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Abstract

Indirect methods for identification of linear plant models on the basis of closed-loop data are based on the use of (reconstructed)
input signals that are uncorrelated with the noise. This generally requires exact (linear) controller knowledge. On the other hand, direct
identification requires exact plant and noise modelling (system in the model set) in order to achieve accurate results, although the controller
can be nonlinear. In this paper, a generalized approach to closed-loop identification is presented that includes both methods as special cases
and which allows novel combined methods to be generated. Besides providing robustness with respect to inexact controller knowledge, the
method does not rely on linearity of the controller nor on exact noise modeling. The generalization is obtained by balancing input-noise
decorrelation against noise whitening in a user-chosen flexible fashion. To this end, a user-chosen virtual controller is used to parametrize
the plant model, thereby generalizing the dual-Youla method to cases where knowledge of the controller is inexact. Asymptotic bias and
variance results are presented for the method. Also, the benefits of the approach are demonstrated via simulation studies.
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1 Introduction

Identification of dynamic systems operating in the presence
of feedback has received considerable attention in the system
identification literature (see e.g. [16,30,33,8,23]). In many
situations, there exist strong economic and/or safety reasons
for requiring process data to be collected under closed loop
conditions. Even open-loop stable plants are often subject to
non-stationary disturbances and long term drift that favour a
closed loop experiment for data collection. Additionally, it
has been found that, for several model applications (as e.g.
model-based control design) and experimental constraints
(e.g. output power constraints), a closed-loop identification
experiment is often the optimal experimental setup, see e.g.
[34,21,10,20,4].

Unfortunately, handling closed-loop data in identification
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(Juan C. Agüero), graham.goodwin@newcastle.edu.au
(Graham C. Goodwin), p.m.j.vandenhof@tudelft.nl
(Paul M. J. Van den Hof).

leads to additional difficulties, see e.g. [33,8].

In the prediction error framework [23], the two principle
methods for closed loop identification can be characterized
as follows:

• Direct identification: Here the plant is identified directly
on the basis of plant input and output data taken from
within the closed-loop. The presence of feedback is ig-
nored. Consistent model estimates can be identified under
the condition that the noise dynamics are modelled ex-
actly. Exact knowledge of the controller is not necessary
and the controller may be nonlinear.

• Indirect identification: Here a plant object 1 is identi-
fied (usually the complementary sensitivity) between the
reference input and plant output signals. Subsequently
an equivalent plant model is retrieved from the identi-
fied object. Consistent plant models can be identified un-
der the condition that the controller is linear and exactly
known. This holds for several variants of the indirect
method, including the dual-Youla approach [17,28,33],

1 Here and in the sequel, we use the term “plant object” to describe
a transfer function that depends on the (open-loop) plant.
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the method based on tailor-made parametrization [35],
and bias-elimination least-squares methods (BELS) [39].

A third category, called joint input-output methods (see e.g.
[30]), can be considered as an indirect method in the context
of the current paper.

In practice, one would ideally like to have identification tools
that combine the advantageous properties of both direct and
indirect methods. In particular, one would like to be able to
handle the following situations:

• When a (slightly) nonlinear controller is present in the
loop, e.g. a linear controller that saturates regularly, or
that is not exactly known;
• When the noise disturbances are non-stationary or can-

not be modelled exactly by stationary white noise filtered
through a linear time-invariant system.

In the above situations, neither direct nor indirect methods
provide consistent model estimates and the number of al-
ternatives is very limited. The Projection Method [9] was
proposed to deal with non-linear controllers, by identifying
non-causal FIR models to approximate non-linear sensitiv-
ity functions. Alternatively, Instrumental Variable methods
[31,13] can handle non-linear controllers and yield consis-
tent plant models irrespective of noise under-modeling.

In this paper we develop a novel approach that takes a more
generalized perspective. Realizing that all indirect methods
use controller knowledge to exactly decorrelate the identi-
fication input signal from the noise, we will focus on this
decorrelation and develop a generalized approach that is ro-
bust against controller nonlinearity and inexact controller
knowledge.

A central issue in our development is the choice of a vir-
tual controller [2,1,14] which approximates the real (possi-
bly nonlinear) controller. This virtual controller will be de-
ployed only for input signal construction to be used in iden-
tification. The more accurate the virtual controller, the less
noise correlation will be present in the identification input.
As a result, the bias due to having an inexact noise model
will be reduced. In this way our method generalizes both the
direct and indirect method of closed-loop identification. Our
approach leads to a sliding mechanism between these two
extremes. The user can make an appropriate choice depend-
ing on his/her faith in either the quality of the noise model,
or the available knowledge and linearity of the controller.

The current paper completes and generalizes the analysis
originally presented in [5], see also [2] and [14].

The remainder of the paper is organized as follows: In Sec-
tion 2 we introduce closed loop identification in a general
non-linear setting. In Section 3 we describe the new ap-
proach for identification of closed loop systems. In Section
4 we show how the virtual closed loop (VCL) method gen-
eralizes known schemes for closed loop identification. In

Section 5 we analyze the spectra of signals appearing in the
VCL method. In Section 6 we show how the choice of pa-
rameters in the virtual closed loop method affects the asymp-
totic bias and the estimation accuracy of the identification
for systems operating in closed loop. We also analyze the
accuracy of the estimates provided by VCL. In Section 7 we
provide general guidelines to design filters necessary to im-
plement the identification procedure using VCL. In Section
8 we illustrate how to use VCL to identify a simple system.
Finally in section 9 we draw conclusions.

2 Closed-loop identification setup

We consider a data generating system S:

yt = Go(q)ut + vt (1)
vt = Ho(q)wt

where q is the forward-shift operator, yt, ut, and wt are the
output, input and noise respectively, Go(q), and Ho(q) are
linear transfer functions, withHo stable, stably invertible and
monic (i.e. lim|z|→∞Ho(z) = 1). The noise wt is assumed
to be zero mean Gaussian white noise with variance σ2

w. The
system is assumed to operate in a stabilized closed loop (see
Figure 1). In the case that the controller is linear the input
signal satisfies:

ut = C(rt − yt), (2)

for non-linear controller the relationship in 2 has to be un-
derstood as a nonlinear dynamic map between the tracking
error rt − yt and the input signal ut.

Here, rt is an external reference signal. Throughout the pa-
per, we will not restrict the controller, C, to be linear . How-
ever, at times, it will be convenient to consider the linear
case so that we can relate our work to earlier literature. In
these cases, we will use the notation Cl to denote C. In
addition, we will, at other times, wish to consider a linear
controller which is “close” (in some sense) to a non-linear
controller. In this case, we will use the notation Cal .

Fig. 1. Closed-loop system configuration

In order to have a well-defined closed-loop, it is further
assumed that either C or Go contains, at least, a one step
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time delay.
Spectral densities of signals are denoted by

Φuw(ω) =

∞∑
τ=−∞

Ruw(τ)e−jωτ

with 2 Ruw(τ) := Ē {utwt−τ} and Φu = Φuu.

In order to be able to define signal spectra and cross-spectra
we assume that the following assumption holds [23,8]:

Assumption 1 The signals wt, rt, ut, yt in the closed loop
system defined by (1)-(2) are jointly quasi-stationary. OOO

Our goal is the identification of a (consistent) plant model
for Go on the basis of closed-loop data. There are key differ-
ences between direct and indirect methods of identification.
The different conditions for arriving at consistent estimates
of Go are listed in Table 1.

direct indirect

Exact LTI noise model yes3 no

C linear no yes

C exactly known no yes
Table 1
Required conditions for direct and indirect identification to provide
consistent plant model estimates.

The clear distinction between the two situations raises the
question as to whether one can combine the two approaches
in a generalized method that is robust with respect to all three
conditions; i.e. a method that is robust with respect to slight
deviations from the assumptions of having exact controller
knowledge, controller linearity, or exact LTI noise models.
Such a method is developed in the next section.

3 A generalized approach to closed-loop identification

3.1 Introduction

In our generalized approach we consider the setup of Fig-
ure 2, where linear, causal and stable filters F1 · · ·F4 are
introduced to generate signals

xt = F1(q)ut + F2(q)yt (3)
zt = F3(q)ut + F4(q)yt. (4)

2 Here and in the sequel, we use the operator

Ē {(·)} = lim
N→∞

1

N

N∑
t=1

E {(·)} where E {(·)} is the expected

value operator.
3 Notice that for estimation techniques such as instrumental vari-
ables, it is possible to identify the system Go using direct identi-
fication without modelling the noise transfer function.

The signals xt and zt will be used as input and output signals
in a generalized identification scheme.

Notice that Assumption 1 and the relationships (3)-(4) imply
that not only are all the signals in the closed loop (1)-(2)
quasi-stationary but also the signals xt and zt.

Fig. 2. Generalized scheme for closed-loop identification from
input xt to output zt.

The proposed identification approach amounts to identify-
ing a plant-related object (parameterized by a vector θ that
defines the model for the system) through a linear transfer
function between the signals xt and zt, by applying a model
structure:

εt(θ) = K(q, θ)−1[z(t)−R(q, θ)x(t)] (5)

leading to estimates R̂ = R(q, θ̂N ) and K̂ = K(q, θ̂N ), and
subsequently to derive an equivalent plant model Ĝ from
R̂ by applying the principle of tailor-made parametrization.
(More details will be provided in sub-section 3.4)

It is apparent that the identification results will depend on the
choice of the filters F1 · · ·F4. For example, by appropriately
choosing F1 and F2 one can tune the presence of noise
wt in the generalized input signal xt, and thereby one can
influence the resulting bias.

3.2 The virtual closed-loop

Under, the additional condition that F1 is stably invertible
(Note that this is not required in the method), the closed-loop
diagram of Figure (2) can be redrawn as shown in Figure
(3). This alternative view shows how the filters F1 and F2

are used to construct the generalized reference input xt via
xt = F1ut +F2yt (where F2/F1 acts as a virtual controller
that compensates for the original controller in the construc-
tion of xt). Additionally, the resulting transfer function be-
tween xt and zt contains a (virtual) closed-loop plant object,
where again the same controller F2/F1 is involved. Since
the (linear) filter F2/F1 can be chosen freely by the user, it
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Fig. 3. Virtual Closed Loop.

does not have any direct relation to the implemented con-
troller C. Therefore the scheme is referred to by the name
“Virtual Closed Loop”. We also define the virtual controller
as C̄(q) = F2(q)/F1(q). Note also that stability is not an
issue since we already know that all signals are bounded (in
a suitable statistical sense). Moreover, in the case that the
“true” controller is linear and equal to the virtual controller
(Cl = C̄ = F2/F1) then xt = F2rt is uncorrelated with
the noise wt. In the remainder of the paper, we will explore
the implications of the configuration of Figure 2 in system
identification.

3.3 System equations and filter conditions

In order to analyse the setup, we use equations (1), (3) and
(4) to obtain the following set of equations describing the
virtual closed loop system:

1 −F3 −F4

0 F1 F2

0 −Go 1



zt

ut

yt

 =


0

xt

vt

 (6)

Solving for z, u and y we have the following:

zt =
F3 + F4Go
F1 + F2Go

xt +
F1F4 − F2F3

F1 + F2Go
Howt (7)

ut =
1

F1 + F2Go
xt −

F2

F1 + F2Go
Howt (8)

yt =
Go

F1 + F2Go
xt +

F1

F1 + F2Go
Howt (9)

We then write

zt = Roxt +Kowt (10)

with

Ro =
F3 + F4Go
F1 + F2Go

, Ko =
F1F4 − F2F3

F1 + F2Go
Ho (11)

In order for Ro and Ko to satisfy the usual conditions for
applying prediction error identification methods the filters
F1 · · ·F4 have to satisfy certain regularity conditions.

Assumption 2 We assume that the filters {Fi}i=1...4 satisfy
the following:

(1) F1 is biproper;
(2) F2Go is strictly proper;
(3) Go is stabilized by the controller F2/F1;
(4) M := F1F4 − F2F3 is stably invertible.

OOO

Proposition 3 The transfer functionsRo andKo are causal
and stable under the conditions in Assumption 2.

Proof
Conditions (1) and (2) together with the causality of all
filters F1, · · ·F4 guarantee that Ro and Ko are causal (i.e.
limz→∞Ro(z), and limz→∞Ko(z) are constants).
In order to show stability of Ro and Ko, we express the
filters {Fi}i=1..4 and the plant Go as a coprime polynomial
factorizations: Fi = NiD

−1
i , i = 1, · · · 4, andGo = Bo/Ao.

Then

Ro =
D1D2

D3D4

(N3D4Ao +N4D3Bo)

(N1D2Ao +N2D1Bo)
(12)

Stability of Ro and Ko follows if N1D2Ao +N2D1Bo has
all zeros within the unit circle (see e.g. [15, page 127]).
This is guaranteed when Go is stabilized by the controller
N2D1/N1D2 = F2/F1, see condition (3). 2

Remark 4 Notice that since the noise wt is Gaussian dis-
tributed, then without loss of generality we assume that Ko

is minimum-phase. In addition, in the estimation procedure
we assume that K is also minimum-phase. OOO

3.4 Identification setup

The virtual closed-loop system will be identified by apply-
ing a direct identification method to the virtual-closed-loop
system (10). On the basis of the generalized input signal xt,
and the generalized output signal zt, we identify a model in
a Box-Jenkins type model structure, with a prediction error

εt = K(q, η)−1 [zt −R(q, ρ)xt] (13)

where

R(q, ρ) =
F3 + F4G(q, ρ)

F1 + F2G(q, ρ)
. (14)

represents the family of models used to estimate Ro and
K(q, η) represents the family of models used to estimate
Ko.

4
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The parametrization of R(q, ρ) is a tailor-made parametriza-
tion in which the parameters of the plant model G are used
to parametrize the virtual closed-loop plant R(q, ρ) [8,35].
In the parametrization (13), the plant and noise models are
parametrized independently. The parameters ρ, and η are
estimated by minimizing a quadratic criterion:

VN =
1

N

N∑
t=1

ε2
t . (15)

The following condition on the filters {Fi}i=1..4, the true
system Go, and the class of models G is assumed to hold:

lim
|z|→∞

(F1F4 − F2F3)

(F1 + F2Go)
= lim
|z|→∞

(F1F4 − F2F3)

(F1 + F2G)
= 1

This condition implies that Ko and K are monic.

Notice that once estimates Ĝ, K̂ for Go and Ko have been
obtained, one can define an estimate for Ho as follows:

Ĥ :=
F1 + F2Ĝ

F1F4 − F2F3
K̂ (16)

We make the following assumption:

Assumption 5 The vector of parameters θ = [ρT ηT ]T , the
input (xt), noise (wt) and reference (rt) satisfy regularity
conditions such that the solution, θ̂N of the optimization
problem in (15) converges (a.s.) to θ∗. OOO

Assumption 5 is necessary for asymptotic statistical analysis
to hold (see [22] and [37] for details). Sufficient conditions
on the true system, signals and the parametrized family of
models such that Assumption 5 holds have to be obtained for
every particular case. Moreover, the asymptotic statistical
analysis presented in [22] also holds when the noise wt is a
i.i.d. sequence not necessarily Gaussian distributed.

In the subsequent analysis we will analyze the impact of the
following two issues:

(1) xt is not, in general, an exogenous signal but is poten-
tially correlated with the noise wt.

(2) The class of models used for K(q, η) may not include
the true noise model Ko e.g. we might decide to use a
fixed noise model K 6= Ko.

4 Particular cases and general properties

We will first establish that the Virtual Closed Loop method
generalizes known methods for closed loop identification.

• Direct identification (see e.g. [23]) is obtained by the
choice F1 = F4 = 1, and F2 = F3 = 0. This results in

x = u, z = y, Ro = Go, Ko = Ho.

• Traditional indirect identification ([30]) is obtained when
the controller is linear and the choice 4 F1 = C−1

l ,
F2 = F4 = 1, F3 = 0 is made where Cl is the (as-
sumed known and linear) true controller. This results in

x = r, z = y, Ro=
GoCl

1 +GoCl
, Ko=

1

1 +GoCl
Ho.

Notice that it is necessary to incorporate an extra sig-
nal in the traditional indirect identification (the reference
x = r). However, if the “true” controller is linear, then
it is possible to reconstruct the reference from the in-
put/output signals.

• In the Dual Youla method ([17,28,34]) the plant model
parametrization is based on an auxiliary model Gx of Go
with rational coprime factorization Nx/Dx that is sta-
bilized by the present (assumed known and linear) con-
trollerCl with rational coprime factorizationNc/Dc. This
method is obtained by choosing

F1 = Dc/M ; F2 = Nc/M ; F3 = −Nx/M ; F4 = Dx/M

with M = NcNx +DcDx.
• The “whitening procedure” (see e.g. [7,23]) is obtained

by the choice F1 = F4 = F and F2 = F3 = 0. In this
case we have

x = Fu, z = Fy, Ro = Go, K0 = FHo.

Note that if F ≈ H−1
o , then we might consider using a

fixed filter K = 1 in the estimates.

The different methods and the corresponding choices for
the filters F1 · · ·F4 are listed in Table 2. The identification
objects and input and output signals are collected in Table 3.
Note that the indirect and Dual-Youla methods require the
controller C to be linear.

F1 F2 F3 F4

Direct 1 0 0 1

Indirect C−1
l 1 0 1

Dual-Youla (DY) Dc/M Nc/M −Nx/M Dx/M

Table 2
Particular choice for the filters F1, · · · , F4 leads to specific closed-
loop identification methods. M = NcNx +DcDx.

4 If C−1
l is non-causal and the reference signal is available, then

one can directly define xt = rt.
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input x output z Ro Ko

Direct u y Go Ho

Indirect C−1
l u+ y y

ClGo

1 + ClGo

Ho

1 + ClGo

Dual-Youla (DY)
D−1

x

1 + ClGx
(u+ Cy)

D−1
c

1 + ClGx
(y −Gxu)

(Go −Gx)Dx

Dc(1 + ClGo)

D−1
c Ho

1 + ClGo

VCL F1u+ F2y F3u+ F4y
F3 + F4Go

F1 + F2Go

F1F4 − F2F3

F1 + F2Go
Ho

Table 3
Overview of input / output signals and of objects of identification for closed-loop identification methods.

The following observations reflect some of the main prop-
erties associated with selecting the filters F1 · · ·F4 in our
method:

• If the model sets are flexible enough to capture the real
plant and noise dynamics of Ro and Ko respectively, then
all methods provide consistent estimates of Go and Ho.
• If the model sets for Ro are chosen flexible enough to

represent the real plant dynamics, (and no statement is
made with respect to model sets for Ko), then the plant
estimates Ĝ will contain an asymptotic bias that is deter-
mined by Φxw. This bias is zero when Φxw = 0.

• The input signal xt for identification is uncorrelated with
the noise wt, i.e. Φxw = 0, if the controller is linear and
the virtual controller is chosen as C := F2/F1 = Cl.
• If the auxiliary model F3/F4 is stabilized by the virtual

controller C, then any identified model R̂ of Ro that is
stable will, through (14), correspond to an equivalent plant
model Ĝ that is stabilized by the virtual controller C.
• The virtual closed-loop method incorporates a generalized

Dual-Youla method, where the controller that is used for
the plant parametrization is not necessarily chosen equal
to the present (possibly nonlinear) controller C, but is a
user-chosen linear approximation thereof in the form of
the virtual controller C.

In [8, lemma 3], it is established that traditional indirect iden-
tification can be thought as a direct identification method
where the noise model is parametrized in terms of the open
loop process G and the true controller, C. The analysis pre-
sented in [8, lemma 3] assumes that the true controller is
linear and exactly known. We next, generalize this result for
the case of the VCL method.

Lemma 6 VCL identification is equivalent to direct identi-
fication with the following prediction model:

yt = G(q, ρ)ut + H̄(q, ρ, η)εt (17)

where the noise model is given by:

H̄(q, ρ, η) = K(q, η)
F1 + F2G(q, ρ)

F1F4 − F2F3
(18)

Proof: In the VCL method the prediction error is given by:

εt =
1

K

[
zt −

F3 + F4G

F1 + F2G
xt

]
(19)

Using the input-output relationship and re-arranging terms
we obtain:

εt =
1

K

M

F1 + F2G
[yt −Gut] (20)

M = F1F4 − F2F3 (21)

The result follows since the same prediction error is obtained
from direct identification with noise model H̄(q, ρ, η). 2

The previous lemma shows that VCL is equivalent to shaping
the noise model for the system to be identified. This lemma
also shows that most indirect identification methods can be
considered as a modified version of direct identification.

Notice that the set of poles of the extended noise model
H̄ contains the poles of G. This property also appears in
ARMAX and ARX models and is actually the key enabling
tool that allows one to identify unstable processes Go.

Even though, VCL can be understood as a special case of
direct identification, the key point is that a systematic pro-
cedure exists to modify the effective noise model in order
to reduce the bias due to under-modeling and due to sig-
nal correlation arising from the closed loop nature of the
data. Note that, in the usual direct identification for Box-
Jenkins (BJ) models, the noise model and the plant are in-
dependently parametrized. This means, that it is not possi-
ble, in general, to identify unstable systems using a Box-
Jenkins parametrization. By way of contrast, in VCL, even
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though we are using BJ models, the identification procedure
when viewed in the direct identification setting is not a Box-
Jenkins model, but has a very particular structure.

5 Signal spectra analysis for the VCL

5.1 Preliminary definitions and assumptions

Definition 7 [29, page 197] If the transfer function X(z)
is given by:

X(z) = . . .+ x−1z
1 + x0 + x1z

−1 + x2z
−2 + . . . (22)

where z ∈ A ⊂ C, and A includes the unit circle, then the
causal part is given by:

[X(z)]+ := x0 + x1z
−1 + x2z

−2 + . . . (23)

and the anti-causal part by:

[X(z)]− := X(z)− [X(z)]+ = x−1z
1 + x−2z

2 + . . .
(24)

OOO

We assume some extra conditions in order to have a well
defined closed loop system.

Assumption 8 One of the following two conditions holds:

• the true plant, Go, and its model, G, are strictly causal,
• the true controller, C, and the virtual controller, C are

strictly causal. OOO

Note that Assumption 8 imposes a constraint in the class of
models G and K.

5.2 Cross-spectrum between xt and wt

A common problem in the identification of closed loop sys-
tems is that the input to the system to be identified is cor-
related with the noise [23]. We next analyze the impact that
the choice of the different filters {Fi}i=1..4 has on the cross-
spectrum Φxw given by:

Φxw = (F1 + F2Go)Φuw + F2Hoσ
2
w (25)

The following result provides a condition such that the cross-
spectrum Φxw is identically zero.

Lemma 9 The cross-spectrum between x and w vanishes if

F1(1 +GoC)Φuw + F2Hoσ
2
w = 0 (26)

Moreover (26) holds if the virtual controller is given by:

C = − Φuw
GoΦuw +Hoσ2

w

(27)

Proof: Immediate from equations (25) and C = F2

F1
, S̄o =

1

1+GoC
. 2

An implication of Lemma 9 is that it is possible to reduce the
correlation between xt and wt by adjusting C̄ irrespective
of the linearity of the true controller.

We next specialize to the case when the true controller has
a linear approximation which we denote Cal .

Corollary 10 If the input of the real system is given by the
following relationship:

ut = Cal (q)(rt − yt) + ξt (28)

where Cal (q) is a linear controller, and ξt is a quasi-
stationary signal that might depend on rt, yt and their past
values, then condition (27) can be re-written as:

C = β̄Cal + (1− β̄)(−G−1
o ) (29)

where

β̄ =
1

1 + Go
Ho

Φξw
σ2
w

(30)

Proof: Re-writing equation (27), and using the relationship
between input and output signals we observe that the input
signal is given by:

ut = Cal S
a
o rt + Sao ξt − ClHoS

a
owt (31)

where Sao is the sensitivity function calculated using Cal .
Finally, considering that Φxw = F1

S̄o
Φuw + F2Hoσ

2
w, and

re-arranging terms we obtain the result. 2

Notice that, if the true controller is non-linear, then Cal (q) in
(28) represents a linear approximation of the true controller,
and ξt captures the remaining terms due to non-linearities.

From the previous corollary we see that, if the controller is
slightly non-linear (Φξw small), then β̄ ≈ 1, and thus one
can reduce Φxw by choosing the virtual controller as a linear
approximation of the true non-linear controller (C̄ ≈ Cal ).

6 Bias and accuracy analysis for the VCL method

Bias and variance are fundamental concepts to asses the
performance of estimators [32]. We next, analyze the bias
and variance of the estimators in the VCL setup.
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It is well known that the cost function in direct identification
using PEM is asymptotically (in the number of data points)
given by 5 [23]:

VN →
1

2π

∫ π

π

Φε

=σ2
w +

1

2π

∫ π

π

Φu
|H|2

∣∣∣∣(Go −G) + (Ho −H)
Φwu
Φu

∣∣∣∣2
+

1

2π

∫ π

π

|Ho −H|2

|H|2

(
σ2
w −
|Φwu|2

Φu

)
(32)

The expression in (32) is valid for different system
parametrizations and holds irrespective of the conditions
under which the real system is operating (i.e. open or closed
loop). If the system is operating in open loop and one uses
a Box-Jenkins models structure (i.e. G(q, θ) = G(q, ρ) and
H(q, θ) = H(q, η), and θ = [ρT ηT ]T ), then we have that
the corresponding optimization problem to determine ρ is
(asymptotically in the number of data points) given by:

ρ̂ = arg min
ρ

1

2π

∫ π

π

Φu
|H∗|2

|Go −G|2 (33)

where H∗(q) = H(q, η∗) and η∗ is the value for η that op-
timizes the asymptotic cost function (32). Thus, in this par-
ticular case, we have that, if the model class for G contains
Go, then one obtains a consistent estimate for Go irrespec-
tive of possible under-modelling in the noise transfer func-
tion Ho (i.e. H∗(q) 6= Ho(q)). This analysis illustrates the
benefits of using Box-Jenkins models for systems operating
in open loop.

For systems operating in closed loop, the term BG =
Φwu
Φu

(Ho − H∗) is usually called the bias-pull for the esti-
mates of Go [8]. We next present a definition of this term
that will be useful for the analysis in the sequel.

Definition 11 Consider a given true system Go(q), and
a given cost function VN (θ) that converges to V∞(θ) as
N → ∞. The bias-pull is the bias that would occur in an es-
timatedG-model if it were parametrized non-parametrically
(i.e. allowing unlimited orders and non-causal dynamics)
and independent of the noise model. OOO

The importance of the bias-pull concept is that, for BJ mod-
els, it defines the limit point where an estimate of Go(q)
obtained by solving an optimization problem converges, but
limited to the freedom available in the parametric model.

In order to obtain the asymptotic value for the estimate ofGo,
it is typically assumed that the structure of G is sufficiently
complex so that the cost function achieves its minimal value
for every causal transfer function G. Then, by splitting the

5 Here and in the sequel all integrals are with respect to the
variable ω.

bias-pull into its causal and anti-causal parts, we have that,
for BJ models, the estimate of Go tends to

Ĝ→ Go +
H∗
Mu

[
(Ho −H∗)

Mu

H

Φwu
Φu

]
+

(34)

where Mu is stable, minimum-phase and is such that Φu =
MuM

∗
u . This factorization is usually called a canonical fac-

torization (see e.g. [18]).

The previous result has been shown in [8,23] for direct iden-
tification. We will see, in the sequel, that a similar result can
also be obtained for the VCL method.

Lemma 12 Under assumptions 1, 5, and 8, the cost function
given in (15) and (13) is asymptotically (in the number of
data points) given by:

1

2π

∫ π

−π
Φε =σ2

w +
1

2π

∫ π

−π

∣∣∣∣MK
∣∣∣∣2 Φm

∣∣∣∣X +
Φnm
Φm

∣∣∣∣2
+

1

2π

∫ π

−π

∣∣∣∣MK
∣∣∣∣2 [Φn − |Φnm|2Φm

]
(35)

where

X =
Go −G
F1 + F2G

(36)

mt = ut + C̄
Ho

1 + CGo
wt (37)

nt =

[
Ho

F1 + F2Go
− K

M

]
wt (38)

Proof: From lemma 6, we have that the prediction error in
(13) is given by:

εt = H̄−1[yt −Gut] (39)
= H̄−1[Gout +Howt −Gut] (40)

Hence,

εt =
M

K

[
Go −G
F1 + F2G

ut +
Ho

F1 + F2G
wt −

K

M
wt

]
+ wt

(41)
= ηt + wt (42)

where

ηt =
M

K

[
Xut +

(
Ho

F1 + F2G
− K

M

)
wt

]
(43)

=
M

K
[Xmt + nt] (44)
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Using assumption 8 we have that ηt depends on past values
ofwt. Then, considering thatwt and ηt are independent, and

1

2π

∫ π

−π
Φε = σ2

w +
1

2π

∫ π

−π
Φη (45)

Finally, calculating the spectrum of ηt and completing
squares we obtain (35). 2

We then have the following result:

Theorem 13 Using Virtual Closed Loop identification for
a Box-Jenkins model (i.e. when G(q, ρ) and K(q, η) are
independently parametrized), the bias-pull for the estimates
of Go(q) is given by:

BG :=

{
(λ− 1)

[
Go + C̄−1

]
if C̄ 6= 0

F1
Φnm
Φm

if C̄ = 0
(46)

where

λ =
1

1− F2
Φnm
Φm

(47)

Moreover, for a general family of models for 6 G in the class
of causal Box-Jenkins models, the asymptotic estimate, Ĝ,
of Go tends to:

Ĝ→

{
Goλ̄− C̄−1(1− λ̄) if C̄ 6= 0

Go + F1
K∗

MMm

[
MMm

K∗

Φnm
Φm

]
+

if C̄ = 0
(48)

where

λ̄ =
1

1− F2
K∗

MMm

[
MMm

K∗

Φnm
Φm

]
+

(49)

K∗ = K(q, η∗), and Mm is the canonical factor of Φm, i.e.
Φm = MmM

∗
m.

Proof: Splitting the integrand in the cost function (35) in
terms of its causal and anti-causal parts we have that the
part of the cost function that depends on X is given by:

σ2
w +

1

2π

∫ π

π

∣∣∣∣∣MMm

K∗
X +

[
MMm

K∗

Φnm
Φm

]
+

∣∣∣∣∣
2

(50)

Then, we have that the causal solution of the optimization
problem is given by:

X∗ = − K∗
MMm

[
MMm

K∗

Φnm
Φm

]
+

(51)

6 For “general family of models”, we mean that there are no
system order constraints.

Finally, using equation (36), and re-arranging terms we ob-
tain the result. 2

Remark 14 Notice that the expression for the estimate Ĝ
in equation (48) is similar to the one obtained in non-
parametric identification (see e.g. [19,36]). This is mainly
due to the fact that, in non-parametric identification, the es-
timate of the transfer function has as many degrees of free-
dom as the one used in the definition of bias-pull in Defini-
tion 11. OOO

We next analyze the impact of the choice of the filtersFi (i =
1 · · · 4) on the variance of the estimates for Go. We assume
that there is no under-modelling, i.e. there exist θ = θo =[
ρTo ηTo

]T
such that R(ρo) = Ro and K(ηo) = Ko. This is

a standard assumption to develop the accuracy analysis for
the estimates.

Remark 15 The inverse of the covariance matrix of the vec-
tor of parameters θ̂ is given by:

P−1
θ =

[
A B

BT D

]
(52)

where 7

A =
N

2πσ2
w

∫ π

−π

1

|Ko|2
∂R

∂ρ

∂R

∂ρ

H

Φx (53)

B =
N

2πσ2
w

∫ π

−π

1

|Ko|2
∂R

∂ρ

∂K

∂η

H

Φxw (54)

D =
N

2πσ2
w

∫ π

−π

1

|Ko|2
∂K

∂η

∂K

∂η

H

σ2
w (55)

The inverse of the covariance of ρ̂ is given by:

P−1
ρ = A−BD−1BT (56)

In addition, P−1
ρ is bounded as follows [4]:

• P−1
ρ ≤ N

2πσ2
w

∫ π
−π

1
|Ko|2

∂R
∂ρ

∂R
∂ρ

H
Φx. Moreover, equality

holds if and only if B = 0.
• P−1

ρ ≥ N
2πσ2

w

∫ π
−π

1
|Ko|2

∂R
∂ρ

∂R
∂ρ

H
[
Φx − |Φxw|

2

σ2
w

]
. More-

over, equality holds if and only if there exists a non-
frequency dependent matrix Γ such that Γ∂K

∂η = ∂R
∂ρ Φxw

(almost everywhere in ω), where the derivatives are eval-
uated at θo. OOO

The previous remmark is valid for linear and non-linear con-
trollers, and also valid for finite number of parameters (see
[4] for details).

7 Here and in the sequel xH denotes the conjugate transpose of x.
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Claim 16 In the case that the true controller, Cl is linear
and equal to the virtual controller, C , then the covariance
of the parameters of Ĝ, obtained using PEM in the VCL
framework, is given by:

P−1
ρ {V CL} =

N

2πσ2
w

∫ π

−π

1

|Ho|2
dG

dρ

dG

dρ

H

Φru (57)

with

Φru = |ClSo|2Φr (58)

Moreover, the covariance of the parameters ofG, also satisfy
the following inequality:

P−1
ρ {Direct} ≥ P−1

ρ {V CL} (59)

where Pρ{Direct} is the covariance obtained when using
direct identification. Moreover, equality holds in (59) if and
only if there exists a non-frequency dependent matrix Γ such
that Γ∂H

∂η = ∂G
∂ρ Φuw (almost everywhere in ω), where the

derivatives are evaluated at θo.

Proof: The first part follows from Remmark 15, the relation-
ship of the signals in the virtual controller, and considering
that, in the case that C = Cl, the signal xt and wt are not
correlated. The second part is obtained by using Remmark
15 for the case of direct identification (F1 = F4 = 1, and
F3 = F2 = 0) and equation (57). 2

Remark 17 The previous lemma shows that most indirect
identification methods provide estimates with the same co-
variance (provided that the true controller is linear). This
lemma generalizes the results presented in [11] obtained by
using the asymptotic in the number of parameters (n→∞)
covariance formula (see [23]). OOO

7 Design of the filters

The analysis in the previous section provides expressions for
bias and variance for estimates obtained by VCL for systems
operating in closed loop using high order model.

Theorem 13 shows a frequency by frequency expression for
the bias-pull. It also shows that the bias-pull can be reduced
(or eliminated) if the cross-spectrum Φnm is reduced (or
equal to zero). This cross-spectrum can be calculated as the
conjugate of the following expression:

Φmn =

[
Ko −K∗

M

]∗ [
Φuw +

(
F2Ho

F1 + F2Go

)
σ2
w

]
(60)

=

[
Ho −H∗
F1 + F2Go

]∗ [
Φuw +

(
F2Ho

F1 + F2Go

)
σ2
w

]
(61)

where H∗ is defined as follows:

H∗ :=
F1 + F2Go

M
K∗ (62)

Remark 18 Note the similarities between the term on the
right hand side of (60) and the cross-spectrum Φxw (See
(25)). OOO

The bias-pull can be shaped by reducing any of the two terms
above in a particular frequency range of interest. If C̄ = 0,
then the second term in (60) is equal to Φuw (which does not
depend on the filters {Fi}i=1..4). Thus, if one chooses C̄ = 0
then the only way to reduce the bias in the estimates of Go
is by choosing the filters such that 1

F1F4
[HoF4 −K∗] ≈ 0

in the frequency range of interest. This condition is similar
to the “whitening” procedure. It requires knowledge of the
noise modelHo. In the particular case of direct identification
(F1 = F4 = 1 and F2 = F3 = C̄ = 0) we have that the only
way to have a small bias-pull is by having a good model for
Ho.

Theorem 13 provides a basis for choosing suitable values
for F1, F2, F3, F4 in order to reduce the bias due to under-
modelling in the noise transfer function H0 and to the pres-
ence of a non-linear controller. In particular, we see that the
asymptotic bias is small under either of the following two
conditions

• Ho −H is small (i.e. Ko −K is small),
• C̄ − Cal is small

Note that this holds on a frequency by frequency basis, so
it suffices for C̄ to be near the linear approximation of the
true controller when Ho −H is large or for Ho −H to be
small when C̄ is a poor representation of the true controller.

On the other hand, the flexibility provided by the use of all
the filters {Fi}i=1..4 allows us to reduce the bias-pull by
minimizing both terms in (60) in the frequency range of in-
terest. We see from Theorem 13 that, for the VCL method,
the estimate of Go is biased towards the negative inverse of
the virtual controller. This bias will be small provided we
can make λ̄ close to 1; i.e. make Φnm

Φm
small. It is not sur-

prising that a sufficient condition to have Φnm ≈ 0 is the
same condition that we found in section 5.2 in order to re-
duce the correlation between xt and wt. Moreover, we can
ensure that Φnm

Φm
is small (relative to 1) provided we choose

C̄ “close to” the true controller even if the latter is nonlin-
ear and / or ill-defined. In addition, the first term in (60)
can also be minimized provided a model for Go and Ho is
available. Hence, it makes sense to choose F1, F2 such that
C̄ = F2/F1 is close to the true controller. For example, if
the true controller is a linear controller incorporating anti-
windup protection for input saturation, then C̄ could be cho-
sen as the linear controller without anti-windup. Also note
that the expressions for the bias-pull for the case when the
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Up-link
Controller Wireless Network

Cm(q)

νt = 1

νt = 0

Go(q)
yt+

Ho(q)

wt

+ut ȳt

Wireless Network
Down-link

Fig. 4. System utilized in the numerical example.

“true” controller is linear can be easily obtained by using
the results presented in Section 5.

From (7), it may be tempting to think that a good choice for
F3, F4 would be such that F1F4 = F2F3 since this removes
all noise from (7). However, in this case, Ro = F4F

−1
3 i.e.

we learn nothing about Go. Thus, it is necessary to design
the filters {Fi}i=1..4 such that M is different from zero in
the frequency range of interest.

An alternative choice for F3, F4 would be to use a-priori
estimates Gx, Hx for Go, Ho to render Ko ≈ 1. In this
case, we might try using a fixed value for K (namely 1) in
(13). In this case, the virtual closed loop scheme reduces to
an output error method linking the measured variable zt to
the model output ẑt. Of course, based on Theorem 13, bias
may result if F1+F2Go

F1F4−F2F3
is significantly different from Ho

in frequency ranges where C̄ is a poor approximation to the
true controller.

On the other hand, it is well known that using filtered data
improves the quality of estimates [23, chapter 7]. In fact,
in [24] it is shown that for the identification of a particular
continuous-time system it is necessary to filter the input-
output signals in order to obtain“good” estimates. In addi-
tion, filtering the data is also used in “advanced” instrumen-
tal variables techniques such as refined instrumental vari-
ables (RIV) [12].

The general advice is that one should remove the “bad”
data by filtering i.e. one should choose a frequency range
of interest where the assumptions made in our model (e.g.
system structure) hold (see [26,25,38,14,6]).

In addition, Claim 16 shows that whenever there is no-under-
modeling (i.e. no bias) then the best choice for the filters are,
in general, given by direct identification (i.e. F1 = F4 =

1, and F2 = F3 = 0). Note that there exists a class of
systems where direct identification and the VCL (with C̄ =
C) provide estimates with the same accuracy (see [3] for an
example). Of course, in the case of under-modeling, it seems
natural to choose different values for the filters in order to
deal with the usual bias-variance trade-off.

If a “good” linear model for the controller is available, but
no model forGo andHo is available, then our general advice
to design the filters {Fi}i=1..4 is as follows:

• Choose a filter L(q) that selects the frequency range of
interest (where one believes that all the assumptions made
hold).

• Choose filter F1(q) = L(q), F2(q) = L(q)C̄(q), where
C̄(q) is a good linear approximation of the true controller.

• Choose F3(q) = 0, and F4(q) = L(q).

If good models for Go(q) and Ho(q) are available (Gx and
Hx), then choose F3(q) and F4(q) to render Ko(q) ≈ 1 and
such that they contain the filter L(q). If a model for Go(q)
and a “good” linear model for the controller are available,
then choose the filters as in the Dual-Youla approach (see
Table 2). Of course, the design of the filters {Fi}i=1..4 de-
pends on the particular problem of interest, and one might
design the filters based on different criteria.

8 A numerical example

Consider a system described by:

yt = Go(q)ut + vt (63)
vt = Ho(q)wt (64)
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Fig. 5. Left side: Bode diagram of Go (red-solid line) and GoD (magenta-dashed line), and the filter L(q) (black-dash-dotted line). Right
side: Bode diagram of Ho.

where

Go(q) =
bo1q
−1

1 + ao1q
−1

(65)

Ho(q) =
0.3814 + 0.3103q−1

1− 0.8571q−1 + 0.5488q−2
(66)

and ao1 = −1.105, bo1 = 0.3155, and wt is zero mean Gaus-
sian white noise with variance σ2

w.

Since the system is unstable, we perform the identification
in closed loop using the following nominal control law:

ut = C(q)[rt − yt] (67)

where the reference signal is zero mean Gaussian white
noise with variance σ2

r = 1 and C(q) = 0.3q−1

1−0.5q−1 . How-
ever, we will assume that C(q) is implemented over a com-
munication network. Our motivation for this choice is the
observation that control over networks has become a topic
of considerable research interest in the last few years (see
e.g. [27]). In this area, the controller receives and sends sig-
nals through a network (see Figure 4). This means that the
controller and the process can be located at distant points. A
common drawback of this approach is that some data in the
up-link (from plant to controller) or in the down-link (from
controller to plant) may be missing due to packet loss. In
this case, it is necessary to have “smarter” controllers and
actuators. We will capture the idea of data-dropouts in our
control law. In the case that a control signal ut is missed, it
is common to hold the previous value for the input signal.
For illustrative purposes, we use instead an actuation given
by the average of the previous 10 control actions. We as-
sume that the missing data satisfies a Bernoulli distribution
with probability of loss data P .

We test the PEM-direct, RIV and the VCL identification
techniques for two scenarios:

• Nominal case: No under-modelling in G0, and there is no
missing data (νt = 1, ∀t ).

• Non-nominal case: Under-modelling in G0 i.e. the data is
generated by a system given byGo(q)D(q) whereD(q) =
0.5609+0.3038q−1

1−0.1353q−1 and there is missing data P = 0.5.

In order to illustrate the impact of under-modelling of Ho

we use the simplest noise model for the different techniques
under study. For VCL we use an output error model (i.e.
K = 1 for VCL), and for direct identification and RIV we
use an ARX model (since OE models are not suitable for
unstable processes). We use a model for G with the same
structure as Go.

For PEM-direct we use the following algorithm:

ρ̂ = arg min
ρ

N∑
t=1

(εFt )2 (68)

where

εFt = L(q)εt (69)
εt = A(q, ρ)yt −B(q, ρ)ut (70)

and A(q, ρ) = 1 + a1q
−1, B(q, ρ) = b1q

−1.

For the RIV method we use the following iterative procedure
to estimate ρo [12]:

(1) Choose an initial value for ρ̂.
(2) Calculate the transfer function G(q, ρ̂).
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Fig. 6. Bode-magnitude plot of Go (black-dashed line) and Ĝ for different Monte-Carlo simulations for PEM-direct (left-hand plot, blue
line), VCL (plot in the middle, green line), and RIV (right hand plot, magenta) in non-nominal conditions using N = 100 data points.

(3) Calculate the transfer functions T (q) = GC
1+GC and

S(q) = 1− T (q).
(4) Calculate the signals yrt = T (q)rt and urt = S(q)rt.
(5) Calculate the vectors ϕt = [L(q)ut−1 − L(q)yt−1]T

and zkt = [L(q)urt−1 − L(q)yrt−1]T .
(6) ρ̂k = [

∑
zkt ϕ

T
t ]−1

∑
zkt L(q)yt.

(7) Set ρ = ρ̂k go to step (2) until convergence.

For the VCL method we choose F1(q) = L(q), F2 =
0.6L(q), F3(q) = 0, F4(q) = L(q). Thus, we have that
C̄ = 0.6 which is the dc-gain of the linear controller in the
loop when there is no missing data.

For all of the techniques we choose the filter L(q) as a But-
terworth filter of third order and having a cut-off frequency
0.4/π[1/s]. We analyze the performance of all algorithms
for N = 100 and N = 10000 data points by using 100
Monte-Carlo experiments for different values of γ given by

γ =
σ̂2
v

σ̂2
ȳ

(71)

where σ̂2
v and σ2

ȳ are estimates of the noise and noise-free-
output (ȳt = yt − vt) variance obtained from the data.

Figure 6 shows the Bode-magnitude diagram for the esti-
mates of 100 Monte-Carlo runs for different values of γ ob-
tained in the non-nominal case using N = 100. We see that
the VCL method provides the most accurate estimates.

We calculate the average 2−norm of the relative error for
the models obtained given by:

Re =
1

2πNs

Ns∑
k=1

∫ π

−π

∣∣∣∣∣ Ĝk −GoGo

∣∣∣∣∣
2

dω (72)

whereNs is the number of Monte-Carlo simulations, and Ĝk
is the corresponding model obtained from the data in each
experiment. This is plotted in Figure 7 as a function of γ.

We see from Figure 7 that PEM-direct method provides good
estimates when the noise is small. However, the quality of
the estimates deteriorates when the noise is large.

We see that, under nominal conditions and large data-length,
the RIV technique provides good estimates. However, in the
non-nominal case and for short data-length the estimates are
not satisfactory.

On the other hand, the estimates obtained by VCL are good
in both scenarios irrespective of data-length.

9 Conclusions

In this paper we have presented a general method (the Vir-
tual Closed Loop method) to perform identification of sys-
tems operating in closed loop. The method is sufficiently
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general to be applied to different types of systems. We have
presented a correlation analysis of the signals of interest,
analyzed asymptotic bias due to feedback and noise model
mismatching, and also the impact on the variance of Ĝ at dif-
ferent frequencies. We have shown that the new parametriza-
tion generalizes known methods for closed loop identifica-
tion and also offers additional flexibility. A numerical ex-
ample has confirmed the claimed merits of the approach.
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[4] J. C. Agüero and G. C. Goodwin. Choosing between open and
closed loop experiments in linear system identification. IEEE Trans.
Automatic Control, 52(8):1475–1480, 2007.
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