. Furthermore,
it underscores the inherent trade-off between noise information
and test passivity. For Case 1, with abundant noise information,
the passive white noise test is directly applicable for local fault
monitoring and detection; For Case 2, given the availability
of the noise topology TH , the passive cross-correlation test
using w2 can be applied; For Case 3, owing to the absence of
noise information, it necessitates the introduction of additional
r2 signal in the data-generating system for fault detection
purpose.

C. Numerical Illustration on Fault Isolation

Upon fault detection in the target MISO subnetwork, we
perform fault isolation to determine where the fault originated.
Initially, using Algorithm 3 (refer to Section B, Chapter V),
we generate the aggregate set Sfull

1 , as shown in Table III.
Subsequently, using Sfull

1 as input in Algorithm 4, the output
reveals S[G12] = {G12} and S[G13] = {G13}, confirming
fault isolability for both modules in the target subnetwork.
Consequently, with G12 considered as the target module,
tests for fault isolation are formulated using the set O from
Algorithm 4. These tests are further detailed in Table III.

For each case, based on the selected tests, we carry out the
next fault isolation simulation experiments. Having identified
a faulty module in the target MISO subnetwork from previ-
ous fault detection, we proceed to conduct a fault isolation
experiment of length N = 5000, with test levels being
calculated every 500 steps and each time using all measured
data. Given that a fault has already been identified in the target
MISO subnetwork, the ensuing fault isolation experiments can
performed with a reduced horizon N .

Based on this experimental setup, we executed 100 Monte
Carlo simulations; the results are illustrated in Fig. 17. Despite
differences in the selected tests across the three cases, the
results, as evident from Fig. 17 (a), (b), and (c), are similar.
In Fig. 17, Test 1 (marked in black) corresponds to the test
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Fig. 17. Isolating a fault with the validation tests in the target MISO
subnetwork as in Fig. 14. (a) The test levels Q"̂1 (in black) and Q"̂1r3
(in blue) for Case 1; (b) The test level Qv̂1w2 (in black) and Qv̂1r3 (in blue)
for Case 2; (c) The test level Qv̂1r2 (in black) and Qv̂1r3 (in blue) for Case
3.
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Fig. 18. The required FDD experiment setup for Case 1 and Case 2.
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Fig. 19. The required FDD experiment setup for Case 3.

involving the target module set {G12, G13} for each scenario.
Conversely, Test 2 (marked in blue), the cross-correlation using
"̂1, r3, solely tests G13. The experimental results indicate a
rapid increase of the test levels of Test 1, surpassing the
confidence threshold shortly after the experiment’s onset. In
contrast, the test levels of Test 2 consistently stay below the
threshold. This outcome suggests a failure for Test 1 and a pass
for Test 2 across all cases. Hence, it is deduced that module
G13, tested by Test 2, is faultless. However, within the target
module set {G12, G13} of Test 1, a fault exists. In summary,
by integrating outcomes from both tests, the fault is isolated
on module G12 across all cases.

In the FDD procedure, both Case a and Case b require the
addition of r3 during the fault isolation experiment as depicted
in Fig. 18. Conversely, for Case 2, while r3 is essential for
fault isolation, r2 is requisite throughout the FDD process.
Therefore as illustrated in Fig. 19, Case 3 necessitates the
inclusion of both r2 and r3 in the data-generating network.
Throughout the fault detection and isolation experiments, the
four algorithms introduced in this study enable the automatic
generation of the requisite model validation tests. Given the
trade-off between noise information and test passivity, more
detailed and precise noise modeling is important if one wants
to utilize more passive tests in the FDD procedure.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a local model-based method for
fault detection and diagnosis in large-scale interconnected
network systems. Our approach relies on the models of the
target MISO subnetwork with validated accuracy, and employs
model invalidation tests for fault detection and diagnosis. We
employ a phased approach, first adapting existing auto- and
cross-correlation tests in the literature for open and closed-
loop systems to suit the dynamic network framework to
solve the objective of local subnetwork model validation.
Simulation results demonstrate that vector-valued correlation
tests outperform standard sample-wise tests within the dy-
namic network framework, yielding more stable and accu-
rate validation results. Utilizing model validation tests, we
convert the subsequent problem of local fault detection into
a combinatorial optimization problem and devise a heuristic
algorithm that automatically generates optimal tests for local

fault detection given the structural properties of the network
system. Furthermore, for the local fault diagnosis purpose, we
demonstrate that combining results from multiple validation
tests enables us to localize the detected fault more precisely,
even narrowing it down to a specific module. An algorithmic
approach is developed to generate the required tests for fault
isolation purposes and indicate the allocation of required
excitation signals. Given that large networks may be subject
to correlated or reduced-rank noise, our fault detection and
diagnosis method shows promise in terms of scalability and
consistency.

One limitation of the present study is the assumption that in
the data-generating network, each node is directly influenced
by a single disturbance only. In practice, this condition may
not always be feasible. In the dynamic network framework
considering reduced-rank noise, a more common scenario is
for each node to be influenced by several disturbance sources
[48]. Consequently, a significant avenue for future research
involves relaxing the constraint on the number of interference
sources affecting each node.

Concurrently, as highlighted in Chapter IV, our future re-
search direction also encompasses the development of a fully
passive fault detection procedure. Our present fault detection
technique, which depends on fully active tests in the absence
of noise information, inherently constrains its applicable sce-
narios: In systems where introducing external signals at any
given time is not feasible, our fault detection methods become
inapplicable.

As delineated in Chapter V, our proposed fault detection
and diagnosis methodology primarily uses qualitative analysis
of the model validation tests, focusing solely on test outcomes
— either pass or fail. In future research, we aim to leverage
model validation tests for more in-depth quantitative analyses,
utilizing precise test levels. Such an approach could offer a
finer resolution in determining the fault’s location, magnitude,
or other inherent attributes.

APPENDIX A. PROOF OF COROLLARY 1

First, we prove that the target module set of the white noise
test is S"̂j = {Gjk | k 2 Nj}. Omitting the t, q, we can denote
the residual signal "̂j as follows:

"̂j = H�1
j

(
X

k2Nj

�Gjkwk +H0
j
ej)

= H�1
j

X

k2Nj

�Gjkwk + (H�1
j

H0
j
� 1)ej

| {z }
nonwhite part

+ ej|{z}
white part

, (27)

where "̂j = ej holds only when �Gjk = 0 and H�1
j

H0
j
= 1

with nonzero wk and ej , which is when hypothesis Ha holds.
Therefore, it is proved that the target module set of the white
noise test is S"̂j = {Gjk | k 2 Nj}.
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Then we prove that the white noise test can only be used
when the noise model is obtained. If the noise model Ĥj(q) is
not obtained, we have the estimated disturbance v̂j as follows:

v̂j =
X

k2Nj

�Gjkwk +H0
j
ej

=
X

k2Nj

�Gjkwk + (H0
j
� 1)ej

| {z }
nonwhite part

+ ej|{z}
white part

, (28)

where the nonwhite part will always exist because of the term
(H0

j
� 1)ej . Therefore, the white noise test can only be used

when the noise model Ĥj(q) is obtained. ⌅

APPENDIX B. PROOF OF COROLLARY 2

The following lemma is essential for for the proof of
Corollary 2 and Corollary 3:

Lemma 2. For the sampled quasi-stationary signals
a(t), b(t), c(t) with a data length of N and given a filter
(transfer function) G(q) such that a(t) = G(q)b(t), the
estimated cross-correlation functions R̂N

ac
(⌧) and R̂N

ca
(⌧) can

be described as follows:

1) R̂N

ac
(⌧) = G(q)R̂N

bc
(⌧), R̂N

ac
(⌧) = g(⌧) ? R̂N

bc
(⌧);

2) R̂N

ca
(⌧) = G⇤(q)R̂N

cb
(⌧), R̂N

ca
(⌧) = g(�⌧) ? R̂N

cb
(⌧),

where G⇤(eiw) = G(e�iw) and ? is the convolution
operator.

To prove Corollary 2, we first establish a proof under the
conditions where the accurate noise model Ĥj(q) is available.
Utilizing Lemma 2, we derive the subsequent equation by
substituting Eq. (27) into the correlation function R̂N

"̂jwi
=

1
N

P
N

t=1 "̂j(t)wi(t� ⌧), while omitting the variables ⌧, q:

R̂N

"̂jwi
= H�1

j
�GjNj RwNjwi| {z }
target part

+ H�1
j

H0
j
Rejwi| {z }

interference part

,
(29)

where
�GjNj =

⇥
�Gj1, �Gj2, . . . , �Gjn

⇤
,

RwNjwi =
⇥
Rw1wi , Rw2wi , . . . , Rwnwi

⇤>
,

(30)

with n the number of elements in set Nj , i.e. n = |Nj |
10.

When the cross-correlation test is passed, the left side of
Eq. (29) is considered equal to 0 for ⌧ > 011, and the
same should hold for the right side. The term Rejwi in the
interference part in Eq. (29) is considered equal to 0 for
⌧ > 0, based on Assumption 1. If the noise model Hj is
accurate, no additional nonzero terms will be introduced in
the interference part for ⌧ > 0. In the target part, the term

10Given a set C , let |C| denote its cardinality in this thesis.
11For the cross-correlation test using wi, the considered lags of the

correlation function should start from ⌧ = 1 since the monic noise model
might cause the node signals to be correlated at ⌧ = 0.

H�1
j

�GjkRwkwi for k 2 Nj can be zero with either �Gjk

or Rwkwi being zero. Consequently, if Rwkwi = 0, the status
of �Gjk becomes ambiguous. Hence, we restrict the target
module set of the cross-correlation test with wi to include
only node signals in the selected MISO channel that have a
non-zero correlation with wi. Then it is proved that the target
module set of the cross-correlation test using "̂j and wi is
S"̂jwi = {Gjk | k 2 Nj \ Ci}.

Next, we establish a proof under the condition that the
noise model Ĥj(q) is not available, but the noise topology
TH is known. Here, the estimated disturbance v̂j is used
instead of the residual "̂j . According to Lemma 2, we derive
the subsequent equation by substituting Eq. (28) into the
correlation function R̂N

v̂jwi
= 1

N

P
N

t=1 v̂j(t)wi(t � ⌧), while
omitting the variables ⌧, q, ✓:

R̂N

v̂jwi
= �GjNj RwNjwi| {z }

target part

+ H0
j
Rejwi| {z }

interference part

,
(31)

where the interference part can not consistently be 0 for ⌧ > 0
because the noise filter H0

j
can propagate the nonzero values

from the side of ⌧  0 to the side of ⌧ > 0. Hence, not all node
signals wi for i 2 Nj are eligible for the cross-correlation test
due to the presence of the nonzero interference part.

However, node signals wi for i /2 Vj are independent of
the innovation source ej , rendering the interference term zero
for all ⌧ . Thus, it is proved that only the node signals wi for
i 2 Nj \Vj can be used under the condition that the estimated
noise model is not available. The target module set can be
proved that Sv̂jwi = {Gjk | k 2 Nj \ Ci}, similarly to the
previous case.

When the noise topology TH is unknown, information
regarding the set Vj is also unavailable. Under this condi-
tion, the selection of node signals for conducting this cross-
correlation test becomes ambiguous. Hence, we conclude that
performing the cross-correlation test using wi is infeasible
without knowledge of the noise topology TH . ⌅

APPENDIX C. PROOF OF COROLLARY 3

First, we establish a proof under the conditions where the
estimated noise model Ĥj(q) is available. Utilizing Lemma
2, we derive the subsequent equation by substituting Eq. (27)
into the correlation function R̂N

"̂jri
= 1

N

P
N

t=1 "̂j(t)ri(t� ⌧),
while omitting the variables ⌧, q:

R̂N

"̂jri
= H�1

j
�GjNj RwNj ri

+H�1
j

H0
j
Rejri

= H�1
j

�GjNj RwNj ri
,

(32)

where
�GjNj =

⇥
�Gj1, �Gj2, . . . , �Gjn

⇤
,

RwNj ri
=

⇥
Rw1ri , Rw2ri , . . . , Rwnri

⇤>
.

(33)

When the cross-correlation test is passed, the left side of Eq.
(32) is considered equal to 0 for ⌧ � 0, and the same should

27



hold for the right side. The term Rejri is considered 0 since the
external excitation signal ri is independent with the innovation
source ej . The term H�1

j
�GjkRwkri for k 2 Nj can be zero

with �Gjk or Rwkri being zero. Consequently, if Rwkri = 0,
the value of �Gjk becomes indeterminate. Thus, the target
module set of the cross-correlation test using ri should consist
of node signals in the selected MISO channel that have a
nonzero correlation with ri, i.e. Rwkri 6= 0. Then it is proved
that the target module set of the cross-correlation test using
"̂j(t) and wi is S"̂jri = {Gjk | k 2 Nj \ Pi}.

Next, we give proof for the situation where we have no
information about the noise model Hj or the noise topology
TH . Here, the estimated disturbance v̂j is used instead of
the residual "̂j . Based on Lemma 2 we have the following
equation by omitting the ⌧, q:

R̂N

v̂jri
= �GjNj RwNj ri

+H0
j
Rejri

= �GjNj RwNj ri
,

(34)

where the left side can still be 0 when Gjk corresponding to
the nonzero Rwkri is zero. Therefore, the cross-correlation test
using ri is available with any level of noise information. ⌅

APPENDIX D. SIMULATED NETWORK

For the Monte Carlo simulations, we consider the following
transfer functions for the data-generating network as in Fig. 4
and Fig. 12.

G0
14 =

0.38q�1
� 0.24q�2

1� 1.35q�1 + 0.54q�2
, H0

11 =
1 + 0.52q�1

1 + 0.41q�1
,

G0
21 =

�0.2q�1

1� 1.3q�1 + 0.6q�2
, H0

41 =
1� 0.2q�1

1 + 0.43q�1
,

G0
32 =

0.39q�1

1� 0.8q�1 + 0.2q�2
, H0

22 =
1 + 0.44q�1

1 + 0.35q�1
,

G0
34 =

�0.6q�1

1 + 0.45q�1 + 0.12q�2
, H0

32 =
1 + 0.52q�1

1 + 0.45q�1
,

G0
42 =

�0.3q�1

1� 0.6q�1 + 0.2q�2
.

APPENDIX E. ALGORITHMS FOR GENERATING INDEX SETS

Algorithm 5 Generating set Nj

Input: The index j of the output node wj , the network
topology TG

Output: The set Nj

1: Initialize an empty set Nj ;
2: for k = 1 : L do
3: if TG(j, k) 6= 0 then
4: Add k into Nj ;
5: end if
6: end for

Algorithm 6 Generating set Jk (Depth-first search (DFS))
Input: The index k of a node wk, the network topology TG

Output: The set Jk

1: Initialize an empty set Jk;
2: Initialize an empty stack S;
3: Initialize an array visited of size L with all values set to

False;
4: Push k into S;
5: Mark k as visited: visited(k) = True;
6: while S is not empty do
7: Pop the top element from S, name it currentNode;
8: for Each node wj s.t. TG(j, currentNode) = 1 do
9: if visited(j) 6= True then

10: Push j into S;
11: visited(j) = True;
12: Add j into Jk;
13: end if
14: end for
15: end while

Algorithm 7 Generating set Vj

Input: The index j of a node wj , the network topology TG,
the noise topology TH

Output: The set Vj

1: Initialize an empty set Vj ;
2: for l = 1 : number of columns(TH) do
3: // Find the innovation source on node wj .
4: if TH(j, l) 6= 0 then
5: for m = 1 : number of rows(TH) do
6: // Find the nodes that are influenced by the same

innovation source of node wj .
7: if TH(m, l) 6= 0 then
8: Generate Jm for node wm;
9: Add all elements of Jm in Vj ;

10: end if
11: end for
12: end if
13: end for
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Algorithm 8 Generating set Ck
Input: The index k of a node wk, the network topology TG,

the noise topology TH

Output: The set Ck
1: Initialize an empty set Ck;
2: Generate Jk for node wk, and add all elements of set Jk

into set Ck;
3: Generate Vk for node wk, and add all elements of set Vk

into set Ck;
4: // Do a reversed DFS.
5: Initialize an empty stack S;
6: Initialize an array visited of size L with all values set to

False;
7: Push k into S;
8: Mark k as visited: visited(k) = True;
9: while S is not empty do

10: Pop the top element from S, name it currentNode;
11: for Each node wj s.t. TG(currentNode, j) = 1 do
12: if visited(j) 6= True then
13: Push j into S;
14: visited(j) = True;
15: Add j into Jk;
16: end if
17: end for
18: end while

APPENDIX F. SIMULATED NETWORK

For the Monte Carlo simulations, we consider the following
transfer functions for the data-generating network as in Fig.
14.

G0
13 =

�0.2q�1

1� 1.3q�1 + 0.6q�2
, H0

11 =
1 + 0.52q�1

1 + 0.41q�1
,

G0
31 =

0.39q�1

1� 0.8q�1 + 0.2q�2
, H0

22 =
1 + 0.44q�1

1 + 0.35q�1
,

G0
32 =

�0.3q�1

1 + 0.6q�1 + 0.2q�2
, H0

33 =
1 + 0.52q�1

1 + 0.45q�1
.

REFERENCES

[1] J. W. Pierre, D. Trudnowski, M. Donnelly, N. Zhou, F. K. Tuffner,
and L. Dosiek, “Overview of System Identification for Power Systems
from Measured Responses,” IFAC Proceedings Volumes, vol. 45, no. 16,
pp. 989–1000, 2012.

[2] W. Ren and N. Sorensen, “Distributed coordination architecture for
multi-robot formation control,” Robotics and Autonomous Systems,
vol. 56, no. 4, pp. 324–333, 2008.

[3] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M.
Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff,
J. Querol, L. Lei, T. X. Vu, and G. Goussetis, “Satellite Communi-
cations in the New Space Era: A Survey and Future Challenges,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 1, pp. 70–109, 2021.

[4] R. Isermann, Fault-diagnosis systems: an introduction from fault detec-
tion to fault tolerance. Springer, 2006.

[5] S. Simani, C. Fantuzzi, and R. J. Patton, Model-based Fault Diagnosis
in Dynamic Systems Using Identification Techniques. Springer London,
2003.

[6] B. Dowdeswell, R. Sinha, and S. G. MacDonell, “Finding faults: A scop-
ing study of fault diagnostics for Industrial Cyber–Physical Systems,”
Journal of Systems and Software, vol. 168, p. 110638, 2020.

[7] G. M. Milis, D. G. Eliades, C. G. Panayiotou, and M. M. Polycarpou,
“A cognitive fault-detection design architecture,” in 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 2819–2826, 2016.

[8] H. Fang, H. Shi, Y. Dong, H. Fan, and S. Ren, “Spacecraft power system
fault diagnosis based on DNN,” in 2017 Prognostics and System Health
Management Conference (PHM-Harbin), pp. 1–5, 2017.

[9] M. H. Kim, S. Lee, and K. C. Lee, “A fuzzy predictive redundancy
system for fault-tolerance of x-by-wire systems,” Microprocessors and
Microsystems, vol. 35, no. 5, pp. 453–461, 2011.

[10] C. Sankavaram, A. Kodali, and K. Pattipati, “An integrated health
management process for automotive cyber-physical systems,” in 2013
International Conference on Computing, Networking and Communica-
tions (ICNC), pp. 82–86, 2013.

[11] M. He and J. Zhang, “A Dependency Graph Approach for Fault Detec-
tion and Localization Towards Secure Smart Grid,” IEEE Transactions
on Smart Grid, vol. 2, no. 2, pp. 342–351, 2011.

[12] X. Yang and L. Chen, “Design and fault diagnosis of Petri net controllers
for Petri nets with uncontrollable and unobservable transitions,” Journal
of Manufacturing Systems, vol. 28, no. 1, pp. 17–22, 2009.

[13] Y. Chen, “Applications of Bayesian Network in Fault Diagnosis of
Braking System,” in 2011 Third International Conference on Intelligent
Human-Machine Systems and Cybernetics, vol. 1, pp. 234–237, 2011.

[14] J. Wang, L. Zhang, L. Duan, and R. X. Gao, “A new paradigm of cloud-
based predictive maintenance for intelligent manufacturing,” Journal of
Intelligent Manufacturing, vol. 28, no. 5, pp. 1125–1137, 2017.

[15] P. Waszecki, M. Lukasiewycz, and S. Chakraborty, “Decentralized
diagnosis of permanent faults in automotive E/E architectures,” in 2015
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), pp. 189–196, 2015.

[16] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems, vol. 3 of The International Series on Asian Studies
in Computer and Information Science. Springer US, 1999.

[17] K. Tidriri, N. Chatti, S. Verron, and T. Tiplica, “Bridging data-driven
and model-based approaches for process fault diagnosis and health
monitoring: A review of researches and future challenges,” Annual
Reviews in Control, vol. 42, pp. 63–81, 2016.

[18] I. Yen, S. Zhang, F. Bastani, and Y. Zhang, “A Framework for IoT-Based
Monitoring and Diagnosis of Manufacturing Systems,” in 2017 IEEE
Symposium on Service-Oriented System Engineering (SOSE), pp. 1–8,
2017.

[19] H. H. M. Weerts, P. M. J. Van den Hof, and A. G. Dankers, “Prediction
error identification of linear dynamic networks with rank-reduced noise,”
Automatica, vol. 98, pp. 256–268, 2018.

[20] P. M. J. Van den Hof, A. G. Dankers, P. S. C. Heuberger, and
X. Bombois, “Identification of dynamic models in complex networks
with prediction error methods—Basic methods for consistent module
estimates,” Automatica, vol. 49, pp. 2994–3006, Oct. 2013.

[21] A. G. Dankers, P. M. J. Van den Hof, X. Bombois, and P. S. C.
Heuberger, “Identification of Dynamic Models in Complex Networks
With Prediction Error Methods: Predictor Input Selection,” IEEE Trans-
actions on Automatic Control, vol. 61, no. 4, pp. 937–952, 2016.

[22] K. R. Ramaswamy and P. M. J. Van den Hof, “A local direct method
for module identification in dynamic networks with correlated noise,”
Automatica, vol. 66, pp. 5237–5252, 2021.

[23] S. J. M. Fonken, K. R. Ramaswamy, and P. M. J. Van den Hof, “A
scalable multi-step least squares method for network identification with
unknown disturbance topology,” Automatica, vol. 141, p. 110295, 2022.

[24] K. R. Ramaswamy, G. Bottegal, and P. M. J. Van den Hof, “Local
Module Identification in Dynamic Networks Using Regularized Kernel-
Based Methods,” in 2018 IEEE Conference on Decision and Control
(CDC), pp. 4713–4718, 2018.

[25] J. Gertler, Fault detection and diagnosis in engineering systems. Marcel
Dekker, 1998.

[26] L. Ljung, System identification toolbox: User’s guide. Citeseer, 1995.
[27] S. G. Douma, X. Bombois, and P. M. J. Van den Hof, “Validity

of the standard cross-correlation test for model structure validation,”
Automatica, vol. 44, pp. 1285–1294, 2008.
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