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Summary

Sampling–driven stability domains computation and predictive control of constrained
nonlinear systems

The research presented in this thesis considers the computation of stability domains and
predictive control for constrained nonlinear systems via a sampling–driven model based ap-
proach. This type of systems is particularly relevant for safety critical systems such as the
ones in autonomous cars, unmanned aerial vehicles (UAV), smart grids or biomedical sys-
tems, which demand reliable stability verification and control tools. Most real–life systems
are nonlinear and linear approximations are not able to capture their dynamics. Addition-
ally, in practice, constraints are imposed on states and inputs via actuator limitations, safety
regulations and the presence of obstacles. Nonlinear systems exhibit multiple equilibria,
stable or unstable, which makes stability analysis and control more challenging. Analysing
the stability of these systems is crucial to evaluate the region of the state space from which
trajectories converge to specific desirable equilibria and satisfy the constraints. For control
design, model predictive control (MPC) enables the generation of safe trajectories which
can attain a specific objective for the nonlinear system while ensuring constraint satisfac-
tion.

Most of the stability analysis formulations for nonlinear systems rely on computing a
Lyapunov function. An approximation of the stability domain can subsequently be com-
puted as a levelset of the Lyapunov function. The problem of constructing a Lyapunov
function for nonlinear systems in general has inherent difficulties. Additionally, verify-
ing its validity on a constrained set typically resorts to computing the global optimum of
a nonlinear optimization problem on a compact set. Similarly, computing a control ac-
tion which satisfies optimality and stability properties according to the predictive control
paradigm, requires solving a nonlinear optimization problem. In both cases, the nonlinear-
ity and the constraints mostly generate non–convexity in the optimization program. In turn,
non–convexity causes the optimization to stumble in local minima and requirements such
as finite termination time and feasibility are affected. A large state space dimension further
degrades scalability. Additionally, for constructing domains of stability, a global optimiza-
tion problem formulation is required, but often impractical. Indeed, in this case, even for
a convex optimization problem, the global search for an optimum rejects a candidate Lya-
punov function if a single point in the constraint set does not satisfy Lyapunov’s inequality.
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Therefore, constructive methods, which are able to automatically compute an estimate of
the domain of stability of an equilibrium within the constraint set are required.

To circumvent the requirement of solving a global, possibly non–convex optimization
problem, in this thesis we adopt a sampling–driven model based approach to the problems
of computing stability domains and designing predictive controllers for constrained nonlin-
ear systems. Sampling the state space, or the input space, has been widely adopted by the
industrial community, particularly with the rise of supercomputing. Sampling allows for
distributed verification, guaranteeing finite termination of algorithms and improves feasi-
bility. Sampled spaces, however, provide merely an abstraction of the state or input space,
and new methods have to be developed to guide the sampling process to ensure that formal
guarantees for stability verification or control design are still provided for the complete set
of states or inputs of interest.

The thesis content is structured in 7 chapters, as detailed next. Chapter 1 provides a
domain overview and states the research objective and the research questions addressed by
this thesis. This chapter concludes with a summary of contributions and related publications.

Chapter 2 exposes the limitations of existing nonlinear system analysis techniques based
on optimization, particularly for invariance and stability analysis. The limitations are linked
with: non–convexity, dimensionality, centralized verification which affects scalability and
may generate non–feasible verification problems due to the fact that some regions in the
search set might not satisfy the property of interest. In the following chapters we show how
these limitations can be overcome via sampling–based methods.

First, Chapter 3 considers the verification problem that checks validity of an inequality
of the form F (x) ≤ 0(F (x) < 0) for all x in a proper set S and where F : Rn → R is
a piecewise continuous function. The verification is only performed on a finite number of
samples in S . Then, the validity of the inequality is extended to an infinite set of initial
conditions by exploiting continuity properties. Scalability is ensured by the parallelizability
of distributed verification and by multi–resolution sampling.

The inequality F (x) ≤ 0(F (x) < 0) is a unified representation which can describe
many properties. Therefore, the framework in Chapter 3 is adapted in Chapter 4 for the ver-
ification of Lyapunov’s inequality, invariance, computing domains of attraction (DOA) via
level set approximation and other properties. Particular emphasis is placed on stability ver-
ification, which presents specific challenges for the sampling–based verification around the
origin. Additionally, choosing a candidate Lyapunov function is difficult for general non-
linear systems. By using Finite–Step Lyapunov functions (FSLFs) and converse theorems
we simplify the construction of a Lyapunov function.

The sampling–based verification methods proposed so far are suitable for nonlinear sys-
tems, but for large dimensions of the state space, the corresponding verification problems
become computationally demanding. Chapter 5 proposes a randomized approach for ver-
ifying the same properties as in Chapter 4, while avoiding the curse of dimensionality, at
the cost of a reduction in the validity of the certificate to a probabilistic certificate. The
applicability of these randomized techniques is illustrated on power systems.

Non–convex nonlinear constrained optimization problems, with strict timing constraints,
also arise in MPC of nonlinear systems (NMPC). Thus, scalable and efficient methods
for solving NMPC problems in real–time are highly relevant. Chapter 6 proposes a new
sampling–based nonlinear Model Predictive Control (MPC) algorithm, with a bound on
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complexity quadratic in the prediction horizon N and linear in the number of samples. The
idea of the proposed algorithm is to use the sequence of predicted inputs from the previous
time step as a warm start, and to iteratively update this sequence by changing its elements
one by one, starting from the last predicted input and ending with the first predicted input.
This strategy, which resembles the dynamic programming principle, allows for paralleliza-
tion up to a certain level and yields a suboptimal nonlinear MPC algorithm with guaranteed
recursive feasibility, stability and improved cost function at every iteration, which is suit-
able for real–time implementation. Conditions for the convergence of the algorithm are also
discussed, as well as its applicability on systems inspired from real–life.

Chapter 7 reflects on the methods developed in this thesis, with an overview on open
problems and recommendations for future work.
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Basic notation and definitions

Sets and set operations

The following standard sets and set operations are considered:
R, R+, Z, Z+ The set of real numbers, of nonnegative reals, of integers and of non-

negative integers;
Π≥c, Π≤c, RΠ,
ZΠ

The sets {r ∈ Π : r ≥ c}, {r ∈ Π : r ≤ c}, R ∩ Π, Z ∩ Π, where
c ∈ R and Π ⊆ R;

Sh The h–times Cartesian product of S ⊆ Rn, i.e., S× . . .×S, h ∈ Z≥1;
int(S), ∂S, S The interior, boundary and closure of S;
cS The set {cx : x ∈ S} for any c ∈ R;
S1 ⊕ S2 The Minkowski addition of S1 ⊂ Rn and S2 ⊂ Rn, i.e., {x + y :

x ∈ S1, y ∈ S2};⊕N
i=1 Si The Minkowski addition of the sets {Si}i∈Z[1,N]

, where Si ⊂ Rn for
all i ∈ Z[1,N ];

2X The set of all subsets of the set X, or the power set of X;

• A polyhedron is a set obtained as the intersection of a finite number of half–spaces
and a polytope is a compact polyhedron;

• A set S ⊂ Rn is called proper if it has non–empty interior, it is compact and 0 ∈
int(S). Given a proper set S ⊂ Rn, for any N (0) ⊂ S, i.e., a proper neighborhood
of 0, the set A := S \ N (0) 6= ∅ is called an annulus of S.

• Two sets S1 ⊂ Rn and S2 ⊂ Rn are said to have the same cardinality if there exists
a bijection from S1 to S2. A set S ⊂ Rn is called finite if it is empty or has the same
cardinality as the set Z[1,q] for some q ∈ Z+. Otherwise, the set is called infinite. A
set S ⊂ Rn is called countably infinite, or countable, if it has the same cardinality as
Z+. A set is called uncountable if it is infinite and not countable.

• We use the notation j = x1 : d : x2 with j, x1, d, x2 ∈ R to denote that j takes values
of the type j = x1 + kd with k ∈ Z≥0, in order, from k = 0, as long as k satisfies
x1 + kd ≤ x2.

Vectors, matrices and norms

The following definitions regarding vectors and matrices are used:
dxe The smallest integer number larger than x ∈ R;
1n, 0n, In, 0n×m A vector in Rn with all elements equal to 1, a vector in Rn with

all elements equal to 0, the n–th dimensional identity matrix and a
matrix in Rn×m with all elements equal to 0;

[x]i, [A]i,j , [A]:,j The i–th component of x ∈ Rn, the i, j–th entry of A ∈ Rn×m and
the j–th column of A, where (i, j) ∈ Z[1,n] × Z[1,m];

‖x‖p, ‖x‖∞, ‖x‖ The p–norm, p ∈ Z≥1, i.e., (
∑n
i=1 |[x]i|p)

1
p , the infinity–norm, i.e.

maxi∈Z[1,n]
|[x]i|, and an arbitrary norm of the vector x;

‖x‖ The norm of the sequence x defined as sup{‖xl‖ : l ∈ Z+};
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|x| The vector of absolute values of the vector x ∈ Rn, i.e., |x| :=
[|x1| . . . |xn|]T ;

‖A‖p The induced norm of A, i.e., max‖x‖=1
‖Ax‖p
‖x‖p for all p ∈ Z≥1;

Z � 0, Z � 0 The symmetric matrix Z ∈ Rn×n is positive definite and positive
semidefinite;

Basic functions and classes of functions

The following definitions and classes of functions are distinguished:
α1 ◦ α2(·) The composition of α1 : R → R with α2 : R → R, i.e., such that

α1 ◦ α2(r) := α1(α2(r)) for all r ∈ R;
αk(·) The k–times composition of α;
id The identity function, i.e., id : S → S such that for any x ∈ S,

id(x) = x;
f : Rn ⇒ Rm A set–valued map from Rn to Rm, i.e., f(x) ⊆ Rm for all x ∈ Rn;
K, K∞ The class of all functions α : R+ → R+, that are continuous, strictly

increasing and satisfy α(0) = 0 and the class of all α ∈ K such that
limr→∞ α(r) =∞;

KL The class of all continuous functions β : R+ × Z+ → R+, such
that for each fixed s ∈ Z+, β(r, s) ∈ K with respect to r and
for each fixed r ∈ R+, β(r, s) is decreasing with respect to s and
lims→∞ β(r, s) = 0.

• For any two functions α1, α2 : R+ → R+, α1 < α2 denotes that α1(s) < α2(s) for
all s ∈ R+.

• A mapG : Rn → Rn is calledK–bounded on X if there exists a function ω ∈ K such
that

‖G(x)‖ ≤ ω(‖x‖), ∀x ∈ X.

• Let S ⊆ Rn. Then, a map G : S → S is called K–continuous in S if there exists a
function σ ∈ K such that

‖G(x)−G(y)‖ ≤ σ(‖x− y‖), ∀(x, y) ∈ S × S.

We call σ the continuity function of the map G. If σ(s) = as with a ∈ R+, then
K–continuity recovers Lipschitz continuity.
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List of abbreviations
The following abbreviations are used throughout this thesis:

GAS globally asymptotically stable
GES globally exponentially stable
LF Lyapunov function
FSLF Finite–step Lyapunov function
FTLF Finite–time Lyapunov function
DOA domain of attraction
LMI linear matrix inequality
BMI bilinear matrix inequality
MPC model predictive control
NMPC nonlinear model predictive control
SDNMPC sampling–driven nonlinear model predictive control
SBMPC sampling–based model predictive control
ODE ordinary differential equation
LP linear programming
DP dynamic programming
SDP semidefinite programming
SOS sum–of–squares
CPA continuous piecewise affine
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Chapter 1

Introduction

1.1 Background and motivation
Correct (according to specifications) functioning is the most crucial in safety critical sys-
tems. These are systems for which failure can have massive impact for human life, or they
can cause significant damage of property or the environment (Knight, 2002). Such sys-
tems are often encountered in aerospace, automotive, power systems and even more so, in
biomedical technology. Developing safety critical systems demands significant advances in
both software technology and hardware, and their interplay. Multidisciplinary efforts have
to ensure that the complete process, from specification design to architecture, control, and
verification is faultless.

In order to design control and verification mechanisms to achieve safety, we need to
understand the dynamic behavior of complex systems, which is typically modeled via dif-
ferential or difference equations. Most real–life systems are nonlinear and linear approxi-
mations are not able to capture their dynamics. In what follows we discuss different classes
of dynamical systems and typical nonlinearities which describe their behavior.

1.1.1 Nonlinearities in real–life systems

For instance, biological systems, typically recognized as safety critical, include a vast va-
riety of nonlinear dynamics. The most representative are predator–pray type of dynamics,
see (Doban, 2016) for an overview. Predator–pray dynamics are found for example in tu-
mor dynamics and they are mathematically represented via polynomial and rational non-
linearities. The ability to represent these systems mathematically has large potential for
cancer therapy design. Other dynamics frequently encountered are exponential dynamics in
gene–regulatory networks and in the hypothalamic–pituitary–adrenal gland (HPA), which
gives insight in hormonal balance. Rational terms are encountered in Hill functions for
contraction dynamics formulations for muscle force estimation, of high impact for neuro-
musculoskeletal modeling and control (Buchanan et al., 2004). Heart related models, which
address the crucial problem of treating cardiac disorders such as tachycardia and atrial fib-
rillation involve both continuous and discrete dynamics and they are represented via hybrid
cardiac–cell models (Grosu et al., 2011), see Figure 1.1. Besides nonlinearity, discrete
jumps further complicate safety analysis for such models.

17



Chapter 1. Introduction

Figure 1.1: Mathematical model for atrial fibrillation (dReal, 2017).

In interconnected power networks it is typical to encounter sinusoidal nonlinearities.
This is due to the fact that the power on the connecting power grid lines is directly pro-
portional with the sine of the phase angle difference between the different generating units
(Kundur, 1994, pag. 602). Considering the large scale of the power systems models, it is
cumbersome to treat the power systems as a nonlinear system. For this reason, when ana-
lyzing power systems, a simplifying assumption is made that the phase angle difference is
small, in which case the nonlinearity can be eliminated from the model. With the obtained
linear model it is more easy to develop safety certificates and design controllers. However,
precaution is required when drawing conclusions for the nonlinear system based on the lin-
ear approximation, because power systems failure can cause significant damage, at least
at an economic level. With the introduction of renewable energy sources which introduce
faster fluctuations (Camacho et al., 2011), electric vehicle charging, and deregulation of
markets, require more reliable operation with safety guarantees.

We continue the exposition on typical nonlinearities encountered in real–life applica-
tions with the electronic power converters. They provide the backbone for many applica-
tions nowadays, from power networks to mobile phones, and they are described by nonlinear
dynamics including bilinearities (Mohan, 2012). The dynamics are fast and accuracy of the
control design is of great importance. While the societal demand for energy and consump-
tion has increased widely, the requirement for smaller, faster, more reliable converters has
become more stringent as well.

Trigonometric nonlinearities appear also in mechanical systems which perform rota-
tional movements. Examples vary from pendulum type of objects to robotic manipulators,
for which the joints mostly rotate along their axis, see for example (Murray et al., 1994). For
such systems, the location of the tip of the robot can be represented through the configura-
tion of the joints, with forward kinematics, and the other way around, via inverse kinematics,
which are both nonlinear with trigonometric maps. While these dependencies are static, the
dynamics appears when a task has to be effectively executed by the robot. The actuators
apply torques at the robot joints, which in turn enable the movement of the robotic arm. The
overall mathematical modelling can be performed using, for instance, a Lagrangian analysis
of Newton–Euler equations of motion, and it will include the same types of nonlinearities.

In automotive systems, the array of challenges is as diverse as the perspectives with
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(a) Power grids
(Tremblay, 2017).

(b) Automotive
(Mitsubishi, 2017).

(c) Robotic manipulators
(Deyle, 2009).

Figure 1.2: Systems with trigonometric nonlinearities.

which we can approach this domain. For instance, autonomous cars have become a matter
of high concern in terms of safety. If we abstract a car to the level of its kinematic proper-
ties, then we can develop methods to deal with safety when overtaking or performing other
special maneuvers. In this case, we encounter the same sinusoidal dynamics as with the
robotic systems (Althoff et al., 2007). See Figure 1.2 for a summary on systems which
present trigonometric nonlinearities.

Other systems in automotive, which are not safety–critical, are related to control of
CO2 emissions, to comply to environmental regulations. Mathematical models related to
powertrain control include square roots in the inlet air mass flow rate, powers of the pressure
manifold and rational functions of the air–fuel ratio, see for example (Kolmanovsky and
Sun, 2006). At a higher level, platoons of cars can be modeled as a collection of mass–
spring–damper systems, which can generate exponential nonlinearities, for instance, when
the elasticity constant varies with the position (Raimondo et al., 2009).

When performance demands are increasing, and linear approximations around an oper-
ating point are not satisfying for achieving the desired performance, the essential nonlinear
dynamics of the systems need to be modeled and taken into account.

1.1.2 Safety analysis and control of constrained systems

Additionally to nonlinearity, in practice, constraints are imposed on states and inputs via
actuator limitations, safety regulations, physical limitations and the presence of obstacles.
Robotic manipulators, for instance, present kinematic constraints and, additionally, they are
designed to operate in cluttered environments, very often in the presence of human opera-
tors. Biological systems are constrained by physiological limitations. Powertrain systems
aim to maintain the air/fuel ratio within acceptable bounds.

In the case of nonlinear systems, safety analysis and control becomes even more chal-
lenging due to multiple equilibria, which can be stable or unstable. Safety analysis is gen-
erally approached in control theory by analysing reachability, invariance, or stability of a
specific equilibrium. Particularly, investigating the stability of these systems is crucial to
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Figure 1.3: X–ray machine in the operating room (Keckler Medical Co., 2017).

evaluate the region of the state space from which trajectories converge to specific desirable
equilibria and satisfy the constraints. For instance, in control engineering it is common to
tune a simple PID controller which achieves certain specifications. However, it is generally
not known if the control system satisfies the constraints, especially away from the operating
point for which the PID control has been designed. This is the case for the Powertrain Con-
trol System in (Kapinski et al., 2014), which is equipped with a PI controller and it has to
maintain the air/fuel (A/F) ratio within 10% of the optimal value.

If the control system does not achieve the constraint specifications, a new control strat-
egy has to be developed to ensure safety and performance of the nonlinear system. Control
design enables the generation of safe trajectories which can attain a specific objective for the
nonlinear system while ensuring constraint satisfaction. Consider, for example, an interven-
tional X–ray machine (van der Maas, 2016), which guides doctors in performing surgeries
on the blood vessels. There are tight requirements for collision avoidance with the medi-
cal staff and the objects in the operation room, see Figure 1.3. Moreover, the system must
function at the limit of constraints to achieve fast scanning of the human body, for minimal
exposure of the patient to the contrast fluid which enables the creation of X–ray images.
Safety and guaranteed performance of such systems is very difficult to achieve.

All of the above indicate that the problem of guaranteed safety and control for con-
strained nonlinear systems is highly relevant. Therefore, in this thesis we aim at designing
tools which can formally guarantee the safety and performance satisfaction of existing non-
linear control systems, and design safe controllers for nonlinear systems. In what follows

20



1.1. Background and motivation

we will discuss the source of complexity in the verification of safety and the control of
constrained nonlinear systems and the typical solution to handle complexity.

1.1.3 Abstractions and sampling

A dynamical system has a state represented by a collection of real numbers, or more gener-
ally, by a set of points in an appropriate state space. The set is uncountable, but bounded,
due to constraints. Nonlinearity and constraints pose serious limitations, both theoretical
and computational, for achieving reliable safety verification and control tools. This is the
main source of complexity in these methods, which is due to the fact that such tools require a
search for the optimal solution (according to a specific criterion) in a bounded but uncount-
able, which is generally approached via nonlinear optimization. In turn, many nonlinear
optimization problems are either computationally costly, particularly when it is nonconvex,
or even unfeasible.

An alternative to providing guarantees directly on an infinite space is to employ an ab-
straction strategy, to discretize the work space, which is, for instance, the state space for
performance analysis, or the input space for control design. An example of such an abstrac-
tion is sampling, which is employed in either time, state or input space.

Sampling is based on a “divide and conquer” type of approach. Probably the most
commonly known sampling–based method across disciplines is related to FEM modelling,
which relies on spatial sampling. To solve a problem, a large problem is divided into smaller,
simpler units called finite elements. The equations modeling this finite number of elements
are then collected to generate a larger system of equations which models the whole problem.

Looking at complex problems from a computer science perspective, digitization is the
main tool which enables computer processing. In control systems for instance, it is common
practice to sample in time continuous–time systems to obtain discrete–time systems, which
are suitable for numerical computing. In digital signal processing, the Nyquist–Shannon
sampling theorem establishes the minimum sampling rate which enables a discrete sequence
of samples to capture a continuous–time signal without losing information.

Methods of system abstraction from computer science have been adopted for verifica-
tion of hybrid systems. For an overview of abstraction techniques for formal verification,
the reader is referred to the comprehensive expositions in (Baier et al., 2008) and (Tabuada,
2009). Basically, a state transition system is abstracted to another, ensuring that a bisimu-
lation relation is maintained between the two. In (Soudjani and Abate, 2011), a method is
proposed for adaptive gridding to achieve a finite abstraction of a hybrid system. Such an
abstraction can be used in formal verification of probabilistic properties by model checkers.

Closer to the control theory domain, a classic example of solving a problem only on a
finite number of samples in a set and to provide guarantees for the whole set is encountered
in uncertain linear systems, where the uncertainties take values in a convex set D. It is
customary to solve robust control problems for uncertain linear systems by solving LMIs
only in the vertices of the set D (de Souza et al., 2000). Guarantees for the whole set
D, which is bounded, but contains an infinite number of points, are provided through the
convexity of the set D and the linearity of the system.

Based on the above, we conclude that abstraction techniques, such as sampling, are
theoretically sound for addressing complexity in infinite spaces. The successful deployment
of sampling–based strategies in solving complex problems in a large variety of domains
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suggests that sampling is possibly an enabling technique in safety verification and control
design of nonlinear constrained systems as well, with the condition that the validity of the
analysis of the sampled space can be extended to the non–sampled initial problem.

1.2 Research objectives
In what follows we introduce a discussion of specific challenges related to safety verifi-
cation and control for constrained nonlinear systems and possible methods to solve these
challenges, with a stronger focus on sampling approaches.

1.2.1 The stability analysis problem for constrained nonlinear systems

Computing solutions of nonlinear dynamical systems solves at least the problem of safety
verification. However, other than numerical solutions for a finite number of points in the
state space in a specific time interval, it is very difficult to find for nonlinear systems analyt-
ical solutions that are valid on an infinite subset of the state space, such as a constraint set.
This problem has been recognized a long time ago. The first alternative has been proposed
by Lyapunov in 1892 (Lyapunov, 1992). He proposed the so–called Lyapunov functions
(LFs), real–valued functions of the state which decrease along the system trajectories. If a
system allows such a function, then stability of the equilibrium point can be verified without
computing the solution of the nonlinear system.

The stability property is of crucial importance for safety verification of dynamical sys-
tems because it characterizes both infinite–time reachability, as well as convergence prop-
erties. The largest level set of a LF inside the state constraint set provides a subset of the
stability domain, often referred to as Domain of Attraction (DOA) around desired equilibria
(Khalil, 2002), (Vidyasagar, 2002).

While choosing a suitable candidate LF is in itself a difficult problem, once such a
function is known, depending on the system dynamics, the candidate LF and the set of
initial states of interest, one generally needs to solve a nonlinear optimization problem to
verify Lyapunov’s inequality. For instance, if the candidate LF is W : Rn → R≥0 and the
nonlinear discrete–time system dynamics is defined as x+ = G(x) with G : Rn → Rn a
nonlinear map and X a state constraint set, then the problem of verifying that W is indeed a
LF on X, i.e., W (G(x)) ≤ ρ(W (x)) for all x ∈ X, with a given ρ ∈ K with ρ < id, can be
posed by solving the following optimization problem:

W ∗ := inf
x∈X
{ρ(W (x))−W (G(x))}. (1.1)

If W ∗ exists and it is attainable and W ∗ ≥ 0, then W is a LF for the given nonlinear system
inside the constraint set X.

Most methods for constructing LFs rely on the classical Lyapunov stability theorem
(Khalil, 2002), (Vidyasagar, 2002), which requires the existence of a positive definite real–
valued function that has a negative definite derivative along the system solutions. The dif-
ficulty in constructing a LF for general nonlinear dynamics comes from the uncertainty
regarding non–conservative classes of LF candidates and solving the corresponding, possi-
bly non–convex optimization problem. The most successful (by this we mean systematic
and generally applicable) approaches so far have been using polynomial candidate LFs and
sum–of–squares (SOS) techniques (Chesi, 2011), (Papachristodoulou et al., 2013), (Ma-

22



1.2. Research objectives

jumdar et al., 2014) and continuous piecewise affine (CPA) candidate LFs, simplicial state–
space partitions and linear programming, (Björnsson et al., 2015), (Bjornsson et al., 2014),
(Hafstein et al., 2014b). The merit of these approaches is that they formulate the problem
of verifying Lyapunov’s inequality into a convex optimization problem for a fairly general
class of nonlinear dynamics. This is however achieved at the price of introducing some con-
servativeness, e.g., in the SOS formulation different terms of the polynomial expression are
concatenated into a higher dimensional vector and also, SOS polynomials are only a subset
of the non–negative polynomials, see, e.g., (Aylward et al., 2008). In the CPA formulation
conservativeness comes from the fact that the Lyapunov’s inequality is made more stringent
at simplex vertices.

LFs parameterized via polynomials are used also in (Ratschan and She, 2010). Therein,
interval analysis is exploited to compute a polynomial LF and a corresponding DOA, for
systems with polynomial vector fields. To these methods we can also add the results based
on maximal LFs (Vannelli and Vidyasagar, 1985) that use rational LF candidates, see for
example (Doban and Lazar, 2014) and the references therein. This type of LF candidates
is less conservative than the polynomial ones, but the computation of maximal rational
LFs requires solving a nonlinear non–convex optimization problem to equate coefficients of
polynomials.

1.2.2 Predictive control for constrained nonlinear systems

In what concerns control design, a vast literature on nonlinear model predictive control
(NMPC) has proven both the theoretical (Grüne and Pannek, 2011), as well as the practical
advantage (Magni et al., 2009) of this method in treating optimally the control of multi–
variable nonlinear systems subject to constraints on state and inputs. Computing the control
law via NMPC requires solving a nonlinear optimization problem to minimize a cost func-
tion, which is a function of an input sequence over the control horizon. Additionally, the
cost function depends on the initial state and the system dynamics.

Common research interests in predictive control include methods for reducing the com-
plexity of the NMPC algorithms, to make them applicable on devices of low memory (ASIC,
FPGA), such as explicit NMPC (ENMPC), see, e.g., (Johansen, 2004). Much work has been
done on treating other limiting factors, such as the requirement of NMPC to solve an opti-
mization problem online. This is not well achieved by common optimization tools, which
have no specific termination time, especially due to non–convexity which may lead to multi-
ple local–minima. Therefore, real time requirements are not met, which limits the industrial
impact of NMPC for systems with fast dynamics. Additionally, if the global optimum is not
found, stability is not guaranteed. To alleviate these concerns, the literature has proposed
multiple solutions, such as approximate dynamic programming (ADP) (Bertsekas, 2005a),
suboptimal MPC (Scokaert et al., 1999), NMPC based on system approximation by neural
models (Ławryńczuk, 2009), fast NMPC based on off–line approximations of the control
law, as in (Canale et al., 2009), explicit NMPC (ENMPC) (Chakrabarty et al., 2016), the fast
NMPC methods discussed in (Alamir, 2006) and (Quirynen et al., 2015), or NMPC based
on nonlinear programming (Zavala and Biegler, 2009).

Overall, the NMPC problem has not been solved in its full generality and there is room
for improvement in terms of, for example, finite–termination, scalability and stability guar-
antees.
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1.2.3 Common challenges in stability analysis and predictive control design

Both stability analysis and predictive control require solving nonlinear optimization prob-
lems. In turn, nonlinearity in the system dynamics, the constraints and obstacles all generate
non–convexity in the non–linear optimization problem. For example, for the interventional
X–ray machine, or for a car, as discussed earlier in this chapter, the trigonometric functions
involved in kinematic dependencies and the obstacles generate non–convexity.

Typical problems related to non–convexity:

• optimization gets stuck in local minima, in which case feasibility or optimality is
affected;

• it is not possible to guarantee convergence to a given level of accuracy in a specified
time, which is particularly unacceptable for real–time NMPC;

• poor scalability with the state–space dimension.

Figure 1.4: Constraint set which contains non–converging states (generating the trajectory
in the right) and a DOA approximation (blue).

Additionally, for constructing DOA, a global optimization, even convex, will reject a
candidate LF if a single point in the constraint set does not satisfy Lyapunov’s inequality.
For instance, for a 2D nonlinear system with a candidate LF generating a valid DOA in
the constraint set, see Figure 1.4, an optimization program will reject the valid LF. Indeed,
notice that the trajectory starting from at least a point in the set does not converge to the
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desired equilibrium point 0, i.e., the origin. Therefore, constructive methods, which are able
to automatically compute an estimate of the domain of stability of an equilibrium within the
constraint set are required.

To address the problems mentioned above related to non–convexity and the lack of con-
structiveness, in this thesis we adopt a sampling–driven approach to computing DOAs and
solving MPC problems for constrained nonlinear systems.

In this thesis, for stability analysis we will use sampling of the set of constraints X. For
instance, in (1.1), instead of solving an optimization problem over the complete set X, we
select a finite, discrete subset of sample points Xs ⊂ X and we solve the following problem

W := min
xs∈Xs

{ρ(W (xs))−W (G(xs))− c(xs)}, (1.2)

where c : Rn → R≥ 0 is a function representing a point–specific conservatism, which
will be used to extend the verification over the points xs ∈ Xs to neighborhoods N (xs)
around these sample points such that the set X is completely covered by the sets N (xs)
with xs ∈ Xs, i.e.:

X ⊆
⋃

xs∈Xs
N (xs).

The equation (1.2) represents the problem of finding the minimum from among a finite
amount of numbers which depend on the sample points xs ∈ Xs.

For control, we will sample in the input space U and similarly to the stability analysis
problem, we aim to provide guarantees based solely on a finite number of samples Us ⊂ U.

In what follows we will show how sampling–based methods have already been exploited
for stability analysis and MPC for nonlinear systems. Challenges are indicated and the
research question of this thesis is formulated.

1.2.4 Sampling methods for stability verification

Sampling–guided approaches have recently been put forward in an attempt to improve upon
the classical Lyapunov methods for nonlinear systems. Methods have been developed for
simulation–based verification of dynamical systems, see, e.g., (Duggirala et al., 2013) and
the references therein. In the light of the discussion on abstractions, simulation–based veri-
fication involves abstractions of both the state space, but also in the time space, in an attempt
to obtain a set of numerical simulations, or simulation traces of the trajectories of the sys-
tem over a time period (time sampling), starting from a finite–number of initial states (state
sampling). These simulations are used in (Duggirala et al., 2013) to aid in finding the pa-
rameters of a candidate LF. In (Fan and Mitra, 2015), discrepancy functions have been used
for bounded–time safety verification in a simulation–based framework. Another approach,
in (Girard and Pappas, 2006), makes use of bisimulation metrics to infer safety and reach-
ability for metric transition systems by verification on just a finite number of trajectories.
Completeness of the result is proven for linear systems.

In terms of deriving LFs from simulation traces, strong contributions have been pro-
posed by (Topcu et al., 2008) and (Kapinski et al., 2014). The work presented in (Topcu
et al., 2008) uses information from simulations to obtain local candidate polynomial LFs for
dynamical systems with polynomial vector fields. In (Topcu et al., 2008), simulations allow
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for converting a set of computationally expensive bilinear matrix inequalities into linear ma-
trix inequalities, which are more tractable. This idea is extended in (Kapinski et al., 2014)
by a procedure to improve iteratively the quality of the candidate LF. The procedure relies
on a falsification tool in the form of a global optimizer which generates a series of succes-
sively improved intermediate LFs. Because of the non–exhaustiveness of the optimization
programs, the LF found by the simulation–based iterative technique is validated formally
through queries in Satisfiability Modulo Theories (SMT) solvers such as dReal (Gao et al.,
2012), z3 (De Moura and Bjørner, 2008), MetiTarski (Akbarpour and Paulson, 2010).

In summary, simulations offer the advantage of gaining exact knowledge about complex
systems at low computational expense. However, they provide no formal guarantees for
the behavior of the system with infinitely many initial conditions, since it is impossible to
simulate all system trajectories. As a result, to validate a local LF or to verify invariance
of a compact set most of the existing simulation–guided methods still require solving opti-
mization problems and still suffer from limitations of numerical solvers, scalability issues
and conservativity of the chosen LF or bisimulation metric.

An alternative to both classical and simulation–guided Lyapunov methods has been pro-
posed in (Kapinski and Deshmukh, 2013). Therein, a method for checking forward invari-
ance of a given set has been devised based solely on verifying forward invariance of a finite
number of points in the set, obtained by δ–sampling (Kapinski and Deshmukh, 2013). The
δ–sampling theorem proposed therein holds for Lipschitz–continuous dynamics. The main
advantage of this approach is that the need for using an optimization solver is removed.
The main effort required is to compute a δ–sampling discretization which can be handled
by discrete computational geometry methods, for example lattice based methods, see, e.g.,
(Lenstra et al., 1982). Once the δ–sampling discretization is generated, then the remain-
ing operations can be parallelized to any degree. However, the assumption of Lipschitz–
continuity is a limitation. Also, the same procedure can not be directly applied to verify
Lyapunov conditions. Resorting to a Lipschitz–continuous LF is somewhat limiting, and
the bound γ > 0 of the algorithm (see (Kapinski and Deshmukh, 2013)) can not be satisfied
in the vicinity of the equilibrium, given that the LF evaluated at the equilibrium is equal to
zero. A solution to this issue related to sampling–based stability verification is proposed in
this thesis.

To summarize, on finite–time reachability of nonlinear systems there exists a vast litera-
ture, mostly based on sampling/simulation. Infinite–time reachability for general nonlinear
systems, critical for verifying safety of a system, has been treated less, as well as verifying
Lyapunov’s inequality. This affects also the applicability of Lyapunov methods to com-
plex systems. Additionally, in most cases, the sampling/simulation based strategy is mainly
used to discover a good candidate LF, while for verification of its validity, an optimization
problem is still required.

1.2.5 Sampling in predictive control

NMPC could also benefit from sampling to obtain guarantees for finite–time termination of
the optimization problem. It is possible to draw samples from either the state or input space,
to design computationally feasible NMPC methods. See for example, the randomized ap-
proach in (Piovesan and Tanner, 2009), which proposes a randomized approach to sampling
the space of predicted input sequences. Input and state space sampling–methods for solving
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NMPC via ADP have also been proposed, see (Bertsekas, 2005a), though they inherit the di-
mensionality issues of DP (Lee and Lee, 2004). Another relevant sampling–based strategy,
the so–called sampling–based MPC (SBMPC), has been proposed in (Dunlap et al., 2010).
The method therein is applicable to nonlinear systems in general, though, its performance
is dependent on a user–specified heuristic.

A common problem of sampling–guided methods for NMPC is the sampling strategy.
For example, with each input sample, a tree is expanded. After the tree is built, the path of
least cost in the tree is selected from the initial state to the desired state. If the sampling is
performed over the input space, and each sample is connected to all the samples in the input
space for the next time step in the control horizon, then the tree growth is exponential with
the horizon. Alternatively, as in randomized MPC (Piovesan and Tanner, 2009), sampling
randomly in the input space, of dimension m, augmented to the horizon of dimension N
requires a large number of samples, in an mN dimensional space, to achieve a significant
accuracy.

Though many methods for NMPC based on sampling exist, they generally suffer from:

• “Curse of dimensionality”;

• Recursive feasibility and stability issues;

• Requirement for user–defined heuristics.

In parallel with the progress of academia on sampling–based verification and control,
there is increasing pressure by industry to increase the size of the state space dimension
and dynamics complexity and at the same time still provide guarantees for stability and
various performance measures. In this regard, see, for example, the HSCC benchmarks
related to powertrain systems (Jin et al., 2014), power converters (Nguyen and Johnson,
2014), platoons of vehicles (Makhlouf and Kowalewski, 2014) but also biomedical, such as
the anaestesia delivery model in (Gan et al., 2014) and control. See for example also the
European Control Conference 2015 challenge from Toyota (Watanabe and Ohata, 2014) for
control of an engine based on a complex Simulink model.

1.2.6 Research question

This thesis aims to contribute to stability analysis and fast NMPC for constrained nonlinear
systems. As motivated in the previous sections, sampling has potential to tackle nonlinear
systems by reducing a complex optimization problem to distributed verification in a finite
number of samples. To develop a sampling–driven analysis and design methodology, in this
thesis, the following key research objective is investigated:

Can formal guarantees be attained for (complex) nonlinear systems in terms of stability
and DOA estimation, and real–time feasibility and stability of NMPC, using a sampling–
driven approach?

In the question formulated above we can distinguish two different topics. The first one
is an analysis problem, i.e., stability and DOA estimation. The second one is the control
problem of designing real–time feasible and stable NMPC. Both topics address dynamical
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systems with general nonlinearities, such as the ones mentioned in Section 1.1.1. Therefore,
at the heart of both of these questions lie non–convex, possibly intractable or non–feasible
(in the case of DOA estimation, see the example in Figure 1.4) optimization problems. Our
goal is to circumvent solving such problems by exploring the state and/or input space using
a sampling–driven approach. The key challenge is to design the verification criterion for
the sampling points such that formal guarantees are obtained for the complete set of initial
conditions of interest.

The research question we posed addresses two major topics in analysis and control of
constrained nonlinear systems: stability domains computation and predictive control, with
different specific challenges.

For analysis, we will answer step–by–step the following sub–questions. Firstly, it is
important to set the stability analysis problem with optimization problems, to see what is
the extent to which stability analysis can be approached via optimization and to answer the
following question.

Q1 : What are common limitations in solving analysis problems for constrained nonlinear
systems?

Then, we can formulate the sampling–based verification problem by answering the generic
question:

Q2 : Can we systematically verify generic properties of the type F (x) < 0 for all x in
a set S or find the subset of S where this property holds based solely on verifying
F (x) < 0 for samples x in a finite subset of S?

Property functions of the type F (x) < 0 are a common representation for many proper-
ties. To analyze stability and other relevant safety properties it is necessary to address the
question:

Q3 : How to verify specific properties for nonlinear systems with this sampling–driven
framework? Particular emphasis on: verifying stability and computing domains of
attraction for discrete–time and continuous–time nonlinear systems, invariance and
safety verification.

It is now that we can observe the extent to which the sampling–based verification methodol-
ogy developed by this thesis addresses the limitations, observed by answering Q1, in terms
of stability analysis for nonlinear systems, of potentially large scale. Thus, we conclude the
sampling–driven verification section of this thesis by answering the following questions:

Q4 : What are the limitations with respect to dimensionality of the sampling–driven anal-
ysis proposed so far and how to overcome scalability issues?

Q5 : Is resorting to randomized sampling and probabilistic certificates of validity for safety
critical systems wise?

For control, we choose to answer the following sub–questions, which should, at least
partly, address the limitations of online optimization–based NMPC via sampling of the input
space:
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Q6 : How to sample to achieve suboptimal, feasible in real–time, sampling–driven NMPC
(SDNMPC)?

Q7 : Under what conditions can we guarantee stability for SDNMPC?

Q8 : Can convergence to the optimal input sequence be guaranteed with SDNMPC?

Q9 : How to achieve smooth inputs to avoid unsafe actuator operation?

1.3 Outline of the thesis
The above research questions are answered, partially or fully, within this thesis, as follows.

The remainder of this thesis contains six chapters of which the first five address the
research questions Q1–Q9, as detailed next, and the last chapter summarizes the findings of
this thesis and presents recommendations for future research.

Chapter 2 provides an answer to Q1. Therein, the limitations of existing nonlinear
system analysis techniques based on optimization, particularly for invariance and stability
analysis, are exposed. For stability analysis, a converse result based on finite–step Lya-
punov functions (FSLFs) is used to construct candidate LFs. The approach is systematic for
general constrained nonlinear systems and it resorts to solving several nonlinear optimiza-
tion problems. If the dynamics of the system is Lipschitz–continuous, then this method
applies to general nonlinear systems. The limitations of such problems are linked with non–
convexity, centralized verification which affects scalability and may generate non–feasible
verification problems due to the fact that some regions in the search set might not satisfy the
property of interest. The next chapters will show how these limitations can be overcome via
sampling–driven methods.

Chapter 3 addresses question Q2 by considering the verification problem that checks
validity of an inequality of the form F (x) ≤ 0(F (x) < 0) for all x in a proper set S
and where F : Rn → R is a piecewise continuous function. The verification is only per-
formed on a finite number of samples in S. Then, the validity of the inequality is extended
to an infinite set of initial conditions by exploiting continuity properties. The operations
to be performed for each sampling point in the state–space can be carried out in parallel,
which improves scalability. The procedure returns a subset A of points in S which satisfy
the given property, thus possible non–feasibility of the inequality on the complete set S is
avoided. Already addressing Q3 we also show in this chapter that F (x) ≤ 0(F (x) < 0) is
a generic inequality which may represent different analysis problems, of which (finite–step)
invariance and safety are straightforward, as we illustrate through an example.

To further answer question Q3, the framework in Chapter 3 is adapted in Chapter 4 for
the verification of Lyapunov’s inequality and computing DOAs via level set approxima-
tion. Stability verification presents specific challenges for the sampling–driven verification
around the origin. Therefore, in this chapter we introduce a result which offers a solution to
the problem of the singularity of the LF at the origin. Additionally to the sampling–driven
verification, building LFs from FSLFs for discrete–time systems as in Chapter 2 and finite–
time LFs (FTLFs) for continuous–time systems further simplifies the construction of a LF.
For continuous–time systems we have proposed two different alternatives. A first possibil-
ity is to compute a LF for the discretized system and then verify its validity for the original
continuous–time system via the sampling–driven result in Chapter 2. Alternatively, we can
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construct approximations of a FTLF via polynomial approximations of the continuous–time
dynamics. Then again, from the converse theorem, this FTLF can be exploited to compute
a LF, which is verified via the sampling–driven result. Chapter 4 answers also Q4 by the
observation that the sampling–based verification methods proposed so far are suitable for
nonlinear systems, but for large dimensions of the state space, the corresponding verification
problems become computationally demanding.

Chapter 5 addresses Q5 by proposing a randomized approach for verifying the same
properties as in Chapter 4, while avoiding the curse of dimensionality, at the cost of a reduc-
tion in the validity of the certificate to a probabilistic certificate. In Chapter 5 we illustrate
also an iterative algorithm of maximizing the DOA estimation inside the constraint set, to
the limit of the available tools (FSLFs, probabilistic certificates). The applicability of these
randomized techniques is illustrated on examples of increasing state space dimension.

For control, Q6–Q9 are answered in Chapter 6, which proposes a new SDNMPC al-
gorithm, with a bound on complexity quadratic in the prediction horizon N and linear in
the number of samples. Answering Q6, the idea of the proposed algorithm is to use the
sequence of predicted inputs from the previous time step as a warm start, and to iteratively
update this sequence by changing its elements one by one, starting from the last predicted
input and ending with the first predicted input. This strategy, which resembles the dynamic
programming principle and the rollout MPC, allows for parallelization up to a certain level
and yields a suboptimal NMPC algorithm with guaranteed recursive feasibility, stability
(answering Q7) and improved cost function at every iteration, which is suitable for real–
time implementation. To answer Q8, conditions for the convergence of the algorithm are
also discussed, as well as similarities and distinction from the rollout algorithms and its ap-
plicability on systems inspired from real–life. Additionally, to partly answerQ9 we propose
a method for smoothening of the sampled inputs by imposing an additional constraint which
limits the fluctuation in time of the input to be applied to the system.

Chapter 7 reflects on the methods developed in this thesis, and formulates recommenda-
tions for future work.

1.4 Summary of publications
The chapters of this thesis are based on 8 scientific publications in conference proceedings
and journals. In this section we indicate, chapter by chapter, where the results appeared
originally. The reader should be aware that the order of the content of these chapters does
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be split among different chapters. Furthermore, the chapters are generally self–contained,
except for Chapter 4, which builds upon the results formulated in Chapter 3.
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• R.V. Bobiti and M. Lazar, On the computation of Lyapunov functions for discrete–
time nonlinear systems. In the proceedings of the 18th IEEE International Conference
on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 2014.

Chapter 3 contains results that were presented in:

• R.V. Bobiti and M. Lazar, Automated sampling–based stability verification and DOA
estimation for nonlinear systems. Submitted for publication to a journal, Available:
http://arxiv.org/abs/1609.00302, 2017.
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possibly discontinuous systems, in the proceedings of the 18th International Confer-
ence on Hybrid Systems: Computation and Control (HSCC), Seattle, Washington,
USA, 2015.

• R.V. Bobiti and M. Lazar, A Sampling Approach to finding Lyapunov functions for
nonlinear discrete–time systems. In the proceedings of the 15th European Control
Conference (ECC), Aalborg, Denmark, 2016.

Chapter 4 contains results that were presented in:

• R.V. Bobiti and M. Lazar, A Sampling Approach to finding Lyapunov functions for
nonlinear discrete–time systems. In the proceedings of the 15th European Control
Conference (ECC), Aalborg, Denmark, 2016.

• R.V. Bobiti and M. Lazar, A delta–sampling verification theorem for discrete–time,
possibly discontinuous systems, in the proceedings of the 18th International Confer-
ence on Hybrid Systems: Computation and Control (HSCC), Seattle, Washington,
USA, 2015.

• R.V. Bobiti and M. Lazar, A sampling approach to constructing Lyapunov functions
for nonlinear continuous–time systems. In the proceedings of the 55th IEEE Confer-
ence on Decision and Control (CDC), Las Vegas, USA, 2016.

• R.V. Bobiti and M. Lazar, Automated sampling–based stability verification and DOA
estimation for nonlinear systems. Submitted for publication to a journal, Available:
http://arxiv.org/abs/1609.00302, 2017.

Chapter 5 contains results that were presented in:

• R.V. Bobiti and M. Lazar, A sampling approach to constructing Lyapunov functions
for nonlinear continuous–time systems. In the proceedings of the 55th IEEE Confer-
ence on Decision and Control (CDC), Las Vegas, USA, 2016.

• R.V. Bobiti and M. Lazar, A randomized approach to constructing domains of attrac-
tion for constrained nonlinear systems. In preparation for journal submission, 2017.

Chapter 6 contains results that were presented in:

• R.V. Bobiti and M. Lazar, Towards Parallelizable Sampling–based Nonlinear Model
Predictive Control. In the proceedings of the 20th World Congress of the International
Federation of Automatic Control, Toulouse, France, 2017.

• R.V. Bobiti and M. Lazar, Sampling–driven Nonlinear Model Predictive Control with
convergence guarantees and smooth inputs. In preparation for journal submission,
2017.

Where appropriate, a reference to one or more of these articles has been included in this
thesis for further reading.
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Chapter 2

Optimization based stability analysis results
for discrete–time systems

In this chapter we compute stability domains for discrete–time constrained nonlinear sys-
tems. Due to constraints, it is necessary to build our analysis tools for states taking values
in bounded sets, which can be simply represented through compact sets. More specifi-
cally, we consider an optimization–based result for constructing and verifying validity of
a Lyapunov function for constrained nonlinear discrete–time systems. The proposed so-
lution is systematic and consists of two steps. First, a non–monotone Lyapunov function,
called finite–step Lyapunov function, is computed by solving a finite dimensional nonlin-
ear optimization problem. Then, a converse theorem is employed, which gives an explicit
construction of a Lyapunov function from a finite–step Lyapunov function. This procedure
produces additionally an invariant set, a subset of the domain of attraction of the origin
through a nonlinear optimization program. An additional iterative algorithm illustrates a
procedure of computing a domain of attraction within a set where there are states which
converge to other equilibria. Examples illustrate the developed procedures and give insight
into the problem of the underlying optimization problems complexity.

2.1 Introduction
Stability analysis of nonlinear systems is an inherently difficult problem which is usually ad-
dressed by constructing Lyapunov functions (LFs), see, e.g., (Khalil, 2002) and (Vidyasagar,
2002). However, computing a LF for general nonlinear systems is rather difficult, as one has
to deal with several hard problems: how to choose a non–conservative LF candidate, how
to parameterize a chosen LF and, lastly, how to translate the computation of the LF into a
tractable optimization problem.

Several methods for dealing with the problems posed by stability analysis of nonlinear
systems and computation of LFs have been developed. Note the approaches to parameter-
ize LFs through linear programming (LP) procedures, see, e.g., (Johansen, 2000), (Julian
et al., 1999), (Giesl and Hafstein, 2014), (Hafstein et al., 2014a) and the references therein.
Another approach aiming at benefiting from the computational advantages of LP is the
simulation based method in (Kapinski et al., 2014), which relies on concrete executions
of the system to formulate a candidate LF as the solution to an LP. Similarly, in (Topcu
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et al., 2008), a simulation based approach is employed to obtain candidate LFs parameter-
ized as finite–dimensional polynomials. Therein, simulations are processed for converting
a set of computationally expensive bilinear matrix inequalities into linear matrix inequali-
ties, which are tractable. Without aiming at an extensive literature overview, we mention
also the analytic methods in (Matallana et al., 2010), (Vannelli and Vidyasagar, 1985), (Tan
and Packard, 2008), the methods for computing reachable sets in (Mitchell et al., 2005), the
methods to compute optimal quadratic LFs in (Michel et al., 1982) and (Panikhom and Su-
jitjorn, 2012). Of these contributions, the discrete–time case is considered only in (Kapinski
et al., 2014) and (Hafstein et al., 2014a).

However, most of the above LF methods are based on parameterizations of LFs with a
given structure, which might be conservative. To avoid searching for a special class of LFs,
this chapter considers finding a finite–step Lyapunov function (FSLF) instead. The FSLF,
see, e.g., (Gielen and Lazar, 2012), (Lazar et al., 2013a), (Bobiti et al., 2013), is a relaxed
form of a LF, i.e., a non–monotonous LF, for which the decrease of the LF is required in a
finite number of steps rather than at each time step. The advantage of FSLFs is that, under
the assumption of exponential stability, any candidate LF can be turned into a FSLF, for
some finite step value, see (Bobiti et al., 2013). This removes the need for searching for
a special candidate LF. This advantage was already exploited in (Bobiti et al., 2013) and
(Lazar et al., 2013a) for developing scalable and non–conservative stability tests for linear
and switched linear discrete–time systems. Moreover, recently, in (Geiselhart et al., 2014)
an alternative converse theorem has been introduced that gives an explicit construction of a
standard LF from a FSLF.

The results of (Geiselhart et al., 2014) consider a global setting, i.e., the properties hold
for all states in Rn, and therefore, they require an analytical solution, which depends on
the vector field of the particular system. In this thesis, we restrict the search space to a
compact set, which allows for a formulation of the converse result in (Geiselhart et al.,
2014) as a nonlinear optimization problem. In this chapter, a systematic methodology for
constructing LFs for nonlinear discrete–time systems is developed. First, it is shown that the
construction of FSLFs can be formulated as a well posed optimization problem for nonlinear
systems, under the assumption of Lipschitz continuity of the dynamics. Then, a standard LF
is obtained by directly applying the converse theorem in (Geiselhart et al., 2014) for FSLFs
on a compact set. As a by–product, the developed procedure also produces an invariant set,
which is a subset of the domain of attraction of the origin.

2.2 System class and finite–step Lyapunov functions
Consider the discrete–time autonomous nonlinear system

xk+1 = G(xk), k ∈ Z+, (2.1)

where xk ∈ X is the state, X is a compact set with 0 ∈ int(X), and G : Rn → Rn is a
nonlinear function. A point x∗ ∈ X is an equilibrium point of system (2.1) if G(x∗) = x∗.
We assume G(0) = 0.

For any i ∈ Z≥1, with an abuse of notation1, let G
i

: 2R
n → 2R

n

be a set valued map

1Here, G is used to define a set valued map, while in general, we use S to define the closure of the set S. The
confusion can be eliminated by noticing that the new notation refers to a map, while the notation S refers to sets.
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such that
G
i
(X) := {Gi(x)|x ∈ X},

for any set X ⊆ Rn. Recall, from the basic notations and definitions on page 14, that 2R
n

denotes the set of subsets of the set Rn. By convention, G
0
(X) := X. For a fixed scalar

k ∈ Z≥1, a set V and a map G denote

RV
k :=

k−1⋃
i=0

G
i
(V),

namely, the union of all the k–step trajectories originating from V.

Definition 2.2.1 The system (2.1) is called KL–stable if there exists a KL function β :

R+ × R+ → R+ such that ‖xk‖ ≤ β(‖x0‖, k) for all (x0, k) ∈ X× Z+. �

KL–stability implies K–boundedness, with k = 1 and ω(‖x‖) = β(‖x‖, 1) ∈ K for all
x ∈ X.

Definition 2.2.2 For the discrete–time system (2.1), the domain of attraction (DOA) of the
origin in a compact set X is the set

W = {x0 ∈ X : lim
k→∞

Gk(x0) = 0}.

Notice in Definition 2.2.2 that the concept of DOA requires an analytic solution of sys-
tem (2.1) to be able to evaluate the limit of the iterated mapGk for k →∞. Assume that the
equilibrium is asymptotically stable in the Lyapunov sense. Then, to avoid the requirement
of computing the map iterates Gk for a nonlinear system, it is customary to approximate the
DOA using sublevel sets of a LF, as described in the following subsection.

2.2.1 Finite–step Lyapunov functions

To avoid typical difficulties related to conservative LF candidates, in this thesis we use the
relaxed notion of a FSLF to construct a true LF. Before this, we introduce the instrumental
notions of a contractive set, anM–step invariant set, anM–step contractive set (Lazar et al.,
2013a), the concept of a FSLF2 and DOA as a levelset of a LF.

Definition 2.2.3 Let M ∈ Z≥1. The set X is called M–step λ–contractive with respect to
the map G of system (2.1) if there exists a λ ∈ R[0,1) such that for any x ∈ X, it holds that
GM (x) ∈ λX. �

If M = 1 in Definition 2.2.3, then the set X is called λ–contractive.

Definition 2.2.4 Let M ∈ Z≥1. The set X is called M–step invariant with respect to the
map G of system (2.1), if for all x ∈ X, it holds that GM (x) ∈ X. �

2The FSLF is the same as the finite–time Lyapunov function defined in (Lazar et al., 2013a), (Bobiti and Lazar,
2014a). Following (Geiselhart et al., 2014), the concept has been redefined to avoid the confusion with the notion
of finite–time stability, see, e.g., (Bhat and Bernstein, 2000).
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A similar definition is proposed in (Doban and Lazar, 2016a, Definition 1.7) for d–
invariance of sets with respect to continuous–time systems. For M = 1, the M–step in-
variance reduces to the classical notion of positive invariance. Additionally, if the set X is
M–step invariant, then a standard invariant set can be constructed as in the following result.

Lemma 2.2.5 If X is M–step invariant, then

RX
M = RX

∞ (2.2)

is a standard invariant set with respect to the map G, which contains all the trajectories of
system (2.1) starting in X. �

Proof: If X is M–step invariant, then G
M

(X) ⊆ X. By the fact that if the sets A and B
satisfy A ⊆ B, then G(A) ⊆ G(B), it follows that

G
kM

(X) ⊆ G(k−1)M
(X) ⊆ . . . ⊆ X,

for all k ∈ Z≥1. Therefore,

G
j
(G

kM
(X)) ⊆ Gj(X),

for all j ∈ Z[0,M−1]. Since

RX
∞ =

 ⋃
i∈Z≥M

G
i
(X)

⋃RX
M ,

and
⋃
i∈Z≥M G

i
(X) ⊆ RX

M , then RX
∞ = RX

M . By the same reasoning, G(RX
M ) ⊆ RX

M , and
therefore the set RX

M is an invariant set. �
We are now ready to introduce the concept of a FSLF via the following result.

Proposition 2.2.6 Let X be a compact set. Let α1, α2 ∈ K∞. Suppose that the map G
corresponding to the dynamics (2.1) isK–bounded on X, X isM–step invariant with respect
to the map G, there exists a function V : Rn → R+ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ RX
M , (2.3a)

and there exists an M ∈ Z≥1 and a corresponding ρ ∈ K with ρ < id such that

V (GM (x)) ≤ ρ(V (x)), ∀x ∈ X. (2.3b)

Then, system (2.1) is KL-stable in X. �

The real valued function V which satisfies the conditions of Proposition 2.2.6 is called
a finite–step Lyapunov function (FSLF) on X. For M = 1, Proposition 2.2.6 recovers the
classic Lyapunov theorem restricted to compact sets, see (Lazar, 2006), and V becomes
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a true Lyapunov function (LF) in the set X. Due to Remark ??, the assumption of K–
boundedness of the map G in Proposition 2.2.6 is not restrictive. Proposition 2.2.6 is the
equivalent of the global Theorem 7 from (Geiselhart et al., 2014) on a compact set X. In
Theorem IV.5 from (Lazar et al., 2013a), the same theorem on compact sets considers ρ =
ρ0id, with ρ0 ∈ R[0,1). The proof of Proposition 2.2.6 is similar to the proof of (Lazar et al.,
2013a, Theorem IV.5).

The following result, the equivalent of (Doban, 2016, Theorem 2.1) for discrete–time
systems, is instrumental for the procedure of computing an estimation of the DOA of the
origin for system (2.1):

Theorem 2.2.7 Let V : Rn → R+ be a LF for system (2.1) in the set X, and let L∗ ∈ R+

be the largest value such that the level set V (x) = L∗ is contained in X. Then, the set

W = {x ∈ X : V (x) ≤ L∗} (2.4)

is an invariant subset of the DOA of the origin of (2.1). �

2.3 Computation of LFs on compact sets
In general the computation of a LF for discrete–time nonlinear systems is a hard problem.
The existing approaches rely on certain parameterizations of LFs. If a system does not
admit a LF of the given structure, then most of the procedures halt without providing any
path forward. To avoid searching for a special, non–conservative class of LFs, we aim to
exploit FSLFs instead.

In (Geiselhart et al., 2014, Theorem 20), it was proven that a converse global Lyapunov
theorem can be formulated in terms of FSLF. However, for nonlinear systems which present
multiple equilibrium points a global LF does not exist. Therefore, in this section we restrict
(Geiselhart et al., 2014, Theorem 20) to finding a FSLF which is valid on a compact set.

2.3.1 LF from a FSLF on a compact set

The converse theorem in (Geiselhart et al., 2014) can be reformulated on compact sets as
follows:

Theorem 2.3.1 Let X be an M–step invariant set with respect to the map G, and let V be a
FSLF on X for system (2.1) with M ∈ Z≥1 satisfying (2.3b). Let W ⊆ X be any invariant
set with 0 ∈ int(W). Then the function W : Rn → R+ defined as

W (x) =

M−1∑
j=0

V (Gj(x)) (2.5)

is a LF for system (2.1) on W. �

Proof: The proof is similar to the proof of Theorem 20 in (Geiselhart et al., 2014), with
x ∈W instead of x ∈ Rn.

First, the lower bound on W is computed. From (2.3a) it follows that

α1(‖x‖) ≤ V (x) ≤W (x), ∀x ∈ RX
M , (2.6)
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and therefore, by the fact that W ⊆ RX
M , if we denote α̃1 = α1 ∈ K∞, then

α̃1(‖x‖) ≤W (x), ∀x ∈W. (2.7)

The upper bound on W is computed through a more involved procedure, as follows.
According to (2.3a), for all k ∈ Z≥0 we can express

α1(‖Gk(x)‖) ≤ V (Gk(x)), ∀x ∈W. (2.8)

From (2.8) it follows that

‖Gk(x)‖ ≤ α−1
1

(
V (Gk(x))

)
≤ max
j∈Z≥0

α−1
1

(
V (Gj(x))

)
, ∀x ∈W. (2.9)

Consider j = pM + i for all j ∈ Z≥0, where i ∈ Z[0,M−1] and p ∈ Z≥0. Also, if x ∈ W,
then RW

∞ ⊆ X, and therefore Gj(x) ∈ X for all j ∈ Z≥0. Then, the inequalities in (2.3b)
and (2.3a) can be iteratively exploited such that

V (GpM+i(x)) ≤ ρ(V (G(p−1)M+i(x)))

≤ . . . ≤ ρp(V (Gi(x))),

≤ . . . ≤ ρp ◦ α2(‖Gi(x)‖), ∀x ∈W. (2.10)

Therefore, from (2.9) and (2.10) and the fact that ρp < id it follows

‖Gk(x)‖ ≤ max
i∈Z[0,M−1]

α−1
1 ◦ α2(‖Gi(x)‖), ∀x ∈W. (2.11)

Because of the existence of a FSLF on X, then system (2.1) isKL–stable in X, and therefore,
K–bounded. Thus, there exists a function ω ∈ K such that ‖G(x)‖ ≤ ω(‖x‖), for all x ∈ X.
From (2.3a) and (2.11) it follows that

‖Gk(x)‖ ≤ max
i∈Z[0,M−1]

α−1
1 ◦ α2 ◦ ωi(‖x‖)

=: σ(‖x‖), ∀x ∈W,∀k ∈ Z+, (2.12)

where σ = maxi∈Z[0,M−1]
α−1

1 ◦ α2 ◦ ωi ∈ K∞.
Then, by the same steps as in the proof of Theorem 20 in (Geiselhart et al., 2014), it can

be shown that
W (x) ≤ α̃2(‖x‖), ∀x ∈W,

with α̃2 = Mα2 ◦ σ ∈ K∞, and

W (G(x)) ≤ ρ̃(W (x)), ∀x ∈W,

where ρ̃ = (id − (id − ρ) ◦ α̃1 ◦ α̃−1
2 ), and 0 ≤ ρ̃ < id. This leads to the conclusion that

W is indeed a LF on W with respect to the map G. �
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Remark 2.3.2 An alternative construction of a LF from a FSLF, using a max function
instead of summation, is given by equation (10) in (Geiselhart et al., 2014). Other definitions
of a FSLF are possible, when, for instance, for all x ∈ X, there exists j ∈ Z[1,M ] such that
V (Gj(x)) ≤ ρj(V (x)). Then, a LF is given by W (x) = minM−1

j=0 ρ−j(V (Gj(x))). The
value of j depends on x in this case. Notice that any FSLF, as defined in (2.3b), satisfies
the condition above. However, for simplicity in the sampling–driven verification algorithms
we propose in the subsequent chapters, we will only refer in this thesis to the definition of a
FSLF proposed via Proposition 2.2.6 with the LF construction from (2.5).

A systematic approach to compute a LF W on W with respect to the map G is described
in the following subsection.

2.3.2 A systematic approach for computing regional LFs

Observe that Proposition 2.2.6 provides a set of conditions which can be used to verify
stability of the origin of system (2.1) on a compact, M–step invariant set X. Afterwards,
Theorem 2.3.1 provides a LF on W ⊆ X.

To this end, the set of conditions for finding a LF W , given a set X, an M and any
function V that satisfies (2.3a), can be reduced to the following steps:

i) check that a given proper set X is M–step invariant;

ii) check that a given V satisfies (2.3b);

iii) compute the LF W as in (2.5) and an invariant set W, such that 0 ∈ int(W).

Let us first approach step i). In what follows, for computational reasons, we focus on
sets X that are compact and convex, with 0 ∈ int(X).

Then, consider the Minkowski (gauge) function of the set X at the point ξ ∈ Rn:
gauge(X, ξ) := infµ{µ ∈ R≥0 : ξ ∈ µX }. Fix M ∈ Z≥1, and let the cost function
FM : X → R be defined as:

FM (x) := − gauge(X, GM (x)) + 1, (2.13)

and consider the following minimization problem:

inf
x∈X

FM (x). (2.14)

The cost function (2.13) is defined by using the Minkowski function due to the fact that the
M–step invariant set condition GM (x) ∈ X, for any x ∈ X, can be written equivalently
as gauge(X, GM (x)) ≤ 1, and therefore − gauge(X, GM (x)) + 1 ≥ 0. This yields the
following result.

Proposition 2.3.3 Suppose the global optimum in (2.14) exists and it is attainable, and let
F ∗M denote the corresponding value function. If it holds that F ∗M ≥ 0, then the set X is
M–step invariant for system (2.1). �
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Next, step ii) requires a similar optimization program, as indicated in what follows. Fix
M ∈ Z≥1 and ρ = ρ0id with ρ0 ∈ R[0,1), let X be a compact set with the origin in its
interior, which is M–step invariant with respect to the map G, and let V : Rn → R+ be a
function which satisfies (2.3a). Let the cost function F : X→ R be defined as:

F (x) := ρ0V (x)− V (GM (x)), (2.15)

and consider the following minimization problem:

inf
x∈X

F (x). (2.16)

The following proposition is a direct consequence of Proposition 2.2.6.

Proposition 2.3.4 Suppose the global optimum in (2.16) exists and it is attainable, and let
F ∗ denote the corresponding value function. If it holds that F ∗ ≥ 0, then V is a FSLF for
system (2.1) on the M–step invariant set X. �

Step iii), namely, computing a true LF on X for (2.1), reduces to applying (2.5) to com-
pute W , once M and V are obtained.

It is also of interest to find the domain W on which W is a valid LF. Observe that any
invariant set is a candidate W. However, constructing such a set is difficult as it is analogous
to constructing a LF. Nevertheless, since the LF W is known already, the knowledge of W
can be further exploited to find a contractive set W, e.g., the largest level set of W which is
contained in X, which is also a subset of the DOA of the origin.

In order to obtain the largest sublevel set of W included in X consider the following
optimization problem:

L∗ = min
x,L

L

s.t. gauge(X, x) = 1, (2.17)
W (x) = L.

The solution to the optimization problem (2.17) provides the contractive set

W := {x ∈ Rn : W (x) ≤ L∗} ⊆ X, (2.18)

which is also invariant by definition of a contractive set.

Remark 2.3.5 Let O∞ ⊆ X denote the maximal invariant set in X for system (2.1). Thus,
W of (2.18) satisfies W ⊆ O∞, by the maximality of O∞. An enlargement procedure for
the computed set W is illustrated in Algorithm 2 in Section 2.3.4. �

Remark 2.3.6 For a system (2.1) which is KL–stable in the set X, any set P ⊆ X with 0 ∈
int(P) is M–step λ–contractive, and hence also M–step invariant and yields an invariant
set W := RP

∞ = RP
M , by Lemma 2.2.5. �
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Algorithm 1 Computation of a LF W and a contractive set W for system (2.1).

Input: X with 0 ∈ int(X), V which satisfies (2.3a), ρ ∈ R[0,1), M = 1, Mmax;
Output: W,W

1: (2.14)→ F ∗M ;
2: (2.16)→ F ∗;
3: if (F ∗M < 0 or F ∗ < 0) and M < Mmax then
4: M ←M + 1;
5: go to 1.
6: else if M ≥Mmax then
7: Choose another FSLF V ;
8: M ← 1;
9: go to 1.

10: (2.5)→W ;
11: Solve (2.17) and compute (2.18)→W;

Algorithm 1 summarises the steps to compute a LFW and a contractive set W for system
(2.1). Problems (2.14) and (2.16) are verified for the same fixed M . If for a given M either
(2.14) or (2.16) are not feasible, M is increased until both (2.14) and (2.16) provide a
positive global optimum. If M reaches an expected maximum, namely Mmax, then either
X is not M–step invariant and then X must be chosen differently, or the convergence rate of
system (2.1) to the equilibrium point is too slow, or the system is unstable. However, one
can choose another X and repeat the procedure.

Remark 2.3.7 The computational complexity of Algorithm 1 depends on steps 1, 2 and 11,
corresponding to the optimization problems (2.14), (2.16) and (2.17) respectively, repeated
iteratively for each value ofM . Also, if one chooses an automatic procedure for step 7, then
Algorithm 1 is fully automatic and tractable to the extent to which (2.14), (2.16) and (2.17)
are tractable. Additional computational details are presented in Section 2.3.3. �

2.3.3 Computational remarks

The steps i)-iii) are based on solving the nonlinear optimization problems specified in (2.14),
(2.16) and (2.17). In order to succeed with this three steps approach, the three optimization
problems are required to be well–posed, i.e., for each problem, a global optimum should
exist and it should be attainable.

In order to cope with the nonlinear optimization problems, the flexibility in choosing any
candidate FSLF can be exploited. For example, let X be a convex polytope with 0 ∈ int(X),
which can be written as:

X = {x ∈ Rn : Hx ≤ 1m} , (2.19)

where H ∈ Rm×n with m ≥ n + 1. Then, the constraint x ∈ X becomes the linear con-
straint Hx ≤ 1m. Therefore, the optimization problems in i) and ii) have linear constraints.
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Considering that gauge(X, x) = maxi∈Z[1,m]
[Hx]i if rank(H) = n (Blanchini, 1999),

then the cost function FM in i) can be redefined as:

FM (x) := 1− max
i∈Z[1,m]

[
HGM (x)

]
i
. (2.20)

In what concerns (2.16), consider the FSLF V as the Minkowski function of X. There-
fore, the cost function F in ii) is redefined as:

F (x) := ρ0 max
i∈Z[1,m]

[Hx]i − max
i∈Z[1,m]

[
HGM (x)

]
i
. (2.21)

The cost functions in i) and ii), as revealed by (2.20) and (2.21) are nonlinear because of
the term GM (x). However, if the cost function is Lipschitz continuous and the constraints
are convex, then the global minimum on X is attainable and it can be computed, through,
for example, the Schubert–Mladineo algorithm, described on page 67 in (Astolfi, 2006).
Therefore, under the assumption of Lipschitz continuity of the system dynamics (2.1), the
optimization problems in i) and ii) are guaranteed to provide a globally optimal solution.

In what concerns iii), (2.17) is an optimization problem with linear cost function and
nonlinear equality constraints which is well–posed.

2.3.4 An iterative algorithm to compute a Lyapunov function and a DOA

For the case when the set X proposed as an input to Algorithm 1 is not M–step invariant for
any M ∈ Z+, we develop an iterative approach to computing a regional LF and implicitly
a subset of the DOA. The approach is summarized in the following algorithm.

Algorithm 2 starts with the initial constraint set E by selecting X = E, and it applies
iterative refinements to X until X becomes anM–step invariant set which admits anM–step
LF V . A LF W on the refined set X is then computed via (2.5). We now consider W as a
new FTLF on the initial constraint set E and "inflate" the level set of the LFW until the level
set, of value c∗, intersects the boundary of the constraint set E. This operation corresponds
to steps 15–16 in Algorithm 2.

Next, we iterate on the new FTLF candidate until a validM is found. If noM was found
up to an bound Mmax, then the level set of the function W is reduced according to step 23,
to a value between 1 and c∗. Then, we re–initialize M with M = 1 and we repeat the steps
16–25 until a valid FSLF is found, on anM–step invariant set refinement X. Then, a LF and
a DOA can be computed as in step 27. The process repeats until the change in the volume
of W, quantified via the scalar ε, is not significant anymore, or until a predefined bound k̄
on the number of algorithm iterations is reached.

This algorithm might prove itself useful under the same conditions of Lipschitz–continuity
of the dynamics in (2.1) and convexity of constraints, as it will be later illustrated through
an example. However, it is in general not obvious how a refinement of X can be performed.
Additionally, the computation of volumes as in step 28 is not trivial for sets W computed
via FSLFs, because the set W is generally not convex. Also, there is no guarantee of con-
vergence for Algorithm 2. These shortcomings will be approached in the next chapters of
this thesis via a sampling–driven strategy for LF and DOA computation.

Remark 2.3.8 In terms of computational complexity, the same observations hold for Algo-
rithm 2 as for Algorithm 1: the optimization problems (2.14), (2.16) and (2.17) dictate the

42



2.3. Computation of LFs on compact sets

Algorithm 2 Iterative computation of a LF W and a contractive set W for system (2.1).

Input: E with 0 ∈ int(E), ρ ∈ R[0,1), M = 1, Mmax, ε > 0, k̄ ∈ R≥1

Output: W,W

1: X← E, k ← 0

2: V (x)← gauge(X, x)

3: (2.14)→ F ∗M ;
4: (2.16)→ F ∗;
5: if (F ∗M < 0 or F ∗ < 0) and M < Mmax then
6: M ←M + 1;
7: go to 3.
8: else if M ≥Mmax then
9: Refine X such that 0 ∈ int(X);

10: M = 1;
11: go to 2.

12: (2.5)→W ;
13: Solve (2.17)→ L∗ and compute (2.18)→W ∈ X;
14: Wnew ← 1

L∗W (x), W = {x ∈ Rn : Wnew(x) ≤ 1}, Wnew ←W;
15: c∗ = maxx,c c, s.t. {x ∈ E, c ≥ 1,Wnew(x) ≤ c}
16: V (x)← 1

c∗Wnew(x); M ← 1, X← c∗W;
17: (2.14)→ F ∗M ;
18: (2.16)→ F ∗;
19: if (F ∗M < 0 or F ∗ < 0) and M < Mmax then
20: M ←M + 1;
21: go to 17.
22: else if M ≥Mmax then
23: c∗ ← c∗ − c∗−1

2 ;
24: M ← 1;
25: go to 16.

26: (2.5)→W ;
27: Solve (2.17)→ L∗ and compute (2.18)→W ∈ X;
28: if (|volume(W)− volume(Wnew)| < ε or k = k̄) then
29: Return W , W
30: else
31: k ← k + 1;
32: Go to 15.
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tractability of these algorithms. Also, Algorithm 2 is automatic to the extent to which step
9 is automatic. �

Remark 2.3.9 Comparing Algorithm 1 and Algorithm 2 to other optimization based method,
the LP–simplicial method in (Giesl and Hafstein, 2014), notice the following. Lipschitz–
continuity is required also in (Giesl and Hafstein, 2014), to bound the error in the simplices
of the state space partitioning. Also, a simplicial partition is difficult to perform beyond 3D.
However, once such a partition exists, the problem of finding a LF resumes to solving an
LP. The approach presented in Algorithm 1 and Algorithm 2 is more scalable with the state
space dimension, because, under Lipschitz–continuity of the system dynamics, even stan-
dard nonlinear optimization problems in Matlab can be solved for dimensions larger than
four. �

2.4 Examples
2.4.1 Example 1

To illustrate Algorithm 1, consider the nonlinear discrete–time system equation:

x+ := G(x), (2.22)

where x+ stands for the successor of x, x ∈ X ⊂ R3, X is a polytopic set defined as in
(2.19) and

G(x) :=

 x1 − 0.5x2

sinx1

x2 − 0.5x3

 .
Observe that the dynamics G is Lipschitz continuous with a Lipschitz constant a = 3.

Therefore, also FM (x) in (2.20) is Lipschitz continuous with a Lipschitz constant Li =
‖H‖∞aM and F (x) in (2.21) is Lipschitz continuous with a Lipschitz constant Lii =
ρ0‖H‖∞ + ‖H‖∞aM . Given the Lipschitz continuity of the cost functions, according to
Section 2.3.C, it follows that the global optimum for (2.14) and (2.16) is achievable and it
can be computed with the Schubert–Mladineo algorithm, for example.

Let us apply Algorithm 1, with X represented by the following set

X = {x ∈ Rn : ‖x‖∞ ≤ 2}.

V is constructed as the Minkowski function of X and ρ = 0.9id.
Solving (2.14) yields F ∗M = 0.2606 > 0 and solving (2.16) yields F ∗ = 0.1606 > 0

for M = 6 with the Schubert–Mladineo algorithm in 1.1297 seconds on a Windows PC
with processor Intel Core i7–3770 CPU 3.40 GHz. The function fmincon from Matlab
provides M = 6 with F ∗M = 0.2606 and F ∗ = 0.1606 in 2.1102 seconds.

Thus, according to Proposition 2.3.3, X is an M–step invariant set with respect to the
map G, and V is a FSLF for the system (2.22) on X. Finally, applying (2.17), one obtains
the LF W and the contractive set W illustrated in Figure 2.1, with L∗ = 1.5918. From
one vertex of X, an initial condition for a simulation trajectory was chosen. Observe that
the trajectory escapes the M–step invariant set X for a while, and it returns in X before M
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steps. Note that when the trajectory enters the set W, it does not leave W. Moreover, the
trajectory is guaranteed to converge to the origin, by the contractivity of W.

Figure 2.1: Contractive set W (blue) in X (yellow).

2.4.2 Example 2

To illustrate Algorithm 2, consider the nonlinear discrete–time system:

x+ := G(x) =

[
x1 − 0.5x2

sin(x1)

]
, (2.23)

where x ∈ E ⊂ R2, and E is a rectangular set, represented with gray in Figure 2.2. The
set E is not M–step invariant with respect to the dynamics (2.23), due to the fact that there
exist points in the set E from which trajectories converge to another equilibrium point, see
for example the point x0 = [−3.5 − 0.25]T .

By applying two iterations from the Algorithm 2 with ρ = 0.9 and Mmax = 10 we
obtain the following results. When X = E we obtain F ∗M < 0 for all M ≤ 10. Therefore,
we refine X to the value 1

2E, illustrated with yellow in Figure 2.2, which is an M–step
invariant set with M = 5. Also V is a FSLF with M = 5. From step 14 we obtain
L∗ = 2.0137 and the set Wnew illustrated in red. We expand this set according to step 15 in
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Figure 2.2: Contractive set W (blue boundary) in E (gray).

Algorithm 2 and we obtain c∗ = 1.8842. By applying steps 17–25 we obtain that the new
FSLF V computed as in step 16 is a true LF on the new set W ⊂ E illustrated in blue. The
set W is also a contractive set.

2.5 Conclusions
This chapter has developed a systematic approach for computing a LF on a compact set for
nonlinear discrete–time systems. The developed solution consists of two steps: first, a FSLF
is computed by solving a well posed nonlinear optimization problem. Second, a converse
theorem is applied to obtain an explicit LF from a FSLF. The approach can be applied to
any Lipschitz continuous nonlinear dynamics with convex constraints. Caution is needed
though for non–Lipschitz dynamics.

If the system dynamics (2.1) is not Lipschitz continuous or the constraints are not con-
vex, then the optimization problems in i) and ii) may still be used, though without formal
guarantees of achieving a global optimum.

In the remainder of this thesis we undertake a similar approach to computing a subset
of the DOA of the origin, due to the advantage that we can construct a LF from a "freely
chosen" FSLF. However, to avoid the limitations related to non–Lipschitz dynamics, non–
convex optimization problems, feasibility and scalability, we replace the optimization prob-
lem with a constructive, sampling–driven approach. For this reason, in the next chapter we
develop a general sampling–driven result which will prove useful for verification of several
properties, among which also stability and computation of stability domains for constrained
nonlinear systems.
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Chapter 3

Deterministic sampling–driven verification of
inequalities on compact sets

As discussed in Chapter 1, safety verification problems for dynamical systems, such as
stability analysis, are generally posed via a nonlinear, possibly non–convex optimization
problem. To avoid issues related to non–convexity and non–feasibility of such problems,
in this chapter we develop a new deterministic sampling–driven method for verification of
generic properties expressed by an inequality of the form F (x) < 0 (or F (x) ≤ 0) with x
taking values in a compact set S. The proposed approach firstly distributes the verification
of the property on a finite sampling of a bounded set of states of interest. Secondly, it
extends the validity of the property to an infinite, bounded set of states by automatically
exploiting local continuity properties. Efficient state–space exploration is achieved using
multi–resolution sampling and hyper–rectangles as basic sampling blocks. The operations
that need to be performed for each sampling point in the state–space can be carried out in
parallel, which improves scalability. The procedure returns a subset A of points in S which
satisfy the given property.

3.1 Introduction
Sampling–based methods for verifying properties of dynamical systems are motivated in
real–life applications by model complexity, the curse of dimensionality and feasibility con-
cerns. The main advantage of deterministic or randomized sampling–based methods comes
from the possibility to automate and parallelize the verification process, which otherwise
would require solving a complex optimization problem. Typically, sampling approaches
have been used for finite–time reachability analysis of continuous–time systems, see, e.g.,
(Dang, 2000), (Girard, 2005), (Althoff et al., 2008b), (Althoff et al., 2008a). See also (Fan
and Mitra, 2015), where discrepancy functions were used for bounded–time safety verifi-
cation in a simulation–based framework. Regarding infinite–time reachability problems,
such as safety verification via invariant sets, fewer sampling–based methods exist, as for
example (Kapinski and Deshmukh, 2013). A method similar to sampling, namely, cell–
mapping (van der Spek, 1994), (Castillo and Zufiria, 2012), uses a partitioning of the state
space in cells, to discover complex attractors. However, for formal guarantees it relies on
optimization or non–deterministic tools.
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In this chapter we address the problem of automatically obtaining formal guarantees for
satisfiability of a property on a compact set. This problem is addressed using a generic
inequality verification theorem that exploits local continuity to extend validity in a finite
number of sampling points to an infinite, bounded set of points. The resulting automated
sampling–driven verification method provides certain attractive features. The verification
for the points in the finite set of samples can be independently performed and therefore
the methodology is spatially decentralized. This feature makes this approach applicable
to sets which do not fully satisfy the desired property and would deem a standard, global
optimization problem unfeasible, while it also improves scalability.

The sampling–driven verification framework can deal with inequalities of the type F (x)
≤ (<)0, for all x ∈ S, where F : Rn → R may be piecewise continuous and S ⊂ Rn
is a compact set. Efficient state–space sampling is performed via multi–resolution tech-
niques and using hyper–rectangle sampling units. The proposed method can be terminated
at any iteration; at every iteration an updated subset of the set of states of interest where the
inequality has been verified is returned.

The proposed sampling–driven methodology will be used in this thesis mainly for verifi-
cation of Lyapunov’s inequality (Khalil, 2002) or for computation of domains of attraction.
However, in this chapter we show that, due to the generic representation through F (x), other
relevant properties can be verified as well. Specifically, we illustrate on a simple example
the verification of finite–step invariance of a set S with guarantees that the trajectories start-
ing from S will never exceed a safe set E. The verification of Lyapunov’s inequality is
postponed to the next chapter.

3.2 Sampling with hyper–rectangles
Before formulating the sampling–driven verification algorithm, let us specify the basic sam-
pling element. A hyper–rectangle will be used throughout the thesis to describe the region
around a sampling point xs ∈ S to which we extend the verification of a property which is
performed only in the sampling point xs.

Definition 3.2.1 Given xs ∈ Rn and δxs ∈ R2n, define Bδxs (xs) as:

Bδxs (xs) := {ξ ∈ Rn : max
i∈Z[1,2n]

[Pxs ]i:(ξ − xs) ≤ 1},

where the matrix Pxs ∈ R2n×n is defined as follows:

Pxs := diag

[ 1
δxs (2j−1)

1
−δxs (2j)

]
j∈Z[1,n]

 ,

which stands for the block diagonal matrix Pxs having vectors of the type[
1

δxs (2j−1)
1

−δxs (2j)

]T
, j ∈ Z[1,n],

on the diagonal. The set Bδxs (xs) is called a hyper–rectangle. �
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Figure 3.1: 2D hyper–rectangle refinement illustration: the hyper–rectangle Bδxs (xs) is
refined by 4 hyper–rectangles, i.e., B δxs

2

(xsi), for all i ∈ Z[1,4].

The hyper–rectangle Bδxs (xs) in Definition 3.2.1 is defined via a hyper–plane represen-
tation. For an alternative definition of a hyper–rectangle, consider Vj ∈ Rn with j ∈ Z[1,2n],
i.e., the vertices of the hyper–rectangle, and define a vector δxs ∈ R2n as follows:

δxs(2i− 1) := max
j∈Z[1,2n]

{Vj(i)− xs(i)},

δxs(2i) := min
j∈Z[1,2n]

{Vj(i)− xs(i)},

for all i ∈ Z[1,n]. Note that in the definition of δxs(2i − 1) and δxs(2i), Vj(i) − xs(i)
are real values, defining distance projections on the axes, represented by the index i. The
hyper–rectangle Bδxs (xs) is illustrated in Figure 3.1 for n = 2.

Notice that Bδxs (xs) is represented through a gauge function inequality. If the hyper–
rectangle is a hyper–cube, then δxs can be reduced to a scalar, and the sampling unit is
represented through a norm inequality:

Bδxs (x) := {ξ ∈ Rn : ‖ξ − xs‖∞ ≤ δxs},

i.e., a symmetric gauge function inequality. Let Bδxs := Bδxs (0).

3.3 Verification of inequalities prescribed by real–valued functions
Property functions F (·), as generated by Lyapunov inequalities involving piecewise con-
tinuous dynamics or candidate LFs, are piecewise continuous. Therefore, this section con-
siders the verification problem that checks validity of an inequality of the form F (x) ≤
0(F (x) < 0) for all x in a proper set S and where F : Rn → R is a piecewise continuous
function.

49
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3.3.1 Problem setup

To accommodate for piecewise continuous property functions F (·), as generated by Lya-
punov inequalities involving piecewise continuous dynamics or candidate Lyapunov func-
tions, let the sets Si with i ∈ I := {1, . . . , N} for some N ∈ N satisfy ∪i∈ISi = S and
Si ∩ Sj = ∅ for all i, j ∈ I. The sets Si define a partition of the compact set S.

To formally define the sampling–driven verification problem, consider a set Ss of a finite
number of sample points in a compact set S ⊂ Rn. Let us define the sets

∆
(x,δ)
S := {(xs, δxs) ∈ Ss × R2n : S ⊆ ∪xs∈SsBδxs (xs)}

∆δ
S := {δxs : (xs, δxs) ∈ ∆

(x,δ)
S }.

Then, the set Ss is called a ∆δ
S–sampling of S. In this case, observe that for all x ∈ S, there

exists at least one pair (xs, δxs) ∈ ∆
(x,δ)
S s.t. ‖x−xs‖ ≤ max |δxs |. Given a ∆δ

S–sampling
Ss of S, define

Sis := {xs : Bδxs (xs) ∩ Si 6= ∅},

∆δ
S,i := {δxs : (xs, δxs) ∈ ∆

(x,δ)
S , xs ∈ Sis},

Ixs := {i ∈ I : Bδxs (xs) ∩ Si 6= ∅},
δi := max

δxs∈∆δ
S,i

|δxs |.

Recall that |δxs | denotes a vector containing the absolute values of the elements of δxs . Let
Fi : Si ⊕ Bδi → R be real valued continuous functions for all i ∈ I. The function F (x) is
defined as F (x) = Fi(x) if x ∈ Si. Note that ∆δ

S = ∪i∈I∆δ
S,i.

The following assumption is instrumental in what follows.

Assumption 3.3.1 For all xs ∈ Ss, and all corresponding i ∈ Ixs , there exist aixs , b
i
xs ∈ R

such that:
|Fi(x)− Fi(xs)| ≤ aixs‖x− xs‖+ bixs , ∀x ∈ Bδxs (xs). (3.1)

If we write axs := maxi∈Ixs a
i
xs and bxs := maxi∈Ixs b

i
xs , then (3.1) implies

|Fi(x)− Fi(xs)| ≤ axs‖x− xs‖+ bxs , (3.2)

for all i ∈ Ixs and x ∈ Bδxs (xs).
Assumption 3.3.1 allows that F is discontinuous on S. For example, F could be con-

structed by switching among the different continuous Fi functions within the partition of
the set S, see Example 1. Next, define the set–valued regularization map F : S ⇒ R as

F (x) :=
⋂
ρ>0

⋃
ε∈Bρ

F (x+ ε).

For all x ∈ S define the index set:

I(x) := {i ∈ I : Fi(x) ∈ F (x)}.
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Furthermore, define the real–valued function ε : Rn → R+,

ε(x) := max{|Fi(x)− Fj(x)| : (i, j) ∈ I(x)× I(x)}.

Observe that ε yields the maximum absolute jump that can occur in the function F at a point
x, due to discontinuity. If F is continuous at x, then consequently ε(x) = 0. As such, if F
is continuous on S, then ε(x) = 0 for all x ∈ S.

Example 1 To illustrate the notions introduced so far, consider the system (Luk, 2015,
Example 4):

x+ := G(x) =

{
G1(x) if x ∈ S1

G2(x) if x ∈ S2,

where
G1(x) =

[
0.5x1 −0.8x2 − x2

1

]T
,

G2(x) =
[
0.5x1 + x1x2 −0.8x2

]T
,

S = {x ∈ R2 : ‖x‖∞ ≤ 1.5}
S1 := {x ∈ R2 : x2 ≥ 0} ∩ S, S2 := {x ∈ R2 : x2 < 0} ∩ S.

The system dynamics map G is discontinuous at points of the form x = (x1, 0)T . Hence,
consider the sampling point xs =

[
1 0

]T
. We want to compute ε(xs) for the function

F : R2 → R defined by F (x) = V (G3(x)) − ρV (x), where V : R2 → R+ is defined by
V (x) = xTx and ρ ∈ R[0,1]. Notice that if F (x) ≤ 0 for a specific x ∈ Rn, then (2.3b)
holds for that x, with M = 3. Furthermore, I(xs) = {1, 2}.

To compute F1(xs) evaluate G1(xs) =
[
0.5 −1

]T
. Since the second element in

this vector is less than 0, then G2(xs) = G2(G1(xs)) =
[
−0.25 0.8

]T
, and similarly,

G3(xs) = G1(G2(G1(xs))) =
[
−0.125 −0.7025

]T
. Therefore,

F1(xs) = V (G1(G2(G1(xs))))− ρV (xs) = 0.5091− ρ.

Similarly, for computing F2(xs) we evaluate

G2(xs) =
[
0.5 0

]T
, G1(G2(xs)) =

[
0.25 −0.25

]T
and

G3(xs) = G2(G1(G2(xs))) =
[
0.0625 0.2

]T
,

which gives F2(xs) = V (G2(G1(G2(xs))))− ρV (xs) = 0.0439− ρ. Therefore, ε(xs) =

|F1(xs)− F2(xs)| = 0.4652, which illustrates the discontinuity of F (x). 2

Remark 3.3.2 If the value of ε(·) for some sampling point is too large, it is possible to
avoid choosing sampling points on the boundaries of regions Si, which can be covered by
sets Bδxs (xs) for points xs close to the boundary. �
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In this chapter we aim to provide a solution to the following problem. For brevity of nota-
tion, the indices of ∆δ

S are dropped. The notation carries on in the following results.

Problem 3.3.3 Given a function F : Rn → R which satisfies Assumption 3.3.1 and a
proper set S, construct (i) a ∆–sampling Ss of S and (ii) a function γ̄ : R+ × Ss → R+

such that:
F (xs) ≤ (<)− γ̄(max |δxs |, xs), ∀xs ∈ Ss

implies F (x) ≤ (<)0 for all x ∈ A ⊆ S , where the set A should be as large as possible. �

3.3.2 Sampling–driven verification: Fundamental theorem

In what follows we develop a multi–resolution decentralized approach towards solving
Problem 3.3.3 that encompasses automatic methods for generating the sampling points xs
and the function γ̄(·, ·), while yielding the set A as a union of hyper–rectangles Bδxs (xs)
corresponding to all “true” sampling points xs (i.e., points where the inequality holds true).

The main sampling–driven verification theorem is stated next.

Theorem 3.3.4 Suppose Assumption 3.3.1 holds. Let Ss be a ∆–sampling of the set S
and let F : S → R and the associated functions Fi : Si ⊕ Bδi → R be given. Let
γ̄ : R+ × Ss → R+ be defined as γ̄(ξ, xs) := axsξ + bxs + ε(xs). Let As ⊆ Ss be such
that for all xs ∈ As it holds that

F (xs) ≤ −γ̄(max |δxs |, xs)
(resp. F (xs) < −γ̄(max |δxs |, xs) ). (3.3)

Then F (x) ≤ 0 (resp. F (x) < 0) holds for all x ∈ A := ∪xs∈AsBδxs (xs) ⊆ S. �

Proof: By hypothesis F (xs) ≤ −γ̄(max |δxs |, xs) (resp. F (xs) < −γ̄(max |δxs |, xs))
holds for all xs ∈ As. Assume that there exists a point x ∈ A such that F (x) > 0 (resp.
F (x) ≥ 0). Take any point xs ∈ As ⊆ Ss such that ‖x − xs‖ ≤ max |δxs |. Observe that
such a point always exists, by the definition of a ∆–sampling of a set. By Assumption 3.3.1
it follows that (3.2) holds for all i ∈ Ixs .

Furthermore, let i ∈ I be such that F (x) = Fi(x) and let j ∈ I be such that F (xs) =
Fj(xs).

Then, by the triangle inequality and (3.2) it follows that

|F (x)− F (xs)| = |Fi(x)− Fj(xs)|
= |Fi(x)− Fi(xs) + Fi(xs)− Fj(xs)|
≤ |Fi(x)− Fi(xs)|+ |Fi(xs)− Fj(xs)|
≤ axs‖x− xs‖+ bxs + ε(xs)

= γ̄(‖x− xs‖, xs)
≤ axs max |δxs |+ bxs + ε(xs)

= γ̄(max |δxs |, xs). (3.4)

52



3.3. Verification of inequalities prescribed by real–valued functions

Since F (x) > 0 (resp. F (x) ≥ 0) for some x ∈ A, then

− F (x) < 0 (resp. − F (x) ≤ 0 ). (3.5)

Also, for any xs ∈ As such that ‖x− xs‖ ≤ max |δxs | we have

F (xs) ≤ −γ̄(max |δxs |, xs)
(resp. F (xs) < −γ̄(max |δxs |, xs) ). (3.6)

By summing up (3.5) and (3.6) we obtain:

F (xs)− F (x) < −γ̄(max |δxs |, xs) < 0, (3.7)

and therefore
|F (x)− F (xs)| > γ̄(max |δxs |, xs). (3.8)

By inspecting (3.4) and (3.8) we observe that a contradiction was reached. Hence, the
statement is proven. �

Similarly with verifying F (x) ≤ 0 (resp. F (x) < 0) we can also verify F (x) ≥ 0 (resp.
F (x) > 0), as in the following corollary. The proof is similar to the proof of Theorem 3.3.4.

Corollary 3.3.5 Suppose Assumption 3.3.1 holds. Let Ss be a ∆–sampling of the set S
and let F : S → R and the associated functions Fi : Si ⊕ Bδi → R be given. Let
γ̄ : R+ × Ss → R+ be defined as γ̄(ξ, xs) := axsξ + bxs + ε(xs). Let As ⊆ Ss be such
that for all xs ∈ As it holds that

F (xs) ≥ γ̄(max |δxs |, xs)
(resp. F (xs) > γ̄(max |δxs |, xs) ). (3.9)

Then F (x) ≥ 0 (resp. F (x) > 0) holds for all x ∈ A := ∪xs∈AsBδxs (xs) ⊆ S. �

Remark 3.3.6 The result of Theorem 3.3.4 enables decentralized verification by allowing
γ̄ to have different coefficients axs and bxs for each sampling point xs and by not using any
central variable, i.e., any common variable for all xs ∈ Ss. �

Remark 3.3.7 In the case that F is continuous on S, then ε(xs) = 0 for all xs ∈ Ss, and
the result in (Bobiti and Lazar, 2016, Theorem III.3) is recovered with γ̄(max |δxs |, xs) =

axs max |δxs |+ bxs , for the particular case when the sets Bδxs (xs) are hyper–cubes. �

In what follows we will develop a prototype algorithm for verifying the conditions (3.3)
of Theorem 3.3.4. To this end, two ingredients are needed: (i) a method for obtaining the
sampling Ss of S, which is proposed in Section 3.3.3, and (ii) a procedure for computing
the function γ̄, which is presented in Section 3.3.4.
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Chapter 3. Deterministic sampling–driven verification of inequalities on compact sets

3.3.3 Multi–resolution sampling tools

The process of constructing the set A in Theorem 3.3.4 is based on multi–resolution sam-
pling of the set S. To define the concept of multi–resolution, let us define the N–refinement
of a hyper–rectangle Bδxs (xs) as follows.

Definition 3.3.8 Let xs ∈ Rn, δxs ∈ R2n be arbitrarily chosen. An N–refinement of
Bδxs (xs), with N ∈ Z>1 is a finite set Ssxs ⊂ Bδxs (xs) s.t. for all x ∈ Bδxs (xs), there
exists at least one vector x′ ∈ Ssxs s.t. maxi∈Z[1,2n]

[Pxs ]i:(x− x′) ≤ 1
N . �

Notice that Bδxs (xs) ⊆ ∪x′∈SsxsB δxs
N

(x′) and that Definition 3.3.8 does not require
Ssxs to be minimal. A 2–refinement will be used throughout this thesis, because it enables
sampling of Bδxs (xs) with a minimum number of sampling points x′, without overlay. The
2–refinement will be simply referred to as a refinement. The refinement allows for multi–
resolution sampling of the state–space. See Figure 3.2 for an exemplification of the concept
of set sampling and set refinement. In Figure 3.2, the green set is S, the red points are Ss.
Therein, we apply a 2–refinement to the set Bδxs (xs) where xs ∈ Ss and δxs ∈ R4. The
values δxs(i) with i ∈ Z[1,4] represent the elements of the vector δxs , and xsi with i ∈ Z[1,4]

represent the 2–refinement of the set Bδxs (xs).

δxs(4)

δxs(3)

δxs(1)δxs(2)

xs

xs1 xs2

xs3xs4

Figure 3.2: Sampling of S (green) with Ss (red) and a 2–refinement for the set Bδxs (xs).

In (Bobiti and Lazar, 2015) and (Bobiti and Lazar, 2016), a hyper–cube was proposed as
a sampling unit. This is useful when the dimension of the search set S is similar on different
axes. However, system state constraints generally present different bounds on different axes.
In this case, a non–uniform sampling based on hyper–rectangles could reduce significantly
the number of sampling points.

If we want to sample a hyper–rectangle P in n dimensions and V1, . . . , V2n are the
vertices of P , then by refinement of P on nr < n dimensions, 2nr sampling points are
obtained, and they are {

xs + V1

2
, . . . ,

xs + V2nr

2

}
,

with their corresponding intervals. A similar multi–resolution strategy based on hyper–
rectangles was used in (Ratschan and She, 2010). Therein, the problem of estimating DOA
for continuous–time polynomial systems was tackled using polynomial LFs and interval
analysis, with quantified constraint solving instead of samples.
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The sampling strategy presented so far will be illustrated through examples in the next
chapter. Notice that the sampling–driven verification result of Theorem 3.3.4 is independent
of the sampling strategy.

3.3.4 Construction of γ̄

This subsection provides a constructive method to compute the coefficients used to define
the function γ̄. For each xs ∈ Ss, given the index set Ixs , one needs to compute aixs and
bixs for all i ∈ Ixs , such that (3.1) holds. In turn, this will yield that (3.3) holds with
γ̄(max |δxs |, xs) := axs max |δxs | + bxs + ε(xs), where axs := maxi∈Ixs a

i
xs and bxs :=

maxi∈Ixs b
i
xs .

To this end, the following assumption is instrumental.

Assumption 3.3.9 Fi is at least two times differentiable on Bδxs (xs) for each xs ∈ Sis. �

Notice that Bδxs (xs) is a convex set for all xs ∈ Ss. Assumption 3.3.9 allows for Tay-
lor series expansion and application of the Mean Value theorem in the following manner.
Denote:

T (x, xs,m) :=

m∑
v=0

([(x− xs)∇]vFi)(xs)

v!
,

for all x ∈ Bδxs (xs), where, e.g., ∇Fi stands for the Jacobian and ∇2Fi is the Hessian
of the real valued function Fi. Notice that if x (and consequently xs) is univariate, i.e., if

x ∈ R, then T (x, xs,m) can be written as
∑m
v=0

F
(v)
i (xs)

v! (x− xs)v .
Also,

Fi(x) = T (x, x, p) = T (x, xs,∞), ∀p ≥ 0 (3.10)

is the Taylor series expansion of Fi around the sampling point xs, in the set Bδxs (xs) ⊆
S ⊕ Bδxs . Then (3.10) can be rewritten

Fi(x) = T (x, xs,∞)

= T (x, xs,∞) + T (x, xs,m)− T (x, xs,m)

= T (x, xs,m)︸ ︷︷ ︸
m–th order Taylor expansion

+T (x, xs,∞)− T (x, xs,m)︸ ︷︷ ︸
remainder

, (3.11)

which is the m–th order Taylor series expansion of Fi, with remainder. We refer the reader
to Appendix A.1 for further processing of (3.11) to an equality which replaces the infinite
number of terms in the remainder with a Lagrange remainder.

The infinite Taylor series can be over–approximated by a first order Taylor expansion
and the Lagrange remainder:

Fi(x) =Fi(xs) +∇Fi(xs)(x− xs) + Li(x, xs, ξ) (3.12)

where

Li(x, xs, ξ) :=
1

2
(x− xs)T∇2Fi(xs + ξ(x− xs))(x− xs)
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and ξ ∈ (0, 1). For any xs ∈ Ss there exists bxs ∈ R+ such that

|Li(x, xs, ξ)| ≤ bxs , ∀x ∈ Bδxs (xs),∀ξ ∈ (0, 1). (3.13)

It is possible to compute such bounds for a convex set Bδxs (xs), as follows:

Proposition 3.3.10 (Althoff et al., 2008a) The bounds on the absolute values of the La-
grange remainder in (3.13) for an xs ∈ Ss, can be computed as follows:

bixs =
1

2
τTxs max

x∈Bδxs (xs),ξ∈(0,1)
(|∇2Fi(xs + ξ(x− xs))|)τxs , (3.14)

where τxs ∈ Rn and τxs(i) = max{|δxs(2i− 1)|, |δxs(2i)|}. �

The proof is similar to the proof in (Althoff et al., 2008a), but the zonotopes therein reduce
here to hyper–rectangles.

The term maxx∈Bδxs (xs),ξ∈(0,1)(|∇2Fi(xs + ξ(x − xs))|) in (3.14) can be computed
via interval analysis, see (Jaulin et al., 2001) or (Moore et al., 2009). In Matlab, efficient
interval analysis can be performed via INTLAB (Rump, 1999).

By (3.12), (3.13) and the triangle inequality we see that

|Fi(x)− Fi(xs)| =|Fi(xs) +∇Fi(xs)(x− xs) + Li(x, xs, ξ)− Fi(xs)|
≤|∇Fi(xs)(x− xs)|+ |Li(x, xs, ξ)|
≤‖∇Fi(xs)‖‖x− xs‖+ bixs , (3.15)

for all x ∈ Bδxs (xs). Denoting aixs := ‖∇Fi(xs)‖, (3.15) becomes:

|Fi(x)− Fi(xs)| ≤ aixs‖x− xs‖+ bixs , ∀x ∈ Bδxs (xs). (3.16)

Therefore, Assumption 3.3.9 implies (3.16), which is identical to (3.1), which means that
Assumption 3.3.9 implies Assumption 3.3.1. This means that Assumption 3.3.9 is sufficient
to guarantee the satisfaction of Assumption 3.3.1 for Theorem 3.3.4.

To decrease the conservatism of inequality (3.16), we can reduce the size of the bound
bxs as follows. For example, we can modify (3.15) in the following manner:

|Fi(x)− Fi(xs)| =|∇Fi(xs)(x− xs) + Li(x, xs, ξ)|
≤aixs‖x− xs‖+ bixs , (3.17)

where bixs = 0 and aixs := ‖∇Fi(xs)+ 1
2 (x−xs)T∇2Fi(xs+ξ(x−xs))‖ can be computed

via interval analysis. In this way, the triangle inequality is not used in (3.15) and the bound
may become less conservative. With this approach, (3.17) may replace (3.16).

We are now ready to state a prototype algorithm for verifying the conditions (3.3).
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3.3.5 Prototype sampling–driven verification algorithm

Algorithm 3 reports all the operations necessary for verifying that F (x) ≤ (<)0 onA ⊂ S ,
via Theorem 3.3.4. As detailed therein, the verification starts from the complete set S and
gradually the set A is constructed by the subsets Bδxs (xs) which do satisfy F (xs) ≤ (<
)−γ̄(max |δxs |, xs). Note that Algorithm 3 illustrates a multi–resolution sampling approach
to Theorem 3.3.4.

Proposition 3.3.11 (Convergence of Algorithm 3) If F (x) ≤ (<)0 for all x ∈ S, and
if F is continuous and two times differentiable on S, then Algorithm 3 generates a set
A(δmin)→ S if δmin → 0. �

Proof: If F is continuous on S, then ε(x) = 0 for all x ∈ S. Furthermore, if F is
two times differentiable on S, then, by Section 3.3.4 and step 5 of Algorithm 3 we obtain
γ̄(max |δxs |, xs) = axs max |δxs |+ bxs for all xs ∈ Ss.

If δmin → 0, then, for all xs for which the verification at step 21 in Algorithm 3 is
performed, but not validated, it means that δxs ≤ δmin → 0, and thus axs max |δxs | → 0.
Also, by (3.14), bxs → 0. Therefore, γ̄(max |δxs |, xs) → 0. When verifying step 6 for
such an xs in Algorithm 3, we obtain F (xs) ≤ (<) − γ̄(max |δxs |, xs) → 0, which holds
asymptotically by the assumption that F (x) ≤ (<)0 for all x ∈ S . Thus, steps 12–17
are applied, which shows that A(δmin) → S for δmin → 0. Indeed, this is the case as
inequality (3.3) is satisfied for all the xs ∈ Ss with δxs > δmin. �

Remark 3.3.12 (Numerical complexity analysis) The main scalability challenges in ap-
plying Algorithm 3 come from the number of samples, which is an exponential function
of the state dimension, and the level of multi–resolution. It is therefore beneficial to ex-
ploit the decentralized feature of this algorithm in each sampling point via parallelization.
To assess the computational load of Algorithm 3, let us assume that the computational
cost of steps 4–5 for one sampling point is c ∈ R+. Also, assume that there exists a
number p ∈ Z+ of parallel threads and the level of multi–resolution that we employ is
m ∈ Z+. Also, denote by wi ∈ Z+ the number of samples that were not verified at the
previous multi–resolution step, where i ∈ Z[1,m]. Notice that w1 is the initial number of
samples, which is the number of elements in Ss, at step 2 of Algorithm 3. Considering
also that by multi–resolution of one hyper–rectangle we obtain 2nr new samples, then, the
computational complexity of the for loop at steps 3–17 in Algorithm 3 is of the order
C = c (dw1/pe+ dw22nr/pe+ . . .+ dwm2nr/pe) . Notice that, if the number of threads
is unlimited, i.e., p → ∞, then C = c ∗m, because at every level of multi–resolution, the
number of threads in use is the same as the number of sampling points which we verify. �

Remark 3.3.13 If F is continuous at 0, S satisfies 0 ∈ int(S) and F (0) = 0, the inequality
F (xs) ≤ −γ̄(max |δxs |, xs) can not be satisfied for xs = 0. Hence, the closer xs will be
to zero, the more conservative the condition becomes. For this reason, the set A, computed
via Algorithm 3 will be an annulus in such a case, as it will be shown in the next chapter,
dedicated to verifying Lyapunov’s inequality. �
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Algorithm 3 Construct A ⊆ S such that F (x) < 0 on A.

Input: S, F , δmin
Output: A, (F (x) < 0 on A)

1: wrong ← []; r ← 0;A = ∅;As = ∅; good← []; p← 0

2: Generate a ∆–sampling Ss of S
3: for all xs ∈ Ss do
4: Compute axs , bxs , ε(xs)
5: γ̄(max |δxs |, xs) = axs max |δxs |+ bxs + ε(xs)

6: if F (xs) > −γ̄(max |δxs |, xs) then
7: r ← r + 1

8: wrong(r).del← δxs
9: wrong(r).spoint← xs

10: wrong(r).tau← τxs
11: else
12: p← p+ 1

13: good(p).del← δxs
14: good(p).spoint← xs
15: good(p).tau← τxs
16: As ← As ∪ {xs}
17: A ← A∪ Bδxs (xs)

18: k ← 1

19: if r > 0 then
20: while 1 do
21: if max{wrong(k).del} > δmin then
22: Generate set Bsδxs (wrong(k).spoint) of samples by multi–resolution on
Bδxs (wrong(k).spoint)

23: for all xs ∈ Bsδxs (wrong(k).spoint) do
24: δxs = wrong(k).del/2

25: Apply steps 4–16

26: if k == r then
27: break
28: k ← k + 1
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The operations performed in Algorithm 3 can be done in an automated fashion. This
holds true assuming that the set S, the real–valued function F and the minimum sampling
density δmin are provided. The set S is typically chosen as the constraint set, and δmin is
also chosen as the result of a trade–off process which aims to balance computational com-
plexity and an acceptable accuracy. When these choices have been set, then Algorithm 3 is
automatic in the sense that the constants axs , bxs , ε(xs) and finally the setA are constructed
without additional intervention. The level to which Algorithm 3 is automatic is particularly
of importance for stability domains computation for nonlinear systems, where the choice of
F (x) is, in general, not a trivial decision. For this reason, we will treat this topic separately,
in Chapter 4.

3.3.6 Comparison with the method of set inversion via interval analysis

The problem of verifying an inequality of the type F (x) < 0 for all x ∈ S can be set in the
context of a set inversion problem as well, see (Jaulin and Walter, 1993).

There are many elements in common between the two methods. The correspondents of
the parameters f , Y, Kin, εr, [x](0) from (Jaulin and Walter, 1993) are, in this thesis, F ,
(−∞, 0), A, δmin and respectively S. In (Jaulin and Walter, 1993), the authors start with
an initial set [x](0), in which, via many iterations, using pavings, the set Kin is constructed,
which is a lower estimate of the set X for which f(X) = Y. This procedure is similar in
this thesis, where multi–resolution is used to construct the set A. Basically, any method of
splitting boxes can be used in both the procedure from (Jaulin and Walter, 1993) and this
thesis, as well as many approaches within the interval analysis community.

The approach to verification of F (x) < 0 (f([x](k)) in (Jaulin and Walter, 1993)) dif-
fers between this thesis and the paper of (Jaulin and Walter, 1993). Therein, an inclusion
function is used, F and then interval analysis is used to directly compute F([x](k)) and
verify that F([x](k)) ⊂ Y. In this thesis we replace the verification of F (x) < 0 on a set
by verifying the conservative inequality F (xs) ≤ −γ(max |δxs |, xs) in only one sample
point xs. Then, we conclude F (x) < 0 for all x ∈ Bδxs (xs). We conclude this by making
use of γ(max |δxs |, xs), which is computed via interval analysis. Interval analysis is used
differently in the two methods. In (Jaulin and Walter, 1993), it is used directly to evaluate
the function f over an interval. In this thesis, it is used to evaluate the continuity constant
γ(max |δxs |, xs) over an interval, after which the inequality F (x) < 0 is only verified in a
sample point.

In this context, we identify the following differences between the two approaches. In
(Jaulin and Walter, 1993), Y is required to be compact. The corresponding set (−∞, 0) in
this thesis is not compact, because it is unbounded. The highest difference lays in the fact
that we use samples in the verification. This allows the computation, within the function
γ, of a constant ε(xs) which is connected with the discontinuity of F . In this way we
allow for F to be piecewise continuous, and not only continuous, as required in (Jaulin
and Walter, 1993), which imposes continuity of f to guarantee existence of an inclusion
function F (see (Jaulin and Walter, 1993, Remark 2, page 1056)). Our method, instead,
by using samples, can detect precisely if the current verification is performed on a point
of discontinuity, allowing the extension of interval analysis based verification to hybrid
systems. However, for continuous functions F , the verification of F directly on an interval,
as in (Jaulin and Walter, 1993) may be computationally less costly than the procedure we
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follow in this thesis, where both constants axs and bxs have to be computed via interval
analysis. To evaluate these constants, we require computation of hessians and jacobians,
which involve additional computational overhead.

3.4 Sampling–driven verification of finite–step invariance
The main property considered for verification using the sampling–driven procedure devel-
oped in this thesis is stability of an equilibrium point for a dynamical system. However, as
we will illustrate in this section, the generic inequality F (x) ≤ (<)0 is useful for verifying
also other relevant properties, such as safety and finite–step invariance.

3.4.1 Finite–step invariance verification

The safety verification problem is approached in this subsection by finite–step invariance,
which offers the advantage of choosing any set as a candidate finite–step invariant set, under
the conditions mentioned in Remark 2.3.6.

Let us formulate the problem of verifying finite–step invariance of a compact set S such
that none of the trajectories starting from S will ever exceed the safe set E for which S ⊆ E.
Let us define

S := {x ∈ Rn : V (x) ≤ L},
and

E := {x ∈ Rn : VE(x) ≤ LE},
where (L,LE) ∈ (R>0)

2 and V : Rn → R, VE : Rn → R are nonlinear functions, such
that the sets S and E have non–empty interior and they are connected.

The safety of the system with respect to the safe set E is verified through the following
functions

Fi(x) =
1

LE
VE(Gi(x))− 1,

where i ∈ Z[1,M−1]. For safety, the inequality

Fi(x) ≤ 0

must hold for all x ∈ S and all i ∈ Z[1,M−1].
The M–step invariance property can be formulated through the following function:

FM (x) =
1

L
V (GM (x))− 1,

for which it is required that
FM (x) ≤ 0, ∀x ∈ S.

Observe that verifying safety reduces to verifying M inequalities, due to Lemma 2.2.5.
Moreover, by Lemma 2.2.5 it is established that the M–step invariant set, together with the
trajectories starting inside it, compose an invariant set.

Given the fact that we can split the problem of verifying safety into M separate prob-
lems, it means that we can verify M independent problems as in (3.3), for each of the
functions Fi, where i ∈ Z[1,M ], on the set S. If (3.3) holds for each of the M functions Fi,
then the set E is safe for all the trajectories starting in the set S.
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Figure 3.3: M–step invariant set verification for the nonlinear system (2.22).

3.4.2 Numerical example

To illustrate the problem of verifying safety and finite–step invariance as discussed above,
let us consider again the dynamics from Example 1 in Chapter 2. Let the safe set be

E := {x ∈ R3 : ‖x‖∞ ≤ 2},

and choose a set, e.g.,
S := {x ∈ R3 : ‖x‖∞ ≤ 1},

for which we want to verify that it is anM–step invariant set for the nonlinear system (2.22),
with safe set E. For simplicity, let us perform sampling via hyper–cubes, with δ = 0.05 as
the discretization constant which gives δxs = δ16 for all xs ∈ Ss. This generates the ∆–
sampling of the set S, with a sample set Ss. Also, select δmin = δ. This means that in this
example we will not resort to the mechanism of multi–resolution sampling, which we will
extensively use in the next chapter.

By applying Algorithm 3 for each of the functions Fi, for various values of M ∈ Z≥1,
we obtain that, for M = 5, all the samples in the ∆–sampling of the set S satisfy (3.3) for
all functions Fi with i ∈ Z[1,5]. Therefore, the set S is 5–step invariant for the nonlinear
system (2.22), with safe set E.

In this example, it is not necessary to construct γ as in Section 3.3.4, because it can
be immediately verified that axs is the Lipschitz constant aFi of Fi. This constant can be
computed, see (Kellett, 2014) for the properties of K–functions, for the functions Fi for all

61



Chapter 3. Deterministic sampling–driven verification of inequalities on compact sets

i ∈ Z[1,M ] and we obtain aF1
= 1.5, aF2

= 2, aF3
= 2.625, aF4

= 3.5625, aF5
= 11.5.

Then, notice that bxs = 0 and ε(xs) = 0, because of the continuity of the dynamics (2.22)
for all xs ∈ Ss.

In Figure 3.3 we illustrate by yellow the safe set E, by red the M–step invariant set S
and in blue the set

T :=
⋃

xs∈Ss,i∈Z[1,M]

Gi(xs).

The set S ∪ T is a subset of the invariant set RSM , see Lemma 2.2.5.

3.5 Conclusions
We have developed a sampling–driven algorithm for verification of generic properties of
the type F (x) ≤ (<)0 on compact sets S. This property, originally inspired by Lyapunov
inequalities, has the potential of representing a large variety of properties of interest when
analyzing safety for constrained nonlinear systems. Indeed, as shown in this chapter, the
property function F (x) can be used, for instance, in the verification of finite–step invariance,
or safety of system trajectories with respect to a safe set E. Typical solutions for verifying
such properties require solving optimization problems, which suffer from non–convexity,
non–feasibility, scalability and numerical solvers issues. The algorithm presented in this
chapter is based on a sampling–guided verification theorem that extends a previous result for
Lipschitz continuous dynamics to general discrete–time, possibly discontinuous dynamics.
This opens up the application of sampling–driven verification to hybrid systems. Because
of typical issues in finding a LF, but also particular challenges related to sampling–driven
verification of Lyapunov’s inequality around the origin, we dedicate the next chapter to
applying the algorithm developed so far to verify Lyapunov’s inequality for both discrete–
time as well as continuous–time nonlinear systems, but also for computing DOAs.

62



Chapter 4

Deterministic sampling–driven computation
of stability domains

This chapter develops a solution for stability domains computation of piecewise continuous
nonlinear systems via Lyapunov functions. Depending on the nonlinear system dynamics,
the candidate Lyapunov function and the set of states of interest, verifying stability requires
solving complex, possibly non–convex or infeasible optimization problems. To avoid these
issues, in this chapter we adopt a sampling–driven approach, as proposed in Chapter 3.
Moreover, to achieve a constructive sampling–driven stability verification, a Lyapunov func-
tion is built via finite–step Lyapunov functions for discrete–time systems, as discussed in
Chapter 2, and finite–time Lyapunov functions for continuous–time systems. Besides adapt-
ing the sampling–driven verification for property functions which represent the relaxed Lya-
punov functions, this chapter addresses the problem of verifying Lyapunov’s inequality at
the origin via a theorem which connects the annulus computed via Algorithm 3 with the
neighborhood of the origin in the verification of stability. Verification of Lyapunov’s in-
equality is presented for both discrete–time systems and continuous–time systems, which
present different challenges for verification. Additionally, a sampling–driven method for
estimating the domain of attraction (DOA) via level sets of a validated Lyapunov function
is also presented. The proposed methodology is illustrated for various benchmark examples
from the literature.

4.1 Introduction
A LF is typically constructed for stability verification of constrained nonlinear systems, and
its largest viable level set inside the set of constraints is computed to estimate the domain
of attraction (DOA) of an equilibrium of interest (Khalil, 2002), (Vidyasagar, 2002). Most
Lyapunov methods rely on the following common approach: verify the decrease condition
for a candidate LF and a candidate subset of Rn, which can be a bounded or unbounded
set, an infinite or finite set of states (e.g., generated by simulations (Kapinski et al., 2014) or
state–space sampling (van der Spek, 1994), (Kapinski and Deshmukh, 2013)). For linear,
switched–linear or polynomial systems, the decrease condition for a candidate LF can be
posed via semidefinite programming (SDP). In the case of nonlinear systems with CPA
candidate LFs, simplicial state–space partitions and linear programming are used to verify
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the decrease condition of the LF candidate. However, for general nonlinear systems, such
standard Lyapunov methods require attaining the global optimum of complex, possibly non–
convex optimization problems or they may result in infeasible problems. The corresponding
optimization problems do not scale well with the state–space dimension and in the non–
convex case, attaining a global optimum for a large set of states cannot be guaranteed.

Sampling–based approaches have been used in stability verification mostly to overcome
the general conservativeness of candidate LFs. As such, in (Topcu et al., 2008) and (Kapin-
ski et al., 2014), sampling–based approaches have been combined with optimization–based
approaches for constructing LFs. In (Topcu et al., 2008), samples in the state space are used
to generate simulation traces and computing local candidate polynomial LFs for polynomial
dynamics. Therein, sampling and simulations enable the conversion of a set of computa-
tionally expensive bilinear matrix inequalities into linear matrix inequalities. This idea has
been extended in (Kapinski et al., 2014) by a procedure to improve iteratively the quality
of the candidate polynomial LF. The procedure therein relies on a falsification tool in the
form of a global optimizer which generates a series of successively improved intermediate
polynomial LFs. Additionally, the resulting polynomial LF found by the simulation–based
iterative technique is validated formally through queries in Satisfiability Modulo Theories
(SMT) solvers such as dReal (Gao et al., 2012), Z3 (De Moura and Bjørner, 2008), Meti-
Tarski (Akbarpour and Paulson, 2010).

Alternatively, in (Berkenkamp et al., 2016), a subset of the DOA of uncertain systems
is estimated. To achieve this, the candidate LF is fixed and the DOA is estimated based on
arbitrary experiments and learning strategies. The DOA holds with an accuracy determined
by a probabilistic certificate. Therein, a constructive method for choosing the candidate LF
is not specified. In (Najafi et al., 2016), a fast method for estimating the DOA was proposed
based on random samples in the state space, with no formal guarantees.

In this chapter, the problem of automatically obtaining formal stability guarantees via
LFs is addressed for general nonlinear systems using a sampling–driven approach and
FSLFs for discrete–time systems and finite–time Lyapunov functions (FTLFs) (Doban and
Lazar, 2016a) for continuous–time systems respectively. FSLFs and FTLFs are used in a
converse result, to construct candidate LFs and the Lyapunov’s inequality is verified on a set
S via Algorithm 3. Two patching theorems allow binding of the validated LF with a local
LF. This result is required to deal with singularity at the equilibrium point. Additionally, a
sampling–based method for estimating the largest viable level set of the validated LF is de-
veloped to generate DOA estimates. This method exploits the samples which have already
been explored by Algorithm 3 to compute an under–approximation of the maximum level
set of the LF inside the set of points which do satisfy Lyapunov’s inequality.

Particularly, for continuous–time systems, finding a true FTLF requires computing the
solution of a nonlinear differential equation. To avoid this, we present two approaches.
The first approach is to discretize the system, compute a FSLF and a LF for the discretized
system, and then verify the candidate LF’s validity on the original continuous–time system
via the sampling–guided method in Algorithm 3 in Chapter 3. This approach relies on the
assumption that a discretized system with a sufficiently small sampling time is a satisfactory
abstraction of the original continuous–time system. Alternatively, a candidate LF can be
obtained by the integration of a FTLF over a finite time interval. The drawback of this
approach is that it requires knowledge of the system solution for a finite time interval. To
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solve this issue, we generate simulation traces by numerical integration for initial conditions
inside a ball around each sample point and we fit a polynomial function to approximate
the true solution. This yields an analytic formula for the LF candidate which is defined
differently for each sample point. Then, we again extend the validity of the LF computed
for each sample point as in Algorithm 3.

Algorithm 3 enables usage of the same prototype verification method for verifying Lya-
punov inequalities for general piecewise continuous dynamics for both continuous–time and
discrete–time systems. Solving a posteriori a global optimization problem for validating the
resulting function for constrained nonlinear systems is not required by the proposed method,
compared with other simulation–based approaches, such as (Kapinski et al., 2014).

4.2 Stability analysis tools
Let us first recall the basic ingredients for stability analysis. Consider the autonomous
nonlinear system in discrete–time

xk+1 = G(xk), k ∈ Z+, (4.1)

and in continuous–time

ẋ(t) = Gc(x(t)), t ∈ R+ (4.2)

where xk ∈ S (resp. x(t) ∈ S) is the state, S is a proper set denoting a subset of the set
of constraints and G : Rn → Rn, Gc : Rn → Rn are piecewise continuous nonlinear
functions. Additionally, Gc is locally Lipschitz. A point x∗ ∈ S is an equilibrium point
of system (4.1) if G(x∗) = x∗, and of system (4.2) if Gc(x∗) = 0. We assume G(0) = 0
and Gc(0) = 0. This assumption is not limiting the applicability of the methods developed
in this thesis, because any other equilibrium point can be translated in 0 via a simple set of
operations. Additionally, other equilibria are discarded when the stability and DOA of only
one equilibrium point is studied. Denote the solution of (4.2) with initial state x(0) at time
t = 0 by x(t) for any t ∈ R≥0. Assume that x(t) exists and it is unique for all t ∈ R≥0.
For system (4.1), define the one–step reachable set from S as Reach(S) := ∪ξ∈SG(ξ).

Definition 4.2.1 The system (4.1) (resp. (4.2)) is called KL–stable in S if there exists a
KL function β : R+×R+ → R+ such that ‖xk+1‖ ≤ β(‖x0‖, k) for all (x0, k) ∈ S ×Z+

(resp. ‖x(t)‖ ≤ β(‖x(0)‖, t) for all (x(0), t) ∈ S × R+).

Note that the definition of KL–stability from Definition 4.2.1 is similar to the notion of
global asymptotic stability (GAS) in (Khalil, 2002). However, for discrete–time systems,
there are GAS systems, when the map G in (4.1) is discontinuous, which are not KL–
stable. Such an example is detailed in (Mayne and Rawlings, 2009, Appendix B, Example 2,
page 7).

The standard regional Lyapunov theorems for both continuous– as well as discrete–time
systems are recalled in the next result.
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Proposition 4.2.2 Let W be a proper invariant set with respect to the dynamics (4.1) (resp.
(4.2)). Let α1, α2 ∈ K∞. Suppose that there exists a function W : Rn → R+ such that

α1(‖x‖) ≤W (x) ≤ α2(‖x‖), ∀x ∈ Rn, (4.3a)

and that for some ρ ∈ K with ρ < id it holds

W (G(x)) ≤ ρ(W (x)), ∀x ∈W, (4.3b)

for system (4.1) (resp. it holds

Ẇ (x) < 0, ∀x ∈W\{0}, (4.3c)

for system (4.2)). Then, W is a Lyapunov function on W and system (4.1) (resp. system
(4.2)) is KL-stable in W.

Let V : Rn → R+ be defined as

V (x) := η(‖x‖) (4.4)

for some (“arbitrary”) η ∈ K∞ and norm ‖ · ‖, see (Doban and Lazar, 2016b, Theorem 2.4).
If there exists an M ∈ Z≥1 and a corresponding ρ ∈ K with ρ < id such that

V (GM (x)) ≤ ρ(V (x)), ∀x ∈W, (4.5)

then V is a FSLF for system (4.1). Then, by Theorem 2.3.1, the function W : Rn → R+

which satisfies

W (x) =

M−1∑
j=0

V (Gj(x)), (4.6)

is a true LF for the discrete–time system (4.1).
Similarly, for continuous–time systems, if there exists a d ∈ R>0 such that for any t ≥ 0,

if x(t) ∈W and

V (x(t+ d))− V (x(t)) < 0, (4.7)

then V is a finite–time Lyapunov function (FTLF) for system (4.2) and the function W :
Rn → R+ which satisfies

W (x(t)) =

∫ t+d

t

V (x(τ))dτ (4.8)

is a true LF for the continuous–time system (4.2), see (Doban and Lazar, 2016a, Lemma
2.3, Theorem 2.1).

The above–relation between V andW will be instrumental in applying sampling–driven
verification results to construct regional LFs. Recall that Algorithm 3 in Chapter 3 con-
structs a set A ⊆ S such that an inequality of the type F (x) < (≤)0 holds for all x ∈ A.
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Next, we will show how Algorithm 3 can be utilized to verify Lyapunov’s inequality for
discrete–time and continuous–time dynamical systems, respectively, and for computing an
estimate of the DOA as a viable sublevel set of a validated LF. Thus, we will have to show
how inequalities of the type (4.3b), (4.3c), (4.5), or (4.7) can be posed via a property func-
tion F (x) < (≤)0. For instance, for (4.3b), F (x) = W (G(x))− ρ(W (x)). For construct-
ing DOA, another algorithm is developed, which still exploits the samples generated via
Algorithm 3.

4.3 Verification of Lyapunov’s inequality for discrete–time systems
In general, verification of Lyapunov’s inequality (4.3b) hinges upon choosing the right LF
candidate W . However, as W is difficult to guess for general nonlinear dynamics, we
pursue verification of inequality (4.5) instead, which merely requires an arbitrary function
V (i.e., η ∈ K∞) and a suitable value of M . Given a compact set of interest S with
0 ∈ int (S), Lyapunov’s inequality can be readily verified by Algorithm 3 by setting the
property function F as follows:

F (x) := V (GM (x))− ρ (V (x)) , ∀x ∈ S, (4.9)

with ρ ∈ K which satisfies ρ < id. Algorithm 3 will produce a subset A ⊂ S where the
inequality holds. To enlarge the set A of verified points, one can either reduce the sampling
resolution δmin or increase the value ofM iteratively up to a prescribed upper boundMmax.
Indeed, as shown in (Gielen and Lazar, 2015), under the assumption of exponential stability
of the equilibrium, there exists a critical bound M∗ such that inequality (4.5) is satisfied for
all M ≥M∗, regardless of the candidate function V .

In turn, Lyapunov’s inequality (4.3b) is then implicitly verified for all x ∈ A for the
function W : Rn → R+ in (4.6). However, since both W (0) = 0 and V (0) = 0, we have
that for the property function corresponding to Lyapunov’s inequality it holds that F (0) = 0
and the limitation indicated in Remark 3.3.13 holds true.

In order to conclude KL–stability for initial conditions that lie in the neighborhood
around the origin where the inequality was not verified, we will make use of a set L, which
is the level set of a true local LF VL. The methodology to compute such a local LF can
rely on linearization of the dynamics in (4.1), for instance. Indeed, if the origin is a stable
equilibrium, then, the LF found for the linear system is also a LF for the nonlinear system
in a neighborhoodN1(0), see (Khalil, 2002, Theorem 4.7, pag. 139). The set L can then be
chosen as the largest level set of the LF VL inside N1(0), see Figure 4.1.

Naturally, a linearization of the nonlinear dynamics can be used to screen for potential
candidates for the FSLF candidate V as well. However, most of the time, the LF com-
puted for the linearized system holds for the nonlinear system only locally, on a very small
set around the origin. An “educated” guess for a candidate FSLF is recommended, for in-
stance, via linearization, or the approach in (Kapinski et al., 2014), to obtain a small step
M . However, theoretically, any function V defined as in (4.4) is a valid candidate. For this
reason, we select an arbitrary candidate V , which, via the M iterations, will eventually re-
veal a true FSLF. In what follows, we will establish sufficient conditions such that stability
can be guaranteed on A ∪ L with the ingredients we have worked out so far. To this end,
the following fact is instrumental.
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0

N2(0)
L

N1(0)

W

Figure 4.1: Set inclusions for Theorem 4.3.1.

Fact 4.1 Let W be a candidate Lyapunov function satisfying (4.3a). Moreover, W := {x ∈
Rn : W (x) ≤ L} is a level set of W with L ∈ R>0 and L ⊆ W is a compact invariant set
for system (4.1), with 0 ∈ int(L). If W (G(x)) − ρ(W (x)) < 0 holds for all x ∈ W \ L
with ρ < id, then W is an invariant set. �

Proof: The set W is invariant if and only if for all x ∈ W if holds that G(x) ∈ W. If
x ∈ L, then G(x) ∈ L ⊆ W by the invariance of L. Otherwise, if x ∈ W \ L, then
W (G(x)) < ρ (W (x)) ≤ ρ(L) < L, and thus, G(x) ∈ int(W) ⊂W, which completes the
proof. �

If the Lyapunov inequality holds on S and S is invariant, then the system (4.1) is KL–
stable in S. However, as pointed above, Lyapunov’s inequality can not be verified via
the sampling–driven method at xs = 0. Therefore, we can at most verify the Lyapunov
inequality via sampling on an annulus A. Still, with the aid of the next patching theorem,
we can establish KL–stability in a subset of S that includes the origin it its interior and the
set of verified points A as well.

Theorem 4.3.1 Let W be a candidate Lyapunov function satisfying (4.3a), with W ∈ Rn

a sublevel set of W . Consider a proper set N2(0) ⊆ W. Denote by AW := W \ N2(0) the
annulus of the compact set W with respect to the set N2(0) and suppose that W (G(x)) −
ρ(W (x)) ≤ 0 holds for all x ∈ AW, where G is the nonlinear map of system (4.1) and
ρ ∈ K and ρ < id. Assume that there exists a compact set L (see Figure 4.1) withN2(0) ⊆
L ⊆W which is invariant with respect to the nonlinear system (4.1) and admits a Lyapunov
function VL : Rn → R+ on L. Then, system (4.1) is KL–stable on W. �

Proof: Given an arbitrary initial condition x0 ∈ W, the following situations can be
encountered:

1. If x0 ∈ L, then Proposition 4.2.2 may be applied for system (4.1) with W (x) :=
VL(x), and therefore system (4.1) is KL–stable on L.

2. If x0 ∈W \ L ⊆ AW, and since by Fact 4.1 W is an invariant set, then G(x0) ∈W,
which allows for two situations:
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(a) If G(x0) ∈ L, then the reasoning used in case 1. can be applied again with
x0 := G(x0).

(b) If G(x0) ∈ W \ L ⊆ AW, suppose @i ∈ Z>0 such that Gi(x0) ∈ L. Then, by
the invariance of the set W it follows that Gi(x0) ∈ W \ L ⊆ AW, ∀i ∈ Z>0.
Therefore, the inequality W (G(x)) − ρ(W (x)) ≤ 0 can be iterated i–times to
obtain the following:

0 ≤W (Gi(x0)) ≤ ρi(W (x0)),∀i ∈ Z>0.

Because ρ < id and ρ(0) = 0, then limi→∞ ρi(W (x0)) = 0, and therefore

lim
i→∞

W (Gi(x0)) = 0. (4.10)

Moreover, by (4.3a) we know that

0 ≤ α1(‖Gi(x0)‖) ≤W (Gi(x0)). (4.11)

By (4.10) and (4.11) the following limit holds:

lim
i→∞

α1(‖Gi(x0)‖) = 0, (4.12)

which, by the definition of K–functions, yields:

lim
i→∞

‖Gi(x0)‖ = 0. (4.13)

However, because Gi(x0) /∈ L,∀i ∈ Z>0, then

‖Gi(x0)‖ > rB > 0,∀i ∈ Z>0, (4.14)

and therefore (4.14) contradicts (4.13). This means that ∃i ∈ Z>0 such that
Gi(x0) ∈ L. Thus, the reasoning in case 1. can be applied with x0 := Gi(x0).

The above cases cover all the possible trajectory situations starting from the set W, and
therefore prove KL–stability of system (4.1) on W. �

In the case when even a local LF VL can not be found, the safety of the trajectories
starting in W can still be guaranteed if

Reach(N2(0)) ⊆ A ∪N2(0) ⊆W.

Then W is guaranteed to be an invariant set, which provides a safety certificate for trajecto-
ries starting in W.

4.4 Verification of Lyapunov’s inequality for continuous–time systems
Similarly to the discrete–time case, verifying Lyapunov’s inequality for continuous–time
systems (4.3c) hinges on finding a suitable candidate LF W . To construct the LF W , we
develop two different approaches, as follows.
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4.4.1 Constructing LFs via the discretized system

It is common practice to apply time discretization in order to provide analysis and control
techniques for continuous–time systems. However, for safety critical systems it is necessary
to validate the obtained results for the original continuous–time system. Similarly, in this
section we take an indirect approach to find W , i.e., we rely on the candidate function W
obtained as in Section 4.3 for a discretized version of the continuous–time dynamics. Then,
Algorithm 3 in Chapter 3 can be readily applied with the property function F (x) defined as
follows:

F (x) := Ẇ (x), ∀x ∈ S. (4.15)

Also in the continuous–time setting it holds that F (0) = 0, and therefore the inequality
F (xs) ≤ −γ̄(max |δxs |, xs) can not be satisfied for xs = 0. Thus, the set of verified points
Ac produced by Algorithm 3 will be an annulus as well. To cover a neighborhood of the
originN2(0) of points that are not validated, we need to contain it within a set Lc, which is
the level set of a true local LF VL. The set Lc can then be taken as the smallest sublevel set
of the LF VL which covers the hole of the annulusAc. To connectAc with Lc, we formulate
the following result.

Theorem 4.4.1 Let W be a candidate Lyapunov function satisfying (4.3a), with Wc :=

{x ∈ Rn : W (x) ≤ Lc} ⊂ Rn a sublevel set of W . Consider a proper set N2(0) ⊆ W.
Denote by AWc

:= Wc \ N2(0) the annulus of the compact set Wc with respect to the set
N2(0) and suppose that Ẇ (x) < 0 for all x ∈ AWc

. Assume that there exists a compact
set Lc withN2(0) ⊆ Lc ⊆Wc, which is invariant for system (4.2), and admits a Lyapunov
function VL : Rn → R+. Then, system (4.2) is KL–stable on Wc. �

Proof: Notice that, according to (Blanchini and Miani, 2007), Wc is a practical set, and
therefore, according to Nagumo’s theorem, the set Wc is positively invariant with respect to
(4.2) if and only if

∇(W (x)− L)TGc(x) = ∇W (x)TGc(x) ≤ 0

for all x ∈ ∂Wc. Recall that ∂Wc denotes the boundary of the set Wc. Since ∂Wc ⊆ ∂AWc ,
and since according to the hypothesis it holds that

Ẇ (x) = ∇W (x)TGc(x) < 0, ∀x ∈ AWc
,

then it follows that
∇W (x)TGc(x) ≤ 0, ∀x ∈ ∂Wc.

Therefore, the fact that Ẇ (x) < 0 for all x ∈ AWc
implies that Wc is positively invariant

for (4.2). Given an arbitrary initial condition x0 ∈ Wc, the following situations can be
encountered:

1. If x0 ∈ Lc, then the problem is solved, because system (4.2) is KL–stable on Lc.

2. If x0 ∈ Wc \ Lc ⊆ AWc
, then, due to the invariance of the set Wc it means that

x(t) ∈Wc, for any t ∈ R+, which allows for two situations:
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(a) If x(t) ∈ Lc, then the reasoning used in case 1. can be applied again with
x0 := x(t).

(b) Assume x(t) ∈ Wc \ Lc ⊆ AWc
for all t > 0. By the continuity of W on

the compact set AWc
the following maximization problem provides a bounded

result:
−β := max

x∈AWc
Ẇ (x) < 0.

Therefore, for all x(t) starting from an initial condition x(0) ∈Wc \Lc ⊆ AWc

we can write

W (x(t)) = W (x(0)) +

∫ t

0

Ẇ (x(τ))dτ ≤W (x(0))− βt.

Notice that for all t > W (x(0))
β it follows that

W (x(t)) ≤W (x(0))− βt < 0,

which contradicts the positive definiteness of W . Therefore, for all

x0 ∈Wc \ Lc ⊆ AWc

there exists t ∈ R>0 such that x(t) ∈ Lc, where the same reasoning as in 2.(a)
can be applied.

The above cases prove KL stability of system (4.2) on the set Wc. �

4.4.2 Constructing LFs via polynomial approximation of the solution

The problem of verifying KL–stability of system (4.2) on a compact set S, can be posed
directly via FTLFs (4.7). Then, the property function to be verified is:

F (x(t)) = V (x(t+ d))− V (x(t)) < 0, ∀x(t) ∈ S. (4.16)

We will use the fact that F (x(t)) can be reduced to F (x(0)) if S is invariant. Then, the
problem of verifying that (4.16) holds for all x(0) ∈ S can be dealt with via Algorithm 3 in
Chapter 3.

The main steps of finding a LF for system (4.2) are the following:

1. Verify (4.16) for an “arbitrary” suitable V , d and set S.

2. Derive an expression of W (x(0)) at x(0) = xs, via (4.8).

It is known (Doban and Lazar, 2016a) that any function V which satisfies (4.3a) may be
selected as a valid candidate FTLF, with a corresponding d. Therefore, to construct a LF
W (x), it suffices to find a d such that (4.16) holds, and then the LFW (x) can be constructed
via (4.8). However, notice that an analytical solution of system (4.2) is required to be able
to compute x(t + d) for a given x(t), t ≥ 0. For continuous–time nonlinear systems, such
a solution is generally not attainable.
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Therefore, in this section, an approximation of the trajectory x(t + d) by a polynomial
function is constructed. Since in the verification of (4.16) the true solution x(t + d) is
approximated by an analytical function, even if (4.16) holds for all x(t) ∈ S , after we
construct W (x(t)) as in (4.8), the certification that W (x(t)) is a LF is still required.

The next items elaborate on steps 1. and 2. mentioned above:

1. Select a pool of samples Ss ⊂ S.

2. Generate an approximation of the true solution x(t) around a point xs by an analytical
polynomial function f(t, x, xs):

2.1. For all xs ∈ Ss, simulate (4.2) for t = 0 : Ts : T starting from a number of
random points x(0), uniformly distributed in N (xs), where N (xs) is a subset
of S that contains the point xs.

2.2. Fit a polynomial on the generated trajectories, such that

x(t) ≈ f(t, x, xs) =


f1(t, x, xs)
f2(t, x, xs)
· · ·

fn(t, x, xs)

 ,
where fi(t, x, xs) are n polynomials of degree m. Notice that the variables of
the polynomials are x and t, and xs is the sampling point around which the
polynomial approximations were generated.

3. Fix a candidate FTLF V as in (4.4). Find a d ∈ R+ such that

V (f(d, xs, xs))− V (xs) < 0, ∀xs ∈ Ss.

4. Construct a candidate LF:

W (x) =

∫ d

0

V (f(τ, x, xs))dτ, ∀x ∈ N (xs). (4.17)

Let us illustrate the construction of a LF as in (4.17) in the case when the FTLF is a
quadratic function V (x) = xTPx, where P ∈ Rn×n and P � 0. Assume fi(t, x, xs), for
all i ∈ Z[1,n] is an m–th order polynomial, which has nr ∈ Z+ coefficients, placed in a col-
umn vector ci ∈ Rnr . A matrix C ∈ Rnr×n is defined as C = [ c1 c2 . . . cn ], and it
represents the matrix of all the coefficients for the polynomials fi(t, x, xs), for all i ∈ Z[1,n].
For each polynomial fi(t, x, xs), for all i ∈ Z[1,n], build also a matrix containing on each
line the powers with which each variable (t, x1, . . . , xn) appears in each of the nr terms (a
similar reasoning is used within the polyfitn function in Matlab). Denote such a matrix
Ti ∈ Znr×(n+1). A matrix T ∈ Rnr×(n(n+1)) is defined as T = [ T1 T2 . . . Tn ].

In this context, each polynomial can be written as

fi(t, x, xs) =

nr∑
j=1

C(j, i)tT (j,4(i−1)+1)

(
n∏
p=1

xT (j,4(i−1)+p+1)
p

)
. (4.18)
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The LF is W (x) =
∫ d

0
f(τ, x, xs)

TPf(τ, x, xs)dτ, which, after the corresponding substi-
tutions becomes

W (x) =

n∑
k=1

n∑
q=1

P (k, q)

nr∑
i=1

nr∑
j=1

C(i, k)C(j, q)

dT (i,(n+1)(k−1)+1)+T (j,(n+1)(q−1)+1)+1

T (i, (n+ 1)(k − 1) + 1) + T (j, (n+ 1)(q − 1) + 1) + 1
n∏
p=1

xT (i,(n+1)(k−1)+p+1)+T (j,(n+1)(q−1)+p+1)
p . (4.19)

Remark 4.4.2 To obtain a high accuracy fit for the function f , there are two degrees of
freedom in the number of samples in Ss and the degree of the polynomial f . A high number
of samples increases the accuracy of f . However, if the number of samples is too large, we
might unnecessarily increase the computational load for an insignificant increase in accu-
racy. The same observation holds for increasing the degreem of the polynomials. Moreover,
the fitting error does not necessarily disrupt the validity of the Lyapunov functionW , which
is certified via Algorithm 3. �

Then, the validity of the LF (4.19) for system (4.2) can be verified by use of Theo-
rem 4.4.1 and Algorithm 3 with the property function (4.15).

4.5 Sampling–driven DOA estimation
Previous subsections have shown how to construct and validate LFs W for both discrete–
and continuous–time systems. The set A ∪ L computed as in the previous sections is the
set on which Lyapunov’s inequality holds, and not necessarily a subset of the DOA in the
constraint set S. To obtain the proper invariant set W, required in Proposition 4.2.2, which
is a subset of the DOA, we need to compute the largest level set of the LF W inside A∪L.
Computing the largest level set

W∗ := {x ∈ Rn : W (x) ≤ L∗} ⊆ (A ∪ L)

via nonlinear optimization might suffer from non–convexity issues. This is due to the fact
that the setA∪L constructed via Algorithm 3 might be non–convex, becauseA is the union
of a finite number of hyper–rectangles Bδxs (xs).

In this section we propose a sampling–driven approach to compute an estimate W of the
DOA by estimating the largest level set of the LF W included inA∪L (for the continuous–
time system, included in Ac ∪ Lc). On such a set W, KL–stability is guaranteed and
therefore, W is an invariant subset and an approximation of the DOA of the origin. Note
that the computation of W does not involve the system dynamics, hence the same procedure
applies to a LF verified for a discrete–time dynamics or a continuous–time dynamics.

We propose computing an estimation of L∗ by a value L, via sampling. This method
assumes that the following necessary condition is satisfied:

∃L > 0 : L ⊆ {x ∈ Rn : W (x) ≤ L} ⊆ A ∪ L.
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S

W

W∗

∂(A ∪ L)

∂(A ∪ L)s

Figure 4.2: Illustration of instrumental sets for Algorithm 4.

The method firstly builds an over–approximation of the boundary ofA∪L, i.e., ∂(A∪L),
via hyper–rectangles and iterative refinements. Secondly, it builds an under–approximate of
the largest level set of W that does not exceed the boundary of A ∪ L. In Figure 4.2,
the set ∂(A ∪ L) is depicted with bold blue. The red dots represent the set of samples in
the ∆–sampling of ∂(A ∪ L), i.e., ∂(A ∪ L)s. The largest level set of W not exceeding
∂(A ∪ L), i.e., W∗ and the approximation W of W∗, as computed via Algorithm 4 have
black, respectively green boundary. In Algorithm 4, the inputs are the following. The vector
good, as computed via Algorithm 3, which contains the set of samples that satisfy (3.3). A
vector extrabound containing all points that do not satisfy (3.3) in Algorithm 3 at the end
of the multi–resolution process and do not belong to the set L. Formally, this includes all the
points wrong(i), for all i = 1 : k such that wrong(i).del ≤ δmin, wrong(i).spoint /∈ L,
and the points generated via a ∆–sampling ∂Ss of the set ∂S, where ∆ has values which
are small enough to obtain a fine sampling of the boundary of S. Notice (as in Figure 4.2)
that the hyper–rectangles around the points in ∂Ss are n− 1 dimensional hyper–rectangles,
because the hyper–plane on which the current sampling point lies is no longer considered.

In Algorithm 4, the steps 1–6 are concerned with computing the set of samples which,
together with their corresponding hyper–rectangles, over–approximate the set ∂(A∪L). In
steps 7–10, the estimation ofL∗ by a valueL is performed. For each sample xs ∈ ∂(A∪L)s,
the minimum level set of W intersecting Bδxs (xs) is W∗xs := {x ∈ Rn : W (x) ≤ L∗xs},
where:

L∗xs = min
x,c

c

s.t. x ∈ Bδxs (xs), (4.20)
W (x) = c.

However, to find L∗xs as in (4.20), an optimization problem has to be solved, which might
not be practical. For this reason we approximate L∗xs with a value Lxs , as in Remark 4.5.1.

Remark 4.5.1 If we set F (x) := W (x) then we can find, as in (3.17), via interval analysis,
the parameters axs and bxs such that

|W (x)−W (xs)| ≤ axs‖x− xs‖+ bxs (4.21)
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Algorithm 4 Sampling–driven estimation of a domain of attraction W.

Input: extrabound, good, W , A, L
Output: W

1: ∂(A ∪ L)s ← ∅,
2: for all i = 1 : length(extrabound) do
3: for all j = 1 : length(good) do
4: del← |extrabound(i).spoint− good(j).spoint|
5: if del ≤ extrabound(i).tau+ good(j).tau then
6: ∂(A ∪ L)s ← ∂(A ∪ L)s ∪ {extrabound(i).spoint}
7: for all xs ∈ ∂(A ∪ L)s do
8: Compute axs , bxs , s.t. |W (x)−W (xs)| ≤ axs‖x− xs‖+ bxs
9: L̄xs ←W (xs)− axs max(|δxs |)− bxs

10: L = minxs∈∂(A∪L)s Lxs
11: if L > 0 then
12: W := {x ∈ Rn : W (x) ≤ L}

for all x ∈ Bδxs (xs). For all x∗s ∈W∗xs , the inequality in (4.21) becomesW (xs)−W (x∗s) ≤
axs max(|δxs |) + bxs , which implies that W (x∗s) = L∗xs ≥W (xs)−axs max(|δxs |)− bxs .
Denote Lxs := W (xs)− axs max(|δxs |)− bxs . �

As in steps 11–12, if L > 0, the set W := {x ∈ Rn : W (x) ≤ L} is an invariant
subset of the DOA of the origin for the nonlinear system ((4.1) or (4.2)). If δmin and δxsb
are small enough, it is expected that L is an accurate approximation of L∗, as confirmed by
the following illustrative examples.

Remark 4.5.2 (Numerical complexity analysis) As in Algorithm 3 in Chapter 3, the main
scalability challenges in applying Algorithm 4 come from the number of selected samples.
In this sense, decentralized computation is again beneficial. To assess the computational
load of Algorithm 4, let us assume that the computational cost of steps 8–9 for one sampling
point is c ∈ R+. The number of samples on the boundary of the set A, which results from
steps 1–6, is ns. Also, assume that there exists a number p ∈ Z+ of parallel threads. Then,
the computational complexity of the for loop at steps 7–12 in Algorithm 4 is of the order
C = cdns/pe. If the number of threads is unlimited, i.e., p → ∞, then C = c. Assuming
that the sampling density on one dimension is constant and given by δ ∈ R+, and the length
in one dimension of an axis of the state space up to the constraint boundary is a constant l,
then, the number of samples ns is ns = 2n(n− 1)d l2δ e. �

4.6 Reflection on the sampling–driven verification framework
We have shown so far how to verify Lyapunov’s inequality for both discrete–time as well as
continuous–time systems, and a sampling–driven strategy to compute a DOA estimation for
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constrained nonlinear systems has been developed. In this section we reflect on the methods
developed so far in terms of tractability, the level of automation, advantages and drawbacks
and we put them in the context of the existing literature.

4.6.1 On automating the process of stability domains computation

Coming back to the discussion on the level of automatization of Algorithm 3 from Chapter 3,
when applied for verifying stability in a set S, it is necessary to mention the following (we
refer, for simplicity, only to the discrete–time systems case):

1. Any equilibrium which is non–zero can be translated to 0, which implies that also the
set S of constraints can be translated in 0, and therefore, 0 ∈ int (S).

2. Any candidate FSLF function V can be chosen as in (4.4), with an “arbitrary” function
η ∈ K∞.

3. The parameter ρ ∈ K can be chosen also arbitrarily such that ρ < id is satisfied.
However, in general we choose, for simplicity, ρ(y) = cy for all y ∈ R+, with a very
large c ∈ R(0,1), e.g., c = 0.99, to obtain a smaller step M for the FSLF.

4. Once a candidate FSLF V and a K–function ρ are fixed, to obtain F (x), which is the
property function to be verified, one needs to fixM as well. At this step we can follow
an iterative approach. M can start from 1, and increase up to a value Mmax ∈ Z≥1.
For each M , the property function FM (x) = V (GM (x)) − ρ(V (x)) is constructed
and a set AM is computed via Algorithm 3. The value of M which provides the
largest set AM , or the largest level set W of the corresponding LF, can be chosen, or
the bound on M from (Gielen and Lazar, 2015) can be used.

5. The set N1(0) is selected such that the hole of the annulus is covered by L. If the set
N1(0) is too large, then the sampling density should be reduced.

6. The computation of the constant axs , bxs and ε(xs) can be done automatically.

Among the points enumerated above, the values of δmin and M are critical for the
tractability of Algorithm 3 and Algorithm 4. In what concerns δmin, considering that the
increase in the number of samples is exponential with the system dimension, and the fact
that performing too many refinements might not increase significantly the size of the set A,
and implicitly, W, a trade–off has to be performed between the desired accuracy and the
acceptable computational load.

In what concerns M , it has been observed that a large value of M impacts strongly the
tractability of Algorithm 3. This is partly because of too many iterations of the map G over
intervals, but also because the interval analysis tools over–approximate the computed inter-
vals. Thus, a small value of Mmax is recommended. Additionally, choosing the candidate
V arbitrarily is not always wise, because some functions V might require a large M . In that
case it is recommended to learn a LF candidate via, e.g., the simulation based approach in
(Kapinski et al., 2014). Even if the function computed in this manner is not a true LF, it
might be a FSLF with a very small M . Also, an increase in the state space dimension, n,
impacts rapidly the applicability of the interval analysis tool for Algorithm 3.
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For Algorithm 4, the inputs good, W , A and L are by–products of Algorithm 3 from
Chapter 3. Once a desired sampling density is given for the set ∂S to obtain the set
extrabound, then Algorithm 4 is fully automatic.

The tractability of Algorithm 3 and Algorithm 4 is affected by the fact that we require
computing the constants axs and bxs , which embeds the difficulties mentioned above with
interval analysis, the constants M and δmin and the system dimension n. For this reason,
in Chapter 5 we propose an alternative randomized approach to computing FSLFs, which
avoids the requirement to compute axs and bxs and scales better with M .

4.6.2 Comparison with existing methods

Note that hyper–rectangles and multi–resolution together with interval analysis have been
used before for DOA computation, see, e.g., (Ratschan and She, 2010). Among the ap-
proach therein and the framework presented in this thesis, we distinguish the following
features:

• Algorithm 3, due to its generality, is applicable to the verification of any property
of the type F (x) < (≤)0, with x ∈ S. The approach in (Ratschan and She, 2010)
is applied for DOA computation. It is recognized, however, in (Ratschan and She,
2010), that the method therein may be applicable to other properties as well, such as,
e.g., computation of barrier certificates for safety verification (Prajna and Jadbabaie,
2004), or invariant generation (Sankaranarayanan et al., 2004).

• In what concerns stability analysis, it is known that most nonlinear stability analy-
sis problems are NP–hard. In fact, even for some linear systems, stability analysis
is NP–hard see, e.g., (Blondel and Tsitsiklis, 1997), the results on marginally stable
linear systems. This thesis treats the NP–hard problem of finding the DOA of nonlin-
ear systems in general. In comparison, the result in (Ratschan and She, 2010) treats
only continuous–time polynomial systems with polynomial LFs. In fact, there exist
GAS systems with polynomial vector field which do not admit polynomial LFs, see
(Ahmadi et al., 2011), in which case, the approach in (Ratschan and She, 2010) suf-
fers from conservatism. However, for polynomial systems which admit polynomial
LFs, the method in (Ratschan and She, 2010) is able to compute a DOA without the
computational load associated with a potentially large step M , as in this thesis.

• The choice of a candidate polynomial LF in (Ratschan and She, 2010) is still a user–
controlled heuristic process, while in this thesis we show that, at least for exponen-
tially stable systems, any candidate FSLF V defined as in (4.4) is a valid FSLF with
a specific step M as in (Gielen and Lazar, 2015), which, in turn, generates a true LF
automatically.

• The approach in (Ratschan and She, 2010) is provided for continuous–time systems
only, while in this thesis we treat both continuous–time, as well as discrete–time
systems.

The work in this thesis for stability domains computation is a fusion of the sampling–
driven Algorithm 3 and FSLFs. With respect to the work presented in (Kapinski et al., 2014)
we distinguish the following:
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• The approach in (Kapinski et al., 2014) restricts the candidate LFs to the class of
SOS polynomials. As mentioned above, there exist GAS systems with polynomial
vector field which do not admit polynomial LFs. Thus, when a candidate LF can
not be verified, there is no alternative presented therein to continue the search for a
true LF. In contrast, in our method we rely on FSLFs to compute LFs, in which case
the LF can incorporate nonlinearities which are inherent to the considered nonlinear
system. Thus, if a candidate FSLF is not a LF, we need to increaseM until the chosen
function is a certified FSLF, which in turn provides a true LF as in (4.6). This process
is not straightforward for continuous–time systems, though. In this case, any of the
methods in Section 4.4 can be used, however, without guarantees for success, due to
approximations in either time discretization of the original continuous–time system,
or the fact that the solution at time d, i.e., x(d), can not be analytically computed, but
only numerically.

• Simulations are used in (Kapinski et al., 2014) together with LP, to generate refined
candidate LFs. The algorithm therein requires also a falsifier to search for simulations
which do not satisfy Lyapunov’s inequality. This falsifier is a non–convex, global
optimizer. In our method no optimization is required to validate the end result of
Algorithm 3.

• To validate the results of the simulation–guided Lyapunov analysis techniques in
(Kapinski et al., 2014), SMT solvers are used. Instead, in our algorithms we use
interval analysis. Additionally, by the multi–resolution sampling technique in this
thesis, we are able to find a set A inside the set S, even when not all the points in the
set S satisfy the desired inequality, as discussed in Chapter 1, Figure 1.4. This is not
the case in (Kapinski et al., 2014). However, the approach in (Kapinski et al., 2014)
could be modified to follow a multi–resolution approach, as in this thesis.

4.7 Examples
This section presents examples for the proposed sampling–driven stability domains compu-
tation method on several benchmark nonlinear systems from the literature. For simplicity,
we used fmincon where local problems needed to be solved; under local Lipschitz con-
tinuity, global optimum can be attained, see (Bobiti and Lazar, 2014b). Other methods for
local verification, for example, randomized methods (as we will show in the next chapter),
can be used. The computations have been performed in Matlab on a Windows PC with
processor Intel Core i7–3770 CPU 3.40 GHz.

4.7.1 Discrete–time 2D continuous dynamics

This example illustrates the methodology developed so far for a 2D discrete–time system.
Consider the system provided in (Giesl, 2007):

x+ := G(x), (4.22)

where x ∈ S ⊂ R2 with S := {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1.3}, and

G(x) :=

[
1
2x1 + x2

1 − x2
2

− 1
2x2 + x2

1

]
.
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Figure 4.3: DOA for the origin of the 2D system (4.22) with hyper–rectangles.

We will try to find a LF for system (4.22) in the set S.
Select δmin = 0.02 and Mmax = 4. Choose a candidate function V (x) = xTPx with

P =

[
10 0
0 1

]
, which is two times differentiable, to satisfy Assumption 3.3.9. FixM = 4

as a starting value for M . Fix F (x) as in (4.9), with ρ = 0.999.
For step 1 in Algorithm 3 we choose As = {0}. We sample the set S by hyper–

rectangles such that initially Bδ(0) = S, where δ = [1 −1 1.3 −1.3]T . We obtain
M = 4 and the setA for which F (x) ≤ 0 is verified according to Algorithm 3 is the yellow
set illustrated in Figure 4.3. The white set around the origin is N2(0). The red hyper–
rectangles are the corresponding hyper–rectangles around sample points xs for which it
was verified via Algorithm 3 that F (x) > 0, as in Corollary 3.3.5 in Chapter 3.

Fix the neighborhood N1(0) = {x ∈ R2 : ‖x‖∞ ≤ 0.1}. We verify via fmincon,
in Matlab, that the quadratic LF VL found for the system linearized in 0 (via dlyap, in
Matlab) is also a LF for the nonlinear system in N1(0). The maximum level set of the
LF VL(x) = 1.3333xTx, of value 0.0133, which is inside N1(0), is an invariant set L.
N1(0) is illustrated with black boundary, L with red boundary. The LF, as in (4.6), is
W (x) =

∑3
i=0G

i(x)TPGi(x), and the set W illustrated with green boundary, computed
as in Algorithm 4, where L = 9.2933, is subset of the DOA of the origin.

With blue we have illustrated the points which satisfy neither (3.3) in Theorem 3.3.4, nor
(3.9) in Corollary 3.3.5 after multi–resolution sampling with δmin = 0.02. Convergence to
the maximum A can be achieved for δmin → 0. Notice in Figure 4.3 also the multi–
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Figure 4.4: Computational time to evaluate γ̄(max|δxs |, xs) at step 5 in Algorithm 3 of
Chapter 3 for a given sample point xs ∈ Ss for system (4.22).

resolution sampling of the set A. As expected, a more fine resolution is needed towards the
boundary of A, both towards the outer and the inner boundary.

Notice that the set W obtained with the sampling–guided method presented in this thesis
is larger than the DOA estimate obtained in (Giesl, 2007). A total of 1711 sample points
have been explored in this example. If we use hyper–cubes instead of hyper–rectangles, as
in (Bobiti and Lazar, 2016), we obtain a considerably larger number of sample points. With
hyper–rectangles we can explore less sample points, because of the freedom of choosing
any rectangle as a sampling unit, which we can maximize in such a manner that we obtain
no overlay of the yellow hyper–rectangles, in the construction of A, as opposed to the
unnecessary intersections for hyper–cubes, which appear due to imperfect fitting of hyper–
cubes in the constraint set S, which is a hyper–rectangle.

In this example, as well as all the subsequent examples, a linear increase of the com-
putational complexity of evaluating γ̄(max|δxs |, xs) at step 5 in Algorithm 3 of Chapter 3
for a given sample point xs ∈ Ss with the value of M has been observed. For instance, in
this example, the computational time variation is depicted in Figure 4.4. For M = 4, as
obtained above, the computational time of evaluating γ̄(max|δxs |, xs) is on average 0.16
seconds. Then, for Algorithm 4, the computational time of steps 8 and 9 is in average 0.23
seconds.

4.7.2 Discrete–time 2D piecewise continuous dynamics

To illustrate the method proposed in this chapter for verification of a piecewise continuous
nonlinear system, consider again Example 1 in Chapter 3. Let the search space be

S := {x ∈ R2 : ‖x‖∞ ≤ 1.5}.

Select δmin = 0.1 and Mmax = 3. Choose a candidate function V (x) = xTx and
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Figure 4.5: DOA of the origin for the piecewise continuous system.

construct F (x) as in (4.9). By applying Algorithm 3 to Example 1, we obtain the results
illustrated in Figure 4.5. A is the yellow set. With blue we have illustrated the points which
do not satisfy (3.3). The LF, found as in (4.6), is W (x) =

∑2
i=0G

i(x)TGi(x). The white
set around the origin is N2(0).

We linearize G in 0 by linearizing both dynamics G1 and G2 in 0. We obtain a switched

linear system, for which VL(x) = xTPLx with PL =

[
26668 0

0 55558

]
is a common LF.

We choose N1(0) := {x ∈ R2 : |x1| ≤ 0.35, |x2| ≤ 0.35}, and via fmincon, in Matlab,
we verify that the quadratic LF VL found for the system linearized in 0 is also a LF for the
nonlinear system in the neighborhood N1(0). The maximum level set of VL in N1(0) is
L = 3266.8, which gives the local invariant set L, illustrated with red.

The set W illustrated with green boundary is the level set of the LF W , computed ac-
cording to Algorithm 4, and it is subset of the DOA of the origin, with L = 2.3208. We
sampled ∂S with a distance between samples of value 0.01. Therefore, for a point xs on
the vertical boundary of ∂S, δxs = [0 0 0.01 −0.01]T , while for a point xs on the
horizontal boundary of ∂S, δxs = [0.01 −0.01 0 0]T . L provides an underestimation
of the true largest level set ofW , of value L∗ ≈ 2.805, depicted in Figure 4.5 with magenta,
which is still contained in A ∪ L. The relatively low quality of the estimation of the level
set, in this case, is due to the large sampling density.

In this example, in step 1 of Algorithm 3 we choose As = {[0 0]T }, which is on
the switching boundary. The basic sampling unit is a hyper–cube. Note, however, that
ε([0 0]T ) = 0. Moreover, by multi–resolution, the samples chosen by the algorithm are
not on the switching boundary. Therefore, ε(xs) = 0 for all xs ∈ Ss. In comparison to the
results obtained in (Luk, 2015, Example 4), the DOA computed here is larger in set S1, but
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smaller in the set S2.
The computational time of evaluating γ̄(max|δxs |, xs) is on average 0.09 seconds. The

computational time of running Algorithm 3 with the parameters given in this example is
15.72 seconds. Then, for Algorithm 4, the computational time of steps 8 and 9 is in average
0.08 seconds, with a total time for Algorithm 4 of 54 seconds.

4.7.3 Continuous–time 3D continuous dynamics

The following example illustrates the developed methodology on a 3D system, both in
discrete–time, and in continuous–time. The system, see (Björnsson et al., 2015), is defined
by:

ẋ := Gc(x) =

 x1(x2
1 + x2

2 − 1)− x2(x2
3 + 1)

x2(x2
1 + x2

2 − 1) + x1(x2
3 + 1)

10x3(x2
3 − 1)

 , (4.23)

which will be discretized via the Euler method, i.e., G(x) = x + hGc(x), where h = 0.1
is the discretization step. Let the search space be S := {x ∈ R3 : |x1| ≤ 0.9, |x2| ≤
0.9, |x3| ≤ 0.98}.

Consider δmin = 0.1 and Mmax = 2. Choose a candidate FSLF, V (x) = xTPx with

P =

 1
0.92 0 0
0 1

0.92 0
0 0 1

0.982

. The choice is motivated by the fact that the largest possible

ellipsoid that can be contained in the given box S is a level set of V . Take M = 2 and
construct F (x) as in (4.9).

Hyper–cubes are used for sampling, and, by applying Algorithm 3, we obtain the fol-
lowing: M = 2 and the points in the box S which do not satisfy (3.3) in Theorem 3.3.4 are
illustrated with blue in Figure 4.6.

The computational time for step 5 of Algorithm 3 for a given xs ∈ Ss, is of around 0.26
seconds, and for steps 8 and 9 of Algorithm 4, 0.12 seconds.

Fix the neighborhood N1(0) = {x ∈ R3 : |x1| ≤ 0.6, |x2| ≤ 0.6, |x3| ≤ 0.9}. Again,
we check via fmincon, in Matlab, that the quadratic LF

VL(x) = xT

 5.5556 0 0
0 5.5556 0
0 0 1

x
found for the system linearized in 0 (via dlyap, in Matlab) is also a LF for the nonlinear
system in N1(0). The maximum level set of the LF VL, of value 0.81, which is inside
N1(0), is an invariant set L, illustrated in Figure 4.6 by the red ellipsoid.

The LF found with this procedure is W (x) =
∑1
i=0G

i(x)TPGi(x). The set W, com-
puted according to Algorithm 4 and illustrated with green, is the largest estimated level set
of W , with L = 1.8459, which is still contained in A ∪ L. W is subset of the DOA of the
origin.

Moreover, via the approach in Section 4.4.1, we obtain that W is also a subset of the
DOA of the original continuous–time system, i.e., Wc = W.

It is noticeable that the set W contains also regions of the state space which are not found
in the DOA computed in (Björnsson et al., 2015) for the original continuous–time system,
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Figure 4.6: DOA for the origin of the 3D system.

see, e.g., the black trajectory illustrated in Figure 4.6, having as initial state one of the points
which was not captured in (Björnsson et al., 2015), but which belongs to W.

4.7.4 Powertrain Control System

This example illustrates the potential of the methodology developed in this chapter for com-
puting the DOA of the origin for a system inspired by a real–life application. Consider a
3D simplified version of a Powertrain Control system, inspired by Example 5 of (Kapinski
et al., 2014):

ẋ := Gc(x) =


c1

(
2u1

√
p
c11
−
(
p
c11

)2
)
−

−c1(c3 + c4c2p+ c5c2p
2 + c6c

2
2p)

4
(

1
c13(1+i+c14(r−c16)) − r

)
c15(r − c16)

 , (4.24)

where x = [p r i]T is the state vector. Here p is the pressure manifold, r is the air–to–fuel
ratio and i is a PI controller, designed to maintain the air–to–fuel ratio within 10% of the
optimal value. The corresponding parameters are: c1 = 0.41328, c2 = 200, c3 = −0.366,
c4 = 0.08979, c5 = −0.0337, c6 = 0.0001, u1 = 16, c11 = 1, c13 = 0.9, c14 = 0.4,
c15 = 0.4, c16 = 1. The aim is to compute a set W where the control system maintains the
performance specification of keeping the air–to–fuel ratio within 10% of the optimal value.
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Figure 4.7: DOA for the origin of the Powertrain Control System.

The continuous–time system is again discretized via the Euler method, i.e., G(x) = x+
hGc(x), where h = 0.01 is the discretization step. The equilibrium x0 = [0.7975 1 0.1111]T

is translated in 0, and we study the KL–stability of 0, and its corresponding DOA.
Let the search space be S := {x ∈ R3 : ‖x‖∞ ≤ 0.1}.Choose δmin = 0.01,Mmax = 3

and a candidate FSLF given by V (x) = xTPx with P =

 1 0 0
0 4 2
0 2 14

, and M = 3.

Then, by applying Algorithm 3 with F (x) computed as in (4.9), we obtain the follow-
ing: M = 3, A is the yellow set illustrated in Figure 4.7, excluding the hyper–rectangles
Bδxs (xs), where xs are the blue points in the box S which do not satisfy (3.3) in Theo-
rem 3.3.4. fmincon fails to provide a certification for a local LF VL. Thus we have no
invariant set L. Therefore, Theorem 4.3.1 is not used here.

However, we certify V (G3(x)) − ρ(V (x)) < 0 with ρ = 0.999id by optimization in
each of the sets Bδxs (xs) via fmincon. Because set S is the union of all the sets Bδxs (xs)
certified via fmincon and the set A certified via Theorem 3.3.4, then

V (G3(x))− ρ(V (x)) < 0

holds for all x ∈ S.
The LF we find isW (x) =

∑2
i=0G

i(x)TPGi(x). The set W computed via Algorithm 4
is plotted in green color. Here we obtain L = 0.0209, computed with max(|δxs |) = 0.02
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for the points on the boundary of S. W is subset of the DOA of the origin for the discretized
system.

We obtain a computational time for evaluating γ̄(max|δxs |, xs) at step 5 in Algorithm 3
for a given sample point xs ∈ Ss, of around 0.29 seconds, and for steps 8 and 9 of Algo-
rithm 4, an average of 0.33 seconds.

Moreover, we obtain that W is also subset of the DOA of the original continuous–time
system, because Ac = A, which means also that the new level set of W is the same as
computed previously for the discretized system, i.e., L = 0.0209. This fact guarantees that,
for any initial condition starting in W, ‖r(t)−x0(2)‖∞ ≤ 0.1, for all t ∈ R+, which means
that, indeed, for any initial condition starting in W, air–to–fuel ratio is maintained within
10% of the optimal value.

4.7.5 Continuous–time systems with polynomial solution approximation

Consider the continuous–time system provided in (Giesl and Hafstein, 2015):

ẋ(t) := G(x(t)) =

[
x2(t)

−x1(t) + 1
3x1(t)3 − x2(t)

]
. (4.25)

We will try to find a LF and a corresponding DOA of the origin for (4.25), via FTLFs and
polynomial approximation of the dynamics, as in Section 4.4.2. Let the search space be

S := {x ∈ R2 : ‖x‖∞ ≤ 1.5}.

We construct an analytical polynomial f(t, x, xs) of order 2, which is identical for every
xs ∈ Ss by selecting a pool of 100 samples uniformly distributed in the set S. Simulations
are performed in a time interval [0, 3] starting from each of the 100 samples. The polynomial
f(t, x, xs) is computed via the function polyfitn in Matlab. The estimated parameters
are saved in the following matrices:

C =



0.0073 −0.0104
−0.4264 0.0139
−0.0153 −0.4134
−0.0219 0.0313
−0.0055 −0.0021
−0.0072 −0.0029
1.0657 −0.3834
−0.0031 −0.0013
0.3913 0.6770
0.0108 −0.0151


, T1 =



2 0 0
1 1 0
1 0 1
1 0 0
0 2 0
0 1 1
0 1 0
0 0 2
0 0 1
0 0 0


,

where T = [ T1 T1 ]. Select a candidate FTLF V (x) = xTx and find d = 3. A LFW (x)
is therefore constructed as in (4.19), with parameters indicated in the matrices C and T .

Let us fix a neighborhood N1(0) = {x ∈ R2 : ‖x‖ ≤ 0.3}. It can be checked via
fmincon, in Matlab, that the quadratic LF VL found for the system linearized in 0 (via
dlyap, in Matlab) is also a LF for the nonlinear system in the neighborhood N1(0). The
maximum level set of the LF VL, which is inside N1(0), is an invariant set L. By applying
Algorithm 3 with F (x) defined as in (4.15), for the LF candidate computed as in (4.19),
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Chapter 4. Deterministic sampling–driven computation of stability domains

Figure 4.8: DOA for the origin of system (2.22).

we obtain the following: A is the yellow set illustrated in Figure 4.8, L is illustrated with
red boundary. With blue we have illustrated the points which do not satisfy (3.3) in Theo-
rem 3.3.4 after multi–resolution sampling from δmax = 0.5 to δmin = 0.05.

The LF found with this procedure is as in (4.19) and the set W illustrated with green
boundary, i.e., the largest level set of W (of value 1.5) which is still contained in A ∪ L,
is a subset of the DOA of the origin, according to Proposition 4.4.1. Notice in Figure 4.8
the multi–resolution sampling of the set A. The boundary of A requires a finer resolution.
Convergence to the maximum set A can be achieved if δmin → 0. Figure 4.8 shows also a
trajectory starting from the boundary of W converging to 0, while the trajectory starting in
a blue point exits and never returns to S.

4.8 Conclusions
The sampling–driven strategy developed in Algorithm 3 of Chapter 3 can be adopted for
constructing DOAs for nonlinear systems. This is particularly beneficial when difficulties
with optimization–based stability verification occur. In this chapter we have illustrated this
adaptation for both discrete– and continuous–time systems. Particularly, we have introduced
a result which offers a solution to the problem that the LF is zero at the origin. This fact
does not allow verification of the inequality F (x) < (≤)0 at the origin via the inequality
F (xs) < (≤) − γ(max |δxs |, xs), which needs to be verified for each sample point xs in
Algorithm 3 of Chapter 3.

For discrete–time systems we use a converse result for constructing a LF from a FSLF.
For continuous–time systems we have proposed two different alternatives. A first possibil-
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ity is to compute a LF for the discretized system and then verify its validity for the original
continuous–time system via the sampling–driven Algorithm 3. Alternatively, we can con-
struct approximations of a FTLF via polynomial approximations of the continuous–time
dynamics. Then again, from the converse theorem, this FTLF can be exploited to compute
a LF, which is verified via Algorithm 3.

A deterministic verification for a LF provides the advantage of a rigorous certificate.
However, this comes at a price of conservatism, through the bounds axs and bxs . Besides
conservatism, these bounds also reduce significantly the scalability of this deterministic
certificate. In the following chapter, a non–deterministic alternative is provided.
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Chapter 5

On randomized stability analysis for large
scale nonlinear systems

This chapter presents probabilistic strategies to compute DOAs, as an alternative method
to the deterministic methods discussed so far based on optimization, in Chapter 2, and
sampling–driven, in Chapter 4, to open up the applicability of sampling–driven DOA com-
putation for large–scale nonlinear systems. Based on randomized methods, we verify Lya-
punov’s inequality at a number of sampling points randomly generated and provide a cer-
tificate in terms of reliability, depending on the ratio between the number of points where
the property was satisfied and the total number of points tested. However, when the reliabil-
ity is not maximum, this certificate does not have a practical value and interpretation. For
this reason, by exploiting level sets of candidate LFs, we show how to actually construct a
set W where Lyapunov’s inequality is satisfied, and which is a subset of the DOA with a
given probability. Then, a probabilistic method is provided to iteratively compute a candi-
date LF based on FSLFs. The methodology is applicable to systems of increasingly large
dimensions, as it will be illustrated through examples.

5.1 Introduction
In the theory of systems and control, probabilistic approaches in the form of randomized
methods have been used primarily in analyzing robustness, where the uncertainty is a non–
deterministic variable, or on systems with uncertain parameters. A vast literature on the
matter illustrates the versatility of randomized methods for such topics, see, e.g., the wide
exposition in (Tempo et al., 2012) and the survey in (Calafiore et al., 2007) and the refer-
ences therein. Due to the inherent uncertainty in such systems, randomized methods are
accepted.

However, it is less common to treat an originally deterministic problem via a probabilis-
tic approach. When evaluating the question “Is resorting to fate wise?” in (Campi, 2010),
and the related discussion therein with respect to possible problems which justify the use
of probabilistic methods, we observe the following. It is understood that randomized meth-
ods are suitable to increase solvability when any deterministic algorithm fails. Failure or
computational intractability of deterministic methods which provide an absolute certificate
for stability (a yes or a no) of nonlinear large scale systems is expected, as shown in the
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previous chapters. In that case, the requirement for an absolute certificate of stability can be
deliberately relaxed to a probabilistic certificate, for the sake of obtaining at least a partial
certificate. However, in real–life systems, absolute certificates can rarely be obtained and
for this reason, in general, bounds are set on the probability of failure, or on a minimum
satisfactory level.

For the problem of stability domains computation for constrained nonlinear systems,
a deterministic verification provides the advantage of a rigorous certificate. For systems
of small dimensions with safety priorities, the deterministic approach is a suitable choice.
However, this comes at a price of conservatism, through the bounds axs and bxs exploited in
inequality (3.3) in Chapter 3. Besides conservatism, these bounds also reduce the scalability
of the deterministic certificate in Chapter 3. Scalability is affected also by the refinement
of hyper–rectangles. Alternatively, in (Najafi et al., 2016) it was shown that sampling can
be used to obtain fast computation of DOA. In (Najafi et al., 2016), even though empiri-
cally it was concluded that sampling has potential for scalable and high performance DOA
computation, no certificate was provided, even in a probabilistic sense.

In this chapter, we turn to the results obtained originally for probabilistic robustness
analysis reported in (Tempo et al., 2012), to adapt them for verification of properties of
the type F (x) ≤ 0 for all x in a set S by verifying F (x) ≤ 0 only for N samples in a
discrete subset Ss of S, and particularly for DOA computation with probabilistic certificates.
Explicit bounds on the sample size N can be computed as in (Tempo et al., 1997) and they
depend solely on pre–specified accuracy and confidence requirements.

The contribution of this chapter is in exploiting the existing results in randomized meth-
ods to computing DOAs for nonlinear systems. The methods developed in this chapter are
constructive and they exploit FSLFs to compute a candidate LF. Level sets are used to it-
eratively prune out samples which would eventually end up in reducing the reliability of
the resulting DOA. An iterative algorithm selects a FSLF which could generate the largest
DOA in a probabilistic sense.

The resulting mechanism generates promising results for constrained nonlinear systems
of large dimensions, as examples illustrate. The pitfalls and points of precaution in these
methods are also exposed through examples.

5.2 Preliminaries on randomized certification of property functions

To perform certification of F (x) ≤ 0 for F (x) : Rn → R all x ∈ S, in a probabilistic
manner, we follow the problem setting in (Tempo et al., 2012). Let us recall from classic
probability theory that a collection of observations {x(1), . . . , x(N)} with N ∈ Z+ of a
random vector x is independent and identically distributed (i.i.d.) if each sample is drawn
from the same probability distribution as the others, and all are mutually independent, i.e.,
the probability of observing two samples x(1) and x(2) is the probability of observing x(1)

multiplied by the probability to observe x(2). In this chapter we use a uniform distribution
for the selection of samples. Other distributions may be used, such as the beta distribution,
as in, e.g., (Calafiore, 2010). However, the approach therein is only applicable for convex
functions F (x) , e.g., when estimating the level set of a LF which is convex, thus, not a LF
constructed via FSLFs.
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Define the probability of performance, or reliability, as:

R = Pr {F (x) ≤ 0} . (5.1)

Note that R is a deterministic value and if R = 1, then F (x) ≤ 0 holds for all x ∈ S.
As explained in (Tempo et al., 2012, page 93), the exact evaluation of this integral requires
computation of the solution of multiple integrals, which is difficult to achieve. Therefore,
R is typically estimated by the empirical reliability R̂N , as follows.

Problem 5.2.1 Assume R is the unknown reliability. Fix a desired accuracy ε ∈ R(0,1) and
a confidence δ ∈ R(0,1). Compute an estimate of R, i.e., R̂N , such that

Pr
{
|R− R̂N | ≤ ε

}
≥ 1− δ.

Problem 5.2.1 is solved via a Monte Carlo experiment, with an experiment size N of at
least the size of the additive Chernoff bound (Chernoff, 1952):

N ≥ Nch :=

⌈
log 2

δ

2ε2

⌉
. (5.2)

The Monte Carlo experiment, see (Tempo et al., 2012, Chapter 7.1) for details, com-
prises of the following steps:

1. Draw N ∈ Z+ i.i.d. samples of the random vector x with uniform distribution within
the set S: x(1), . . . , x(N). Evaluate F (x(1)), . . . , F (x(N)).

2. Construct the empirical reliability

R̂N =
1

N

N∑
i=1

I(F (x(i))),

where I : R→ {0, 1} denotes the indicator function:

I(F (x(i))) =

{
1 if F (x(i)) < 0

0 otherwise,

for all i ∈ Z[1,N ]. Notice that R̂N =
Ngood
N , where Ngood is the number of samples

from the N samples drawn in 1., which did satisfy F (x(i)) ≤ 0, and R̂N is a random
variable.

Remark 5.2.2 If the set S on which we draw samples is a hyper–rectangle describing the
constraints on the system states, we can drawN i.i.d. samples of x in the set S , via the rand
function in Matlab, as follows: x(j)

i = ai + (bi − ai) ∗ rand, where ai and bi are upper
and lower bounds for the interval on which xi may take values on the i–th axis, intervals
which can be retrieved from the set S, with i ∈ Z[1,n] and j ∈ Z[1,N ]. This method is a
valid strategy to obtain uniformly distributed random samples. However, if the considered
application requires high accuracy, we refer the reader to (Tempo et al., 2012, Chapter 14)
for alternative Random Number Generators. �
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This randomized sampling–driven verification method does not suffer from the “curse
of dimensionality” as the deterministic counterpart, which means that the method is more
scalable with the system dimension, see the examples in Section 5.6. Nevertheless, for high
accuracy one might need to draw a very large number of samples, as shown in the next
example.

Example 2 Consider again the continuous–time system example in Chapter 4.7.5. Suppose
we want to provide a probabilistic certificate for the satisfaction of Ẇ (x) < 0 in S \ {0},
with the function W computed in Chapter 4.7.5, by performing a Monte Carlo experiment
as mentioned previously. Let us first compute the size N of the Monte Carlo experiment
such that |R − R̂N | ≤ ε holds with probability at least 1 − δ, where the accuracy is fixed
to ε = 0.5% and the confidence is δ = 1.5%, which gives a probability 1 − δ = 98.5%.
According to the additive Chernoff bound,Nch = 42499. After performing the Monte Carlo
experiment with N = 42499, we obtain Ngood = N = 42432, which gives R̂N = 0.9984.
Thus, by an experiment with N = 42499 samples uniformly distributed in S \ {0} we have
proven with an accuracy of 0.5% that 99.84% of all the points in the set S \ {0} satisfy
the Lyapunov inequality Ẇ (x) < 0 with a probability of 98.5%. Notice that, if we repeat
the Monte Carlo experiment, this time on the set N1(0) (the neighborhood of the origin as
defined in Chapter 4.7.5), then we obtain R̂N = 1, with the corresponding accuracy and
probability. �

For verifying stability with a given LF W , if we want to find a subset W of the set S
where the inequality W (G(x))−W (x) ≤ 0 holds (R̂N = 1), and with significantly lower
sample size, then we might need to resort to other methods, with lower bounds on the num-
ber of samples, as shown in the next subsection. Moreover, to design constructive methods
of obtaining DOA estimations W ⊆ S , the inherent properties of a stability verification
problem have to be exploited.

In the following section we will show that the level set of the candidate LF can be used to
shape the set W. The foundation for this result lays in the results in (Tempo et al., 1997) and
(Calafiore et al., 2007, Algorithm 2) on randomized worst–case performance evaluation.

As defined in (Calafiore et al., 2007), the problem of worst–case performance evalua-
tion is the following. Let p∗, δ ∈ R(0,1) be assigned probability levels. The randomized
algorithm should estimate a performance level γN such that

Pr{Pr{F (x) ≤ γN} ≥ p∗} ≥ 1− δ, (5.3)

for all x ∈ S. This means that F (x) ≤ γN with a probability at least p∗, and this event has a
probability of occurence of at least 1− δ. The value of γN can be estimated by maximizing
F (x(i)) over all the samples x(i) with i ∈ Z[1,N ]. The corresponding lower bound on N is
now

N ≥ Nwc :=

⌈
ln 1
δ

ln 1
p∗

⌉
, (5.4)

which gives considerably less sample complexity than the Chernoff bound. For instance, if
we write p∗ = 1− ε, with ε = δ = 0.005 we obtain a bound of 1058 with (5.4) and 119830
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DOA with a low number of samples

with (5.2). Also, with ε = δ = 0.001, the sample bound is 6905 with (5.4) and 3800500
with (5.2).

In the next section we will show how this setting, formulated in general for any function
F (x), which is not particularly related to a dynamical system, can be instrumentally used
in a framework for DOA estimation with probabilistic guarantees.

5.3 Constructive randomized algorithm for verifying Lyapunov’s in-
equality and finding DOA with a low number of samples

Consider again, as in the previous chapter, the autonomous nonlinear system in discrete–
time

xk+1 = G(xk), k ∈ Z+, (5.5)

and in continuous–time

ẋ(t) = Gc(x(t)), t ∈ R+, (5.6)

where xk ∈ S (resp. x(t) ∈ S) is the state, S is a proper set denoting a subset of the set of
constraints and G : Rn → Rn, Gc : Rn → Rn are nonlinear functions.

Assume a LF candidate, W : Rn → R+, is given. For the discrete–time system (5.5)
we aim to verify

F (x) = W (G(x))− ρ(W (x)) ≤ 0, ∀x ∈ S, (5.7)

where ρ < id is a K function, while for the continuous–time system (5.6) we verify

F (x) = Ẇ (x) < 0, ∀x ∈ S \ {0}. (5.8)

For simplicity of exposition, we develop the methods in this chapter for discrete–time
systems. For continuous–time systems we recommend a similar approach. In this section,
we aim at solving the problem of randomized stability analysis and estimation of a DOA,
i.e.:

Problem 5.3.1 Fix a desired accuracy p∗ ∈ R(0,1) and a confidence δ ∈ R(0,1). Construct
a subset W of S, such that for x ∈W:

Pr{Pr{F (x) ≤ 0} ≥ p∗} ≥ 1− δ, (5.9)

where F (x) is given by (5.7). �

The aim of Problem 5.3.1 is to obtain the set W as a candidate invariant set and subset of
the DOA of the origin. Notice that Problem 5.3.1 is similar to Problem 3.3.3 in Chapter 3,
for the case when F (x) is (5.7). However, in Problem 5.3.1, we aim at constructing a set W
which is a subset of the DOA with given probability levels, while Problem 3.3.3 requires an
absolute guarantee that W is a subset of the DOA.

We develop a solution to Problem 5.3.1 via the iterative steps in Algorithm 5. In there,
a high accuracy p∗ ∈ R(0,1) and a small confidence constant δ ∈ R(0,1), are given. The
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sample size N is computed according to the bound in (5.4), to ensure probabilistic guaran-
tees. Other inputs to Algorithm 5 are the candidate LF W , the system dynamics, i.e., G,
or Gc, for discrete–time or continuous–time systems respectively. The set S is given, for
simplicity, as a polytope:

S := {x ∈ Rn : Hx ≤ K},
with H ∈ Rm×n and K ∈ Rm, where m ∈ Z≥n+1. Also, µ and τ are defined as very
small constants, of which µ is used to select points on the boundary of the set S, and τ is
used to reduce slightly the current level set of the LF, i.e., c. This is necessary because

Algorithm 5 Randomized estimation of the set W for Problem 5.3.1.

Input: p∗ ∈ R(0,1), δ ∈ R(0,1), W , G (or Gc), S := {x ∈ Rn : Hx ≤ K}, µ, τ ∈ R+.
Output: W

1: S0 ← S, iter ← 1, verif ← 0, N ← Nwc ← ln 1
δ

ln 1
p∗

2: while verif == 0 do
3: k ← 0, U ← ∅, J ← ∅
4: Select N uniformly distributed samples in S0: Ss0 := {x(1), . . . , x(N)} ⊂ S0

5: for all i = 1 : N do
6: if F (x) > 0 then
7: k ← k + 1

8: U ← U ∪ {x(i)}
9: else

10: J ← J ∪ {x(i)}
11: if iter == 1 then
12: P ← {x ∈ J : min(|Hx−K|) ≤ µ}
13: iter ← 0

14: else
15: P ← ∅
16: if k == 0 then
17: verif ← 1

18: if verif == 0 then
19: c← minx∈U∪P W (x)

20: c← c− τ
21: S0 := {x ∈ S : W (x) ≤ c}
22: W← S0

the level set computed according to step 19, is possibly evaluated in a point x ∈ U , i.e.,
a point which does not satisfy F (x) ≤ 0. After the selection of N samples within the set
S0, we store these samples x(i) for all i ∈ Z[1,N ] in two sets, namely U , if F (x(i)) > 0

and J if F (x(i)) ≤ 0, see steps 4–10. Additionally, at the first iteration, we collect in a
set P samples from J which lay on the boundary of the set S , according to steps 11–15 in
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S

P UJ \ P
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S0
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S0 → W

iteration 1 iteration 2 iteration 3

new S0

Figure 5.1: Illustration of the construction of the sets U , J , P , S0, W for an example where
W is computed in 3 iterations.

Algorithm 5. Here we use the constant µ to define a vicinity around ∂S from where we
select samples near the boundary of S. Other methods for selecting points xs on, or near
the boundary of S may be used as well to obtain a set P at step 12. At step 19 we compute
the smallest level set which passes through the points in U ∪ P . The necessity for this step
stems from the same principles as exposed earlier, in Chapter 4.5. A candidate DOA, i.e.,
the set S0, is computed at each iteration as in step 21. At the last iteration, when all the
N sample points in the set Ss0 belong to the set J , then, S0 is the candidate set W which
solves Problem 5.3.1.

In Figure 5.1 we illustrate the computation of the sets U , J , P , S0, W for an example
where W is computed in three iterations. Notice, in one iteration, the similarity of the con-
struction of the candidate DOA S0 with the construction of the DOA with the deterministic
approach in Chapter 4, Figure 4.2. Then, a new iteration starts, with other N samples in the
new set S0. If all these samples satisfy the property F (x) ≤ 0, then, the currently available
set S0 provides a solution to Problem 5.3.1 and the iterations stop. Otherwise the process is
repeated by decreasing the level set of the candidate LF W until we find a set S0 for which
all the N samples selected in Ss0 satisfy Lyapunov’s inequality.

Remark 5.3.2 Given the fact that Problem 5.3.1 is the probabilistic equivalent of Prob-
lem 3.3.3 in Chapter 3, there exist similarities also between Algorithm 5 in this chapter and
Algorithm 3 in Chapter 3. More exactly, Algorithm 5 is the probabilistic counterpart of
Algorithm 3, together with Algorithm 4 in Chapter 4. Similarly to Algorithm 3, in Algo-
rithm 5, for each sample in Ss0, the value of F is evaluated in the current sampling point and
the available samples are stored in two sets, i.e., one set of samples which do satisfy Lya-
punov’s inequality, and another set, with points which do not satisfy Lyapunov’s inequality.
Thus, steps 5–10 of Algorithm 5 are similar to steps 6–17 in Algorithm 3. In Algorithm 3,
however, the refinement is performed with respect to the current hyper–rectangle, while in
Algorithm 5, the refinement is performed with respect to the level sets of the candidate LF.
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Thus, steps 11–21 of Algorithm 5 resemble Algorithm 4, where the purpose of the level set
minimization over the set ∂(A ∪ L) at step 10 is to compute the true DOA estimation, i.e.,
W. In Algorithm 5, a similar minimization is performed to compute a new candidate set S0,
which has to be tested again for satisfaction of Lyapunov’s inequality, until (5.9) holds. This
was not necessary in Algorithm 4, because therein, the satisfaction of Lyapunov’s inequality
in the set W is certain, due to the deterministic certificate obtained in Algorithm 3. �

Remark 5.3.3 Recall, from Example 2 in Section 5.2, that verifying a property F (x) ≤ 0

with a high confidence and a good accuracy of the reliability in (5.1), as in Problem 5.2.1,
requires a very large number of samples given by the Chernoff bound in (5.2). In Algo-
rithm 5 we avoid the costly computation of a reliability by iteratively refining a set S0 until
it becomes highly probable that F (x) ≤ 0 for all x ∈ S0. This problem can thus be fit in the
context of a worst–case performance evaluation problem, as in (5.3), rather than the prob-
lem of verifying a property F (x) ≤ 0 with high reliability. Indeed, when all the N samples
in the set S0 give an F (x) ≤ 0, then we have obtained a bound γN on F (x) which satisfies
γN ≤ 0, and therefore (5.3) holds, which in turn implies that (5.9) holds for W = S0. �

As described above, the same procedure can be used for certifying LFs for discrete–time
systems as well as continuous time systems. Algorithm 5 can be applied for a given LF W .
Now we need to answer the question of how to find a LF. A possible answer is provided via
FSLFs, in the next section.

5.4 Finding a Lyapunov function candidate
If a LF W is not known, and we want to also find the LF using a randomized approach, then
we can follow the steps we develop in Algorithm 6. The approach in Algorithm 6 relies on
finding an M–step LF V and computing a LF W using (4.6), i.e.:

W (x) :=

M−1∑
i=0

V (Gi(x)).

An arbitrary candidate FSLF V is fixed as in (4.4), i.e., V (x) := η(‖x‖) with η ∈ K∞.
The FSLF V , together with a number of samples N (as large as possible), the discrete–time
dynamics G, a polytopic set of constraints S, a maximum desirable step Mmax and a set
Bω(0) are given as inputs to Algorithm 6.

The set Bω(0) with a ω ∈ R+ is a minimum set which we want to cover with a potential
LF, i.e., a minimum admissible region of convergence. This set is required to force the
candidate LF to be a LF over at least a small set which contains the origin in its interior.
The outputs of Algorithm 6 are the step M for the FSLF and the candidate LF W .

Algorithm 6 selects a set Ss of N samples in S. Then, the algorithm iterates over all the
values ofM from 1 untilMmax and, for each value ofM , a reliabilityR(M) is computed at
step 13 as the proportion from all the points N of sample points x(i) in Ss which do satisfy
the inequality F (x(i)) = V (GM (x(i)))− V (x(i)) ≤ 0, which were counted at step 12.

From all values of M from 1 to Mmax, select the candidate with the largest reliability,
as in step 15. Note that, for the values of M for which there exist sample points x(i) ∈
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Ss ∩ Bω(0) for which the inequality F (x) ≤ 0 does not hold, the reliability R(M) will be
0, and thus, they will not be selected as suitable stepsM for computing the LF candidateW ,
see steps 8–10 in Algorithm 6. The LF candidate W , computed in step 16, can be used for

Algorithm 6 Randomized computation of a LF candidate.

Input: N , V , G, S := {x ∈ Rn : Hx ≤ K}, Bω(0), Mmax.
Output: M , W

1: M ← 1

2: Select N uniformly distributed samples in S: Ss := {x(1), . . . , x(N)} ⊂ S
3: while M ≤Mmax do
4: k ← 0

5: for all i = 1 : N do
6: F (x(i))← V (GM (x(i)))− V (x(i))

7: if F (x(i)) > 0 then
8: if x(i) ∈ Bω(0) then
9: k ← 0

10: Break the current for loop

11: else
12: k ← k + 1

13: R(M)← k
N

14: M ←M + 1

15: M ← argmaxM̃∈Z[1,Mmax]
{R(M̃)}

16: W (x) :=
∑M−1
i=0 V (Gi(x))

the verification program in Algorithm 5. However, from Algorithm 6 we obtain a candidate
LF, which can be falsified by Algorithm 5, or which may provide a very small DOA. For
this reason, in the next section we propose a merging of Algorithm 5 and Algorithm 6 to
obtain from the start a LF and a DOA with probabilistic guarantees.

5.5 Randomized DOA estimation
The algorithms in Subsection 5.3 and Subsection 5.4 can be combined to simultaneously
construct LF and maximize DOAs for nonlinear systems on a compact (polytopic) set S, as
formalized in the following problem:

Problem 5.5.1 Fix a desired accuracy p∗ ∈ R(0,1) and a confidence δ ∈ R(0,1). Construct
a candidate LF W and a candidate subset W ⊆ S of the DOA of the origin for system (5.5),
such that for x ∈W:

Pr{Pr{x ∈ DOA(0) ∩W, F (x) ≤ 0, G(x) ∈W} ≥ p∗} ≥ 1− δ, (5.10)

where F (x) is defined as in (5.7). In (5.10) we express the fact that, with the given proba-
bility bounds, the function W is a LF and W is an invariant subset of the DOA of the origin
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Algorithm 7 Randomized computation of a LF.

Input: p∗ ∈ R(0,1), δ ∈ R(0,1), V , G, S := {x ∈ Rn : Hx ≤ K}, Bω(0), Mmax,
µ, τ ∈ R+, f .

Output: M , W , W

1: N ← Nwc ← ln 1
δ

ln 1
p∗

, L← f1Mmax
, R← 0Mmax

, verif ← 0, M ← 1

2: Select N uniformly distributed samples in S: Ss := {x(1), . . . , x(N)} ⊂ S
3: while M ≤Mmax do
4: k ← 0, q ← 0, U ← ∅, J ← ∅, WM (x) :=

∑M−1
j=1 V (Gj(x))

5: for all i = 1 : N do
6: F (x(i))←WM (G(x(i)))−WM (x(i))

7: if F (x(i)) > 0 then
8: if x(i) ∈ Bω(0) then
9: k ← 0

10: Break the current for loop

11: L(M)← min{L(M),WM (x(i))}
12: else
13: k ← k + 1, J ← J ∪ {x(i)}
14: if min(|Hx(i) −K|) ≤ µ then
15: L(M)← min{L(M),WM (x(i))}
16: L(M)← L(M)− τ
17: for all x(j) ∈ J, j = 1 : k do
18: if WM (x(j)) ≤ L(M) then
19: q ← q + 1

20: R(M)← q
N , M ←M + 1

21: M ← argmaxM̃∈Z[1,Mmax]
{R(M̃)},

22: W (x) :=
∑M−1
i=0 V (Gi(x)), S0 := {x ∈ S : W (x) ≤ L(M)}

23: while verif == 0 do
24: k ← 0, U ← ∅, J ← ∅
25: Select N uniformly distributed samples in S0: Ss0 := {x(1), . . . , x(N)} ⊂ S0

26: for all i = 1 : N do
27: if F (xi) > 0 then
28: k ← k + 1, U ← U ∪ {x(i)}
29: else
30: J ← J ∪ {x(i)}
31: if k == 0 then
32: verif ← 1

98



5.5. Randomized DOA estimation

33: if verif == 0 then
34: c← minx∈U∪P W (x)

35: c← c− τ
36: S0 := {x ∈ S : W (x) ≤ c}
37: W← S0

for system (5.5). �

Problem 5.5.1 can be solved via Algorithm 7. In steps 1–22, by iterating M from 1
to Mmax, an M is selected, which provides the highest reliability for the candidate FSLF
V . In this algorithm, the reliability R(M) is computed in a manner that the resulting DOA
estimation, S0, would provide the largest possible set. For this reason, R(M) = q

N , where
q is computed as the total number of samples in Ss which satisfy F (x) ≤ 0 and belong to
the largest level set of the current LF WM . The value of M with the largest q provides thus
the largest DOA candidate with the available samples. At step 22, a LF candidate exists,
with a corresponding set S0. From step 23 onward, we try to certify that S0 is the candidate
set W, or to refine S0 until W is found, which solves Problem 5.5.1. These steps are similar
to Algorithm 5. However, this time, the starting search set S for Algorithm 5 is in fact S0,
which is already inside S, and therefore there is no need to sample the boundary of the set
S anymore.

The main elements which influence the computational complexity for the algorithms
proposed in this chapter are:

• The number of samples,N ; this is given as in (6.30), and it depends on the parameters
p∗ and δ, chosen by the user;

• The complexity of selecting a sample point in the current set;

• The complexity of computing F (x).

The other operations are simple computations, such as comparisons, which are fast com-
pared with the operations mentioned above. Computing the minimum from a finite number
of values, as in step 19 of Algorithm 5, step 15 in Algorithm 6, or step 34 in Algorithm 7, is
not performed for every sample. In the following two remarks we address the last two items
mentioned above.

Remark 5.5.2 In the algorithms proposed in this chapter, we assume that one can sample
uniformly in a set S , but also in S0. In the examples we propose in Section 5.6 the set of
constraints S is considered to be a hyper–rectangle, because it is common to have constraints
on states to be represented via intervals. Sampling uniformly on hyper–rectangles is simple,
as illustrated in Section 5.2. If the set S is a convex polytope, as required by the algorithms
presented in this chapter, the problem of selecting uniform samples in the convex polytope
can be approached, e.g., via the method presented in (Rubin, 1984). In this thesis, any
set which is not a hyper–rectangle is sampled via rejection methods (Tempo et al., 2012,
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pag. 207). In these methods, a set X is upper–bounded by another set Xd on which uniform
sampling can be performed. However, as mentioned therein, the rejection rate of this method
is given by the ratio of volumes: V ol(Xd)

V ol(X) . While any bounded set can be upper–bounded
by a hyper–rectangle, the resulting rejection rate might be very large. In this case, we
can talk about a “curse of dimensionality” of the rejection methods, as illustrated, e.g.,
in (Tempo et al., 2012, Table 16.2, pag. 233). Instead of upper–bounding the set with a
hyper–rectangle, other, more tight polytopes can be used as in, e.g., (Sijs, 2012, Figure 3.6,
pag. 63). However, in this case, a trade–off is necessary between the size of Xd and the
computational complexity of obtaining Xd. Additionally, in (Tempo et al., 2012), alternative
efficient methods are presented to sample in sets generated by p–norms. This might be
useful when we verify, e.g., quadratic LFs. However, in general, for LF generated via
FSLFs, which inherently integrate the system dynamics G, the resulting level set is not
given by a norm. An alternative method for random uniform sampling of bounded sets is
provided in (Smith, 1984). �

Remark 5.5.3 The computational complexity of computing F (x) is expected to grow lin-
early with the state space dimension, because the evaluation is performed independently for
each state xj , with j ∈ Z1,n. This will be illustrated via the example in Section 5.6.2. �

5.6 Examples
This section presents the potential of the algorithms developed in this chapter for systems
of increasing dimension. The computations have been performed in Matlab, on a Windows
PC with processor Intel Core i7–3770 CPU 3.40 GHz.

5.6.1 2D system

By the help of a 2D system, we illustrate visually the consequences of the algorithms devel-
oped in this chapter. Consider again the example in Section 4.7.1.

To Illustrate Algorithm 5, consider the set S given in Section 4.7.1. The LF candidate
is the function W computed therein. To solve Problem 5.3.1, fix a desired accuracy p∗ =
0.999 and a confidence δ = 0.001. Consider also µ = 0.01 and τ = 0.0001.

Then, we construct a subset W of S, such that for x ∈W, (5.9) holds, with F (x) given
as in (5.7). The construction of the set W is performed via Algorithm 5 with the above
parameters and we obtain the results illustrated in Figure 5.2. The sample size with the
desired accuracy and confidence is N = 6904, and the level computed at step 20 is c =
11.7212, which is considerably larger than the one obtained in Chapter 4, i.e., L = 9.2933.
The set W with c = 11.7212 does not exceed the boundary of the set S. The evaluation
time for the function F (x) is around 1.5[ms].

Algorithm 7, with the same p∗, δ, µ, τ,S as above, with V as in Section 4.7.1 and with
f = 106 (a very large number), Mmax = 10, provides the following results: M = 4,
c = 11.5264 (close to the previous value), the same W as above and W as in step 36
of Algorithm 7. The computational times for evaluating F (x) for each value of M , in
order, from 1, to Mmax, are given in Figure 5.3. Notice a reasonable linear increase of the
computational time with the value of M . The probabilistic certificate holds provided that
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Figure 5.2: DOA for the origin of the 2D system with Algorithm 5: S (blue boundary), W
(green boundary), and the points xs ∈ P ∪ U (red and magenta).
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Figure 5.3: Computational time to evaluate F (x) as a function of the value of the step M .
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Figure 5.4: A case in which the level set exceeds ∂S: S (blue boundary), W (green bound-
ary), and the points xs ∈ P ∪ U (red and magenta).

the current set can be uniformly sampled. It is important to make the following observation.
Notice in Figure 5.4, when the number N of samples is small and there aren’t enough
samples to represent the boundary, the boundary might be exceeded by the level set which
we compute. Also, by the rejection method, we still select the random samples from the
whole set S and then consider only the samples which are inside the current level set, but
we ignore samples outside the set S which are inside the current level set. Therefore we do
not know that we have exceeded the set S. In Figure 5.2, with a larger number of samples,
we notice that the level set does not exceed the boundary of S.

A possible solution to this problem is to select samples x exactly on the boundary of S.
Consider that ∂S is an (n−1)–dimensional set. These samples focus more on the boundary
region, and increase the chance of avoiding level sets which exceed the boundary of S.

5.6.2 Cascade cart—spring–damper systems

To illustrate the scalability with the state space dimension of the methods developed in
this chapter we consider a system composed of q carts connected as cart–spring–damper
systems. This model is relevant, for example, for car platooning, or robots with flexible
joints.

The model of a cart with massMi, with i ∈ Z[1,q], which is moving on a plane is inspired
by the model in (Raimondo et al., 2009). The first cart is attached to a wall via a spring
with elastic constant k1 varying with the first state k1 = k0e

−x1 , where x1 stands for the
displacement of the first cart from the equilibrium position. Thus, the system incorporates
exponential nonlinearities. Similarly, x2j−1 represents the displacement of the j − th cart
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Figure 5.5: Cart–spring damper connected systems.

from its equilibrium position. A damper acts as a resistor in the system, with damping hd1.
The other q − 1 carts are connected to each other, via the same springs and dampers, and
the last one is pulled by a force u(t), as illustrated in Figure 5.5. All the carts have identical
parameters, i.e., Mi = M , ki = k, hdi = hd for all i ∈ Z[1,q]. The continuous–time
nonlinear model of the q cart–spring–damper connected systems is the following:

ẋ(t) = f(x(t)) + Fu(t), (5.11)

where

f(x(t)) =



x2(t)

− ρ0
M e−x1(t)x1(t)− hd

M x2(k) + ρ0
M e−x3(t)x3(t) + hd

M x4(k)
. . .
x2i(t)

− ρ0
M e−x2i−1(t)x2i−1(t)− hd

M x2i(k) + ρ0
M e−x2i−1(t)x2i−1(t) + hd

M x2i(k)
. . .

x2q(t)

− ρ0
M e−x2q−1(t)x2q−1(t)− hd

M x2q(k)


,

(5.12)

and

F =
[

0 . . . 0 1
M

]T ∈ R2q, (5.13)

where x2i is the velocity of the i–th cart and u is an external force which acts as an input to
the last cart system. The parameter values are ρ0 = 0.33, M = 1, hd = 1.1. The system,
discretized with the Euler method is

x(k + 1) = G(x(k)) = f1(x(k)) + F2u(k), (5.14)

where f1(x(k)) = x(k) + Tsf(x(k)) and F2 = TsF and Ts = 0.4s.
In this example we linearize the system (5.14) in 0 and we compute a linear quadratic

regulator (LQR) for the linear system to obtain a controller u(k) = −Kx(k) and a quadratic
LF V (x) = xTPx. Knowing that, if the origin is stable, then the LF computed for the
linearized system is a LF for the original nonlinear system in a neighborhood of the origin
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Figure 5.6: Linear increase in the computational time to evaluate F (x) with the number of
states n.

(Khalil, 2002), we will try to compute a subset of the DOA of the origin for the nonlinear
system via the approach in Algorithm 5, in a constraint set defined by

S := {x ∈ R2q : ‖x‖∞ ≤ 1}.

Let us first analyze the average computational time involved in computing F (x) =
V (G(x)) − ρV (x), with V computed above and ρ = 0.9999 as a function of the num-
ber n of states. Notice that the total number of states is n = 2q. The computational time
increase with the system dimension is illustrated in Figure 5.6, and it is linear. This plot sug-
gests that, in what concerns the computation of F (x), the methods developed in this chapter
are scalable with the system dimension. However, the complexity of sampling uniformly
contributes also to the dimensionality problem.

To compute a DOA estimate for a nonlinear system of relatively large dimension, we
fix q = 10, which gives a state space dimension n = 20, and apply Algorithm 5 with
p∗ = 0.999, δ = 0.001, µ = 0.01, τ = 0.0001 and the LF candidate W = V . We
obtain L1 = 40.8705 after only two iterations of the while loop. This shows a relatively
fast convergence of the algorithms developed in this chapter in terms of obtaining a DOA
candidate even for systems of large dimension (n > 10).

5.7 Reflection on randomized methods for DOA estimation
To address the problem of non–scalability with the system dimension in the deterministic
method presented in Chapter 4 for DOA computation, in this chapter we have proposed
methods for computing candidate LFs and DOAs for nonlinear systems in a constraint set
S, with probabilistic guarantees. The developed methods scale linearly with the step M
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Randomized verification:
Chapter 5

Deterministic verification:
Chapter 4

Scalability with n in
computing F (x)

linear exponential

Scalability with N in
computing F (x)

From experiments: linear From experiments: linear

Complexity of comput-
ing samples

Sampling in a hyper–
rectangle S: simple
uniform sampling, as in
Remark 5.2.2. Sampling in
a level set S0 of a (possibly
non–convex) LF W : “curse
of dimensionality”.

Sampling only in a hyper–
rectangle S: simple. Refine-
ment of the sampling: expo-
nential with nr.

Validity of the stability
certificate

probabilistic deterministic

Other observations It is necessary that the set S0

is uniformly sampled, and it
does not exceed the bound-
ary of the set S, see Exam-
ple 5.6.1.

Table 5.1: Randomized versus deterministic methods for DOA estimation: a complexity
assessment.

and the state space dimension n. However, the algorithms developed in this chapter suffer
from the “curse of dimensionality” due to the rejection methods employed for sampling in
the set W. Also, the validity of the certificate of stability is probabilistic, with accuracy and
confidence dictated by the user’s requirements. A summary of the findings of this chapter,
in comparison to the methods developed in Chapter 4 is found in Table 5.1.

Based on this summary of the results obtained in this chapter we can answer the question
Q4 posed in Chapter 1 by the fact that the scalability issues reported for the deterministic
method developed in Chapter 4 can be overcome by the randomized methods presented in
Chapter 5 by reducing the exponential increase of the computational complexity of evaluat-
ing F (x) for a given point x with a linear increase with respect to n. From this perspective,
we can answer positively to the questionQ5 posed in Chapter 1 as well, when a probabilistic
certificate for the DOA suffices. Precaution is necessary though when employing rejection
methods for sampling in level sets of LFs.
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Chapter 6

Sampling–driven nonlinear model predictive
control

This chapter develops a new sampling–driven nonlinear model predictive control (SDN-
MPC) algorithm, with a bound on complexity which is quadratic in the prediction horizon
N and linear in the number of samples. The idea of the proposed algorithm is to use the
sequence of predicted inputs from the previous time step as a warm start, and to iteratively
update this sequence by changing its elements one by one, either backward or forward along
the prediction horizon. The backward strategy resembles the dynamic programming (DP)
principle, while the forward implementation resembles the rollout algorithms for nonlin-
ear model predictive control (NMPC). Both versions allow for parallelization up to a certain
level and yield a suboptimal NMPC algorithm with guaranteed recursive feasibility, stability
and improved cost function at every iteration, which is suitable for real–time implementa-
tion. The complexity of the algorithm per each time step in the prediction horizon depends
only on the horizon, the number of samples and parallel threads, and it is independent of the
measured system state. Conditions for convergence of the SDNMPC are discussed in this
chapter, as well as recommendations for obtaining a smooth input sequence. Comparisons
with the fmincon nonlinear optimization solver on benchmark examples indicate that as
the simulation time progresses, the proposed algorithm converges rapidly to the “optimal”
solution, even when using a small number of samples.

6.1 Introduction
NMPC is the most straightforward control strategy which can provide optimal online control
for constrained nonlinear systems. However, classically it requires solving online a nonlin-
ear optimization problem. An alternative strategy in NMPC is to draw samples from either
the state or input space, to design computationally feasible NMPC methods, see for exam-
ple, (Piovesan and Tanner, 2009), which proposes a randomized approach to sampling the
space of predicted input sequences. Alternatively, in (Chakrabarty et al., 2016), a method
is proposed for explicit NMPC (ENMPC) based on sampling of the state space for contin-
uously differentiable nonlinear systems. The method therein solves optimization problems
offline to find optimal control sequences, which are used to construct the ENMPC strategy.
While there are still concerns in ENMPC related to robustness, feasibility of the offline op-
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timization and finding the neighbors in the sampled grid for the off–grid states, ENMPC,
when successful, reduces significantly the computational load of MPC at the expense of an
acceptable cost degradation.

Input and state space sampling–methods for solving NMPC via approximate DP (ADP)
have also been proposed, see (Bertsekas, 2005a), though they inherit the dimensionality
issues of DP (Lee and Lee, 2004). Another relevant sampling–based strategy, the so–called
sampling based MPC (SBMPC) (Dunlap et al., 2010), is applicable to nonlinear systems in
general, though, its performance is dependent on a user–specified heuristic. A more ample
discussion on sampling–based ADP and SBMPC, in the light of the method proposed in this
chapter, is reported in Section 6.2.2.

A common problem of sampling–guided methods for NMPC is the sampling strategy.
For example, with each input sample, a tree is expanded. After the tree is built, the path of
least cost in the tree is selected from the initial state to the desired state. If the sampling is
performed over the input space, and each sample is connected to all the samples in the input
space for the next time step in the control horizon, then the tree growth is exponential with
the horizon. Alternatively, as in randomized MPC (Piovesan and Tanner, 2009), sampling
randomly in the input space, of dimension m, augmented to the horizon of dimension N
requires a large number of samples, in an mN dimensional space, to achieve a significant
accuracy.

In this chapter we adopt a suboptimal formulation of NMPC, as originally proposed in
(Scokaert et al., 1999), where it was shown that feasibility of a solution implies stability
under suitable conditions. This, together with the fact that suboptimal NMPC has the same
inherent robustness properties as optimal NMPC, see (Pannocchia et al., 2011) and (Lazar
and Heemels, 2009), suggest that suboptimal NMPC is a viable approach when a sampling–
guided MPC strategy is undertaken for the control of nonlinear systems. Furthermore, we
aim at a sampling method which provides a suboptimal solution that yields good control per-
formance, has a reasonable computational complexity increase with the prediction horizon
and allows for parallel implementation up to some level.

In this chapter, the main idea for achieving this goal is to use the shifted sequence of
predicted inputs from the previous time step as a warm start, and to iteratively update this
sequence by changing its elements one by one in a backward manner, i.e., starting from
the last predicted input and ending with the first predicted input, or the other way around
for a forward strategy. The backward method resembles the DP principle and the forward
approach is similar to the rollout algorithms, see (Bertsekas, 2005b). Both the backward
and forward strategies improve a heuristic base policy for optimal control, as in rollout al-
gorithms. Additionally, as opposed to the ADP, for instance, in this chapter we sample only
the input space, which is typically represented by a proper set U ⊂ Rm. Sampling allows
for parallelization of the calculations performed for updating each of the elements of the
predicted sequence of inputs and it enables limiting the computational time according to
the requirements of the considered application. An upper–bound on the complexity of the
overall algorithm is quadratic with the prediction horizon N and linear with the number
of samples in U. This enables the usage of long prediction horizons or real–time imple-
mentation on inexpensive computing devices such as ASIC and FPGA. The suitability for
real–time implementation is also enhanced by the fact that the algorithm can be stopped
at any iteration performed within a sampling period, while the complexity of the calcu-
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lations per iteration depends only on the horizon N , the number of samples and parallel
threads, and it does not depend on the measured state of the system. Moreover, the updated
predicted sequence of inputs obtained at any iteration will guarantee recursive feasibility,
stability and an improved cost function under the same conditions as in suboptimal NMPC
(Scokaert et al., 1999).

This chapter analyzes also the convergence of the input sequence computed via this
algorithm to the optimal input sequence, with a detailed comparison to the DP solution and
the rollout algorithms. Additionally, because of the sampled nature of the input sequence
that we compute, we provide also an alternative for input smoothing.

6.2 Suboptimal MPC problem formulation
6.2.1 Problem formulation

Let us consider the discrete–time system described by

xk+1 = f(xk, uk), (6.1)

where xk ∈ Rn is the state and uk ∈ Rm is the control vector at discrete–time k ∈ Z+. We
assume that the map f : Rn × Rm → Rn satisfies f(0, 0) = 0, which is, the origin is an
equilibrium point for system (6.1).

The goal of MPC is to regulate the state to the origin while satisfying control and state
constraints, i.e., uk ∈ U ⊂ Rm and xk ∈ X ⊂ Rn for all k ∈ Z+, where U and X are
proper sets. MPC relies on a receding–horizon control law in order to determine, for each
k, a finite–sequence of control inputs

U(k) = {uk|k, uk+1|k, . . . , uk+N−1|k},

where N is the control and prediction horizon, which are considered equal in this chapter,
for simplicity of exposition. If the initial state is xk|k = xk and the control sequence is
U(k), the solution of system (6.1) in closed–loop with U(k) at time k + i is denoted by
φ(xk|k, U(k), i). The current control action uk, is selected as the first control action in
U(k), i.e., uk = uk|k.

To achieve this, at each discrete–time k, optimal MPC computes the global minimizer
of a cost function of the type

J(xk|k, U(k)) = Vf (xk+N |k) +

N−1∑
i=0

L(xk+i|k, uk+i|k), (6.2)

where J : Rn × Rm → R+ is the total cost function, Vf : Rn → R+ is a terminal cost and
L : Rn × Rm → R+ is a stage cost. The minimization is performed with respect to U(k)
and it is subject to

xk+j|k = f(xk+j−1|k, uk+j−1|k), ∀j ∈ Z[1,N ], (6.3)

and to the state and input constraints:

xk+i|k ∈ X, uk+i|k ∈ U, ∀i ∈ Z[0,N−1], (6.4)
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xk+N |k ∈ XT , (6.5)

where XT ⊆ X is a proper set which represents a terminal constraint. Moreover, define by
U(xk|k) the set of control sequences U(k) which, applied on xk|k, satisfy (6.3), (6.4) and
(6.5).

When the dynamics f is a nonlinear, possibly non–convex function, the optimization of
the cost (6.2) cannot be guaranteed to converge to a global optimum, in general. Suboptimal
MPC is a viable alternative, see, e.g., (Scokaert et al., 1999), to deal with this inherent
shortcoming of nonlinear global optimization.

Suboptimal MPC relies on an initial feasible solution, a warm start sequenceUwarm(k) ∈
U(xk|k) at each step k, which is improved iteratively. The suboptimal MPC problem con-
sidered in this chapter is formulated as follows:

Problem 6.2.1 For each k ∈ Z≥1, given a sequence Uwarm(k) which is different than the
globally optimal input sequence, find a sequence U(k) ∈ U(xk|k) such that

J(xk|k, Uwarm(k)) > J(xk|k, U(k)), (6.6)

and the constraints (6.3), (6.4) and (6.5) are satisfied. �

Remark 6.2.2 Consider a locally stabilizing control law kf : XT → U. Assume that XT is
a sublevel set of Vf and the following properties hold:

• Vf (f(x, kf (x))) + L(x, kf (x)) ≤ Vf (x) for all x ∈ XT ;

• there exist α1, α2 ∈ K∞ such that α1(‖x‖) ≤ Vf (x) ≤ α2(‖x‖) for all x ∈ XT ;

• there exist α3 ∈ K∞ such that L(x, u) ≥ α3(‖x‖) for all (x, u) ∈ X× U.

Then, the MPC closed loop system is stable. The first property above listed implies that
XT is positively invariant for the closed–loop system xk+1 = f(xk, kf (xk)). The second
and third properties can be satisfied if, for example Vf and L are positive definite quadratic
functions. �

These properties imply that the cost function J(·, ·) is a LF, see (Mayne and Rawlings,
2009, Lemma 2.14). As such, if F is the set of states in X for which there exists a control
sequence U(k) which satisfies the constraints (6.3), (6.4) and (6.5), then the solution to
Problem 6.2.1 provides an asymptotically stabilizing controller with a region of attraction
F.

In (Mayne and Rawlings, 2009), an algorithm is proposed for suboptimal MPC with
stability guarantees. Given the current state xk|k and the previous control sequenceU(k−1)
as an input, the steps of the algorithm therein can be summarized as follows:

• If xk|k /∈ XT , use the warm start sequence:

Uwarm(k) ={uk|k−1, uk+1|k−1, . . . ,

uk+N−2|k−1, kf (xk+N−1|k−1)}. (6.7)
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Solve iteratively Problem 6.2.1 via optimization to improve Uwarm(k) with a U(k) ∈
U(xk|k). Apply control uk = uk|k.

• If xk|k ∈ XT , set uk|k = kf (xk|k), or, similarly to the previous case, use the warm
start and solve an optimization algorithm iteratively to find an improved control se-
quence U(k) ∈ U(xk|k).

Optimization solvers, in both optimal and suboptimal MPC, present difficulties in terms
of parallelization and a priori known execution time independently of the current state xk.
To circumvent these drawbacks and enable a computationally efficient and parallelizable
NMPC algorithm, we develop a sampling–driven approach to solving Problem 6.2.1.

6.2.2 Existing NMPC approaches based on sampling

This section provides a brief in depth review of two main existing approaches for NMPC
based on sampling, namely ADP and SBMPC, which were also mentioned in Section 6.2.

An approximate version of DP, as a tool for solving optimization problems, is proposed
in (Bertsekas, 2005a, Section 6.6.1). DP has been successfully applied for determining
explicit solutions for linear MPC controllers, see, e.g., (Muñoz de la Peña et al., 2004). In
NMPC, the state and input states are typically discretized to apply DP algorithms. The main
idea is to discretize the state space with a finite grid and to express each state outside of the
grid as an interpolation of nearby grid elements. The same interpolation law is applied to
compute the cost of the current nongrid state as a function of the costs of the nearby grid
states. As such, by discretizing both the state space for each time in the control horizon
and the input space, a transition diagram is obtained which approximates the dynamics of
the system in the continuous space. On this discrete transition system, DP is applied to
determine the path with the smallest cost, which, for a given initial state xk|k, provides the
control sequence U(k).

Solving MPC with DP via discretization suffers from the “curse of dimensionality", due
to sampling of both state and input spaces and the requirement for constructing the complete
transition diagram, by evaluating the subsequent state and cost for each sampled state and
all the samples in the input space.

An alternative to ADP, namely SBMPC, has been developed within the area of robotics,
where typically optimization problems arising in control are non–convex, due to either kine-
matic constraints or constraints posed by obstacle avoidance. Sampling–based motion plan-
ning such as rapidly–exploring random trees (RRTs) (LaValle, 1998) or randomized A∗

algorithms (Likhachev and Stentz, 2008), have been extensively used to construct trees
which connect an initial state to a final state based on sampling states in the search space
and searching for feasible inputs to connect these states. To approach issues related to the,
possibly unfeasible, search for an input after sampling only in the state space, SBMPC, pro-
posed in (Dunlap et al., 2010), samples the input space at each sampling period and creates
trees that contain feasible state trajectories. The optimal path to a goal in the state–space
is then searched for within the tree using goal–directed search algorithms, such as LPA∗.
Such algorithms rely on computing a heuristic measure of the distance from the current sam-
ple to the goal. Selecting the heuristic is, however, not an obvious task for general nonlinear
systems.
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Therefore, a desirable feature of a sampling–based suboptimal NMPC algorithm is a
non–exponential growth in the tree generated through sampling of the state or input space
at each step in the horizon. Furthermore, it is also desirable to reduce the dependency of
the algorithm on the non–obvious selection of a heuristic, which significantly impacts the
performance of the sampling–based strategy. To circumvent these issues, an alternative
suboptimal strategy for sampling the input space is developed in the next section, based on
sequentially updating a warm start feasible sequence of predicted inputs.

6.3 Prototype algorithm
We develop a sampling–based solution to Problem 6.2.1. By the mechanism involved in the
iterative improvement of the initial feasible control sequence Uwarm(k), this solution has a
low increase of the computational complexity with the control horizon.

j = 2j = 1j = 0
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Figure 6.1: An example of the sampling principle employed by Algorithm 8, for SDNMPC,
for the case when N = 3. At each step, Uwarm(k) (blue input sequence), is updated with
the new best input from among the selected samples (red sample).

The principle behind the proposed sampling–driven approach is illustrated in Figure 6.1
and formalized in Algorithm 8. In Figure 6.1, the iterative improvement of an initial cost
provided by an initial feasible control sequence Uwarm(k) is illustrated for the case when
N = 3. The algorithm keeps always Uwarm(k) (blue) as a reference sequence, and it covers
the horizon in a backward fashion, inN iterations. Starting with j = N−1, at each iteration
step, nj samples {uqk+j|k}q∈Z[1,nj ]

are drawn from the input constraint set U (black and red
points). For each sample, the reference sequence Uwarm(k) is modified in the jth location,
and a new sequence, U(k)jq is obtained. Suppose the following properties hold:
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6.3. Prototype algorithm

• U(k)jq is a feasible sequence, i.e., the constraints (6.3), (6.4) and (6.5) hold;

• the new cost, Jnew = J(xk|k, U(k)jq) decreases with respect to J(xk|k, Uwarm(k)).

Algorithm 8 Backward sampling–driven suboptimal NMPC algorithm (SDNMPC).

Input: N , {nj}j∈Z[0,N−1]
, xk|k, X, U, XT , J(·, ·)

Uwarm(k) = {uwk|k, . . . , uwk+N−1|k}
Output: U(k), uk

1: Jsub ← J(xk|k, Uwarm(k));
2: for all j = N − 1 : −1 : 0 do
3: Select nj samples uqj+k|k ∈ U, q ∈ Z[1,...,nj ];
4: for all q = 1 : 1 : nj do
5: if j ≥ 1 then
6: U(k)jq = {uwk|k, . . . , uwk+j−1|k, u

q
k+j|k,

uwk+j+1|k, . . . , u
w
k+N−1|k};

7: else
8: U(k)jq = {uqk|k, uwk+1|k, . . . , u

w
k+N−1|k};

9: if φ(xk|k, U(k)jq, i) ∈ X,∀i ∈ Z[j+1,N−1] and φ(xk|k, U(k)jq, N) ∈ XT then
10: Jnew ← J(xk|k, U(k)jq);
11: if Jnew < Jsub then
12: Jsub ← Jnew;
13: Uwarm(k)← U(k)jq;

14: U(k) = Uwarm(k), uk = uwk|k;

Then Uwarm(k) is replaced by U(k)jq and the algorithm continues backwards (in Fig-
ure 6.1, we switch to the text horizontal line) with respect to the prediction time j, in a
similar manner. With this approach, at any point in time, if the maximally allowed compu-
tational time is reached, a feasible, improved control sequence exists and it can be utilized
as a suboptimal MPC solution.

The forward approach differs in the fact that the covering of the horizon starts from
j = 0 and ends with j = N − 1. More specifically, in step 2 of Algorithm 8 we have used
a backward navigation of the control horizon (j = N − 1 : −1 : 0). However, covering the
horizon in a forward manner, i.e., j = 0 : 1 : N − 1, as in the rollout algorithms, can as
well be a solution, with similar characteristics. An example is provided in Section 6.7.1.

At each step j, the states φ(xk|k, Uwarm(k), i) for all i ∈ Z[1,j] already satisfy the
state and input constraints, by the feasibility of Uwarm(k). This holds not only for the
original Uwarm(k), but for any subsequent improvement of Uwarm(k). As such, also the
stage costs up to the jth state can be recovered from previous computations. This suggests
intuitively that the proposed cost improvement method could deliver good performance,
which is supported by results obtained in Section 6.7 on non–trivial case studies.
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When k = 0, we can select an initial sequence Uwarm(0) as the solution of the optimal
MPC problem. In this case, we can proceed with k = 1. Alternatively, we can select a
feasible sequence Uwarm(0), an “oracle”, by randomly selecting sequences of inputs in U
until a feasible Uwarm(0) is found. In this case, if it is feasible to afford the computational
time, we can proceed with Algorithm 8 in an attempt of obtaining an improved sequence.
For k ∈ Z≥1, to choose the input Uwarm(k) for Algorithm 8, one can use the receding
horizon principle of MPC. As such, the input sequence

Uwarm(k) = {uk|k−1, . . . , uk+N−2|k−1, u}

is a warm start at time k. If φ(xk−1|k−1, U(k− 1), N) ∈ XT and XT is positively invariant
for the system xk+1 = f(xk, kf (xk)), then one can select u = kf (xk+N−1|k−1). In this
case, Uwarm(k) is a feasible solution, and therefore a candidate warm start for every k ∈
Z≥1. If there exists no terminal set XT and no kf (·), then one can select u ∈ U such that
Uwarm(k) remains feasible, i.e., φ(xk−1|k−1, Uwarm(k), N) ∈ X. In these circumstances,
however, stability of the closed loop is not guaranteed. Such an example is illustrated in
Section 6.7.3.

Remark 6.3.1 Common sampling schemes are employed for sampling of the input space U
at each iteration, among which we consider deterministic uniform sampling, which places
each sample at equal distance from each other, to cover uniformly the space U. Alterna-
tively, “true” random samples can be selected, which are simpler to draw in higher dimen-
sional spaces. Quasi–random low–discrepancy sequences, see (Chakrabarty et al., 2016),
may be used as well, considering the fact that they appear to be random for multiple pur-
poses, such as Monte Carlo simulations. Such sampling methods, e.g., Sobol or Halton
sequences, have been shown, see, e.g., (de Dios Ortúzar and Willumsen, 1994), to better
cover the space than random sequences. �

Remark 6.3.2 Assume that kf is a locally stabilizing control law on XT , a sublevel set of
Vf , which is positively invariant for the system xk+1 = f(xk, kf (xk)) and Vf and L are,
e.g., positive definite quadratic functions. Considering that the sequence U(k) provided
by Algorithm 8 is a suboptimal solution solving Problem 6.2.1, then, by Remark 6.2.2,
Problem 6.2.1 is recursively feasible and it ensures stability of system (6.1) in closed loop
with uk = uwk|k. �

Remark 6.3.3 The working mechanism of Algorithm 8 resembles the principle of the roll-
out algorithm described in the survey paper (Bertsekas, 2005b). Therein, a rollout algorithm
improves iteratively a base policy (here, the feasible control sequence Uwarm(k)) to provide
a suboptimal solution to an optimal control problem via ADP and suboptimal control. The
working principle of the rollout algorithm with SDNMPC, i.e., choosing at time k the iter-
ated solution of the previous time instance, k − 1, as a warm start, and a sampling strategy,
is not provided therein. A discussion on SDNMPC in comparison with DP and rollout is
available in Appendix A.2. �
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Remark 6.3.4 Note that here we assume that the initial state is known exactly. However, in
the case of modeling error or exogenous noise this is probably not achieved. In (Lazar and
Heemels, 2009) it is proven that if recursive feasibility is ensured, then inherent input–to–
state stability holds for suboptimal NMPC. To ensure recursive feasibility when the exact
state is now known, new methods, outside of the scope of this thesis, have to be developed,
possibly by recomputing a terminal set and tightening constraints. �

6.4 Complexity analysis
In order to analyze the complexity of Algorithm 8, the following assumptions are under-
taken, for a given state x, input u and input sequences U , U1, U2:

1) The cost of evaluating f(x, u) and performing a feasibility test f(x, u) ∈ X is c1;

2) The cost of evaluating one stage cost L(x, u) for a given state x ∈ X and input u ∈ U is
c2;

3) The cost of comparing J(x, U1) < J(x, U2) and changing Jsub and Uwarm(k) if neces-
sary, i.e., steps 11–13 in Algorithm 8, is negligible.

4) The current cost Jsub is instantaneously available for comparison with each of the nj
samples according to step 11 in Algorithm 8 and each of the new sequences U(k)jq

may modify Jsub if the new cost Jnew is smaller than Jsub.

The complexity of Algorithm 8 for a given xk|k is the following:

C = (c1 + c2)

N−1∑
j=0

(N − j)nj

 . (6.8)

If we assume nj ≤ n for all j ∈ Z[0,N−1], then the complexity (6.8) can be upper bounded
by

C = n(c1 + c2)
N(N + 1)

2
. (6.9)

A possible reduction of the bound (6.9) might be attained, considering the fact that all the
states subsequent to a non–feasible state are no longer evaluated and checked for feasibility.
This means that, in step 9 of Algorithm 8, if φ(xk|k, U(k)jq, i) /∈ X for a specific i ∈
Z[j+1,N−1], then φ(xk|k, U(k)jq, r) for all r ∈ Z[i+1,N ], are no longer evaluated, in which
case steps 2) and 3) above are skipped all together.

Consider now that many threads are available, from multiple processors. Notice also
that at each time in the horizon, all nj computations can be performed separately. In these
conditions, assuming we have n threads available, then the complexity of Algorithm 8 is
upper bounded by

C = (c1 + c2)
N(N + 1)

2
. (6.10)

The complexity bound given in (6.10), though quadratic in the prediction horizon, yields
a reasonable complexity, considering that, in NMPC, a horizon N = 10 is considered a
reasonably large horizon.
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In general, if we have p ∈ Z[2,n) processors, then the complexity of Algorithm 8 is

C = dn/pe(c1 + c2)
N(N + 1)

2
, (6.11)

where the term dn/pe appears due to the fact that a thread can not engage in computations
related to a subsequent time horizon until all the threads have finalized the computations
related to the current time horizon j.

6.5 Convergence analysis
To evaluate the performance of the developed method, it is of interest to analyse the extent
to which the resulting sequence U(k) obtained via Algorithm 8 converges to the optimal
sequenceU∗(k). For this reason, in this section, the evolution with the time k of the distance
between the cost functions J(xk|k, U(k)) and J(xk|k, U∗(k)) will be analyzed.

6.5.1 Sufficient conditions for convergence

The following assumption is necessary for the convergence analysis in this subsection.

Assumption 6.5.1 A global optimal input sequence U∗(k) exists at each step k ∈ Z+.

The following theorem defines conditions under which the sequence U(k) converges to
the optimal sequence U∗(k), and the rate of convergence.

Theorem 6.5.2 Suppose Assumption 6.5.1 holds. For each time step k, if there exists a
scalar σk ∈ R[0,1) such that:

J(xk+1|k+1, U
w(k + 1))− J(xk+1|k+1, U

∗(k + 1)) ≤
σk(J(xk|k, U

w(k))− J(xk|k, U
∗(k))), (6.12)

then the cost J(xk|k, Uw(k)) converges monotonically to J(xk|k, U∗(k)) with a conver-
gence rate σk and limk→∞(J(xk|k, Uw(k))− J(xk|k, U∗(k)) = 0. �

Proof: Consider the function V : X → R+ defined as V (xk|k) := J(xk|k, Uw(k)) −
J(xk|k, U∗(k)). Notice that V (xk|k) ≥ 0 for all k ∈ Z+, because the cost J(xk|k, U∗(k))
corresponds to the optimal input sequence U∗(k), while Uw(k) is suboptimal. (6.12) can
then be rewritten as:

V (xk+1|k+1) ≤ σkV (xk|k).

Thus, it follows that

0 ≤ V (xk+1|k+1) ≤ σkV (xk|k)

≤ σkσk−1V (xk−1|k−1)

≤ . . .

≤
k∏
i=0

σiV (x0|0). (6.13)
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Since σk ∈ R[0,1), if there exists σ̄ < 1 such that σk ≤ σ̄ for all k ∈ Z+, then

lim
k→∞

k∏
i=0

σk ≤ lim
k→∞

σ̄k = 0. (6.14)

Therefore, from (6.14) and (6.13) it follows that

lim
k→∞

V (xk|k) = 0, (6.15)

and consequently,

lim
k→∞

(J(xk|k, U
w(k))− J(xk|k, U

∗(k)) = 0. (6.16)

�

Notice that V acts like a LF. Alternative, relaxed conditions for convergence can be
imposed, such as a p–step decrease, with p ∈ Z≥1, of V (xk|k) of the type

V (xk+p|k+p) ≤ σkV (xk|k),

with σk ∈ R[0,1).
In Algorithm 8 there are three sources for the improvement of the cost J(xk|k, U(k))

during the same time instant k, but also as the iteration k progresses. The decrease sources,
and therefore, the construction of σk, are detailed in the following lemma.

Lemma 6.5.3 For each k ∈ R+ there exist αk ∈ R[0,1], βk ∈ R, ρjk ∈ R for all j ∈ Z[1,N ]

such that (6.12) holds with

σk = αkβk

 N∏
j=1

ρjk

 ∈ R≥0 ∈ R+.

Proof: The three sources for the improvement of the cost J(xk|k, U(k)) in Algorithm 8
during the same time instant k, but also as the iteration k progresses are the following:

1. At the same time instance k, due to the fact that we use samples, we improve the input
sequence with every step, from j + 1 to j. Then, for each of the elements j from N
up to 1, i.e., step 2 in Algorithm 8, a real value ρjk exists such that:

J(xk|k,U
j(k))− J(xk|k, U

∗(k)) ≤
ρjk(J(xk|k, U

j+1(k))− J(xk|k, U
∗(k))), (6.17)

where UN+1(k) = Uw(k) and U(k) = U1(k). Notice that ρjk ∈ R[0,1], because
J(xk|k, U j(k))− J(xk|k, U∗(k)) ≥ 0, J(xk|k, U j+1(k))− J(xk|k, U∗(k)) ≥ 0 and
J(xk|k, U j(k)) ≤ J(xk|k, U j+1(k)). If no sample improves the previously feasible
sequence, i.e., U j+1(k), then ρjk = 1, otherwise ρjk ∈ R[0,1).
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2. As the time k progresses, if the MPC feedback closed–loop system is stable, due
to the fact that J is a LF, there exists a decrease in J with the increase of k. This
decrease occurs with respect to the input sequences U(k) and Uw(k + 1) resulting
from Algorithm 8, thus, there exists a real value βk such that:

J(xk+1|k+1,U
w(k + 1))− J(xk|k, U

∗(k)) ≤
βk(J(xk|k, U(k))− J(xk|k, U

∗(k))). (6.18)

The true optimal sequence generates a stable MPC feedback closed–loop system as
well. Therefore, the decrease of J occurs with respect to the optimal input sequence
as well, i.e., from U∗(k) to U∗(k+1), and therefore, there exists a real value αk such
that:

J(xk+1|k+1, U
w(k + 1))− J(xk+1|k+1, U

∗(k + 1)) ≤
αk(J(xk+1|k+1, U

w(k + 1))− J(xk|k, U
∗(k))). (6.19)

By embedding (6.18) and (6.17) in (6.19) we obtain

J(xk+1|k+1, U
w(k + 1))− J(xk+1|k+1, U

∗(k + 1)) ≤
≤ αk(J(xk+1|k+1, U

w(k + 1))− J(xk|k, U
∗(k)))

≤ αkβk(J(xk|k, U(k))− J(xk|k, U
∗(k)))

≤ αkβkρ1k(J(xk|k, U
2(k))− J(xk|k, U

∗(k)))

≤ . . .

≤ αkβk

 N∏
j=1

ρjk

 (J(xk|k, U
w(k))− J(xk|k, U

∗(k))). (6.20)

In (6.20), notice that

J(xk+1|k+1, U
w(k + 1))− J(xk+1|k+1, U

∗(k + 1)) ≥ 0

and
J(xk|k, U

w(k))− J(xk|k, U
∗(k)) ≥ 0,

and therefore

σk = αkβk

 N∏
j=1

ρjk

 ∈ R≥0.

�

Remark 6.5.4 As to what concerns the equations (6.18) and (6.19), notice that the term
J(xk+1|k+1, U

w(k+1))−J(xk|k, U∗(k)) might be negative, in which caseαk ≤ 0, because
J(xk+1|k+1, U

w(k+1))−J(xk+1|k+1, U
∗(k+1)) ≥ 0. In that case the value of βk has to

be negative, which is possible, if we analyse (6.18). If the term J(xk+1|k+1, U
w(k + 1))−

118



6.5. Convergence analysis

J(xk|k, U∗(k)) is positive, then, by the stability analysis formulation from Section 6.2.1,
where it was established that the cost J is a LF, we have the necessary condition that
J(xk+1|k+1, U

w(k + 1)) < J(xk|k, U(k)), and therefore βk ∈ R[0,1). Also, by the same
argument, the inequality J(xk+1|k+1, U

∗(k+ 1)) < J(xk|k, U∗(k)) holds. Then, in (6.19),
αk ∈ R>1. If no samples are selected, which means that only the warm start sequence is
used, then σk = αkβk. �

From Theorem 6.5.2 it follows that, if σk ∈ R[0,1), then the convergence of Algorithm 8
is guaranteed. A question we may ask is, how many input samples nj shall we select to
ensure that ρjk in Lemma 6.5.3 achieves a value that enables σk to remain in an interval
[0, 1)? For answering this question, we formulate the following assumptions:

Assumption 6.5.5 For each j from N up to 1, there exists a sequence Uj(k) such that
(6.17) holds with ρjk ≤ ρk, where ρk ∈ R[0,1). �

Assumption 6.5.6 The map f in (6.1) is continuous with respect to uk in the set U. �

In what follows we consider separately the two cases when the sampling is uniform
deterministic and randomized sampling.

6.5.2 Convergence conditions under uniform deterministic sampling

In this subsection we consider that the sampling of the set U is uniform.

Definition 6.5.7 The sampling density η of a set U is the distance between sample points
on any of the axes of the set U. �

More specifically, denote by Υ ∈ Rm×2 the matrix containing on each line i ∈ Z[1,m]

the bounds on the i–th element of the input vector uk, i.e., Υ(i, 1) ≤ uk(i) ≤ Υ(i, 2).
By exploiting the sampling density η and the intervals [Υ(i, 1), Υ(i, 2)], we can obtain the
number of samples drawn on each axis, ai as follows:

[Υ(i, 2)−Υ(i, 1)] = (ai + 1)η,

which in turn allows to compute the total number of sample points nj which we draw in the
set U via the equation

nj =

m∏
i=1

ai =

m∏
i=1

(
Υ(i, 2)−Υ(i, 1)

η
− 1

)
. (6.21)

As mentioned previously, the values of αk and βk do not depend on the number of samples
nj we select in the set U. As such, in the process of computing the number of samples, we
consider αk and βk to be known.

To be able to decide on the sampling density at the current step, j, see step 2 in Algo-
rithm 8, we need to connect the cost function J for a specific sample with the sampling
density. This is necessary in order to ensure the contraction of the cost function J of the
current input sequence to the cost of the optimal input sequence.
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Lemma 6.5.8 Suppose Assumption 6.5.5 and Assumption 6.5.6 hold. Define by U j∗(k)

the argument of the minimum cost at the step j, i.e., if

U j+1(k) = {uwk|k, . . . , uwk+j|k, . . . , u
w
k+N−1|k},

then U j∗(k) = {uwk|k, . . . , u∗k+j|k, . . . , u
w
k+N−1|k}, where

u∗k+j|k = arg min
u(k+j|k)∈U

J(xk|k, U(k))

s.t. U(k) = {uwk|k, . . . , uk+j|k, . . . , u
w
k+N−1|k}.

If the inequality

J(xk|k, U j∗(k))− J(xk|k, U∗(k))

J(xk|k, U j+1(k))− J(xk|k, U∗(k))
<

(
1

αkβk

) 1
N

(6.22)

holds, then there exists a finite number of samples nj , such that (6.12) holds with σk ∈
R[0,1). �

Proof: Starting from Assumption 6.5.6, we can construct a bound on the difference
between the cost of the current sampled sequence and the cost of the optimal sequence. The
bound is a function of the distance from the sampled sequence to the optimal sequence. It is
known (Lazar et al., 2013b, Corollary III.10) that a map f which is continuous on a compact
set U is alsoK–continuous on the set U. Then, by the construction of the cost function, from
Assumption 6.5.6, for each xk|k, denote by dk the K function which ensures

‖J(xk|k, U(k))− J(xk|k, V (k))‖ ≤ dk(‖U(k)− V (k)‖),

for each U(k), V (k) ∈ UN . Then, it follows directly that

J(xk|k, U
j(k))− J(xk|k, U

j∗(k)) ≤ dk(‖U j(k)− U j∗(k)‖). (6.23)

From (6.17) we obtain ρk as follows:

J(xk|k, U j(k))− J(xk|k, U∗(k))

J(xk|k, U j+1(k))− J(xk|k, U∗(k))
≤ ρk. (6.24)

To achieve contractiveness of the cost function J , it is sufficient to require αkβkρNk < 1,
which implies that

ρk <

(
1

αkβk

) 1
N

. (6.25)

Finally, via (6.24) and (6.25), the inequality to satisfy is

J(xk|k, U j(k))− J(xk|k, U∗(k))

J(xk|k, U j+1(k))− J(xk|k, U∗(k))
<

(
1

αkβk

) 1
N

. (6.26)
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In (6.23), if we have selected U j(k) as the argument for the best cost function achievable
with the sample points, then, by the continuity of J , ‖U j(k)−U j∗(k)‖ ≤ η. Therefore, by
(6.23), it follows that if

J(xk|k, U j∗(k)) + dk(η)− J(xk|k, U∗(k))

J(xk|k, U j+1(k))− J(xk|k, U∗(k))
<

(
1

αkβk

) 1
N

, (6.27)

then also (6.26) holds. Now, since the number of samples nj is a function of η, if we find a
feasible η, then nj can be computed via (6.21). We can find the largest value of η by using
a bisection strategy in the interval(

0, min
i=1:m

Υ(i, 2)−Υ(i, 1)

2

]
.

A value of η can be found in this manner only under the condition that

J(xk|k, U j∗(k))− J(xk|k, U∗(k))

J(xk|k, U j+1(k))− J(xk|k, U∗(k))
<

(
1

αkβk

) 1
N

(6.28)

holds. �

6.5.3 Convergence conditions under random sampling

The method for bounding the number of samples nj as proposed in the previous subsection
is valuable for deterministic, uniform sampling. However, it is more practical to sample
randomly, especially in higher dimensional spaces. For this reason, in this section, a bound
on the number of samples is proposed for the case of random sampling. First, inspired by
(6.26), consider the following notation:

vjk := J(xk|k, U
∗(k)) +

(
1

αkβk

) 1
N

(J(xk|k, U
j+1(k))− J(xk|k, U

∗(k))).

Then, the problem to solve is defined as follows:

Problem 6.5.9 Find (assuming that it exists) a sequence U j(k) such that

J(xk|k, U
j(k)) ≤ vjk. (6.29)

Solution 1: A possible solution to Problem 6.5.9 is to perform a randomized verification
of the inequality J(xk|k, U j(k)) − vjk ≤ 0 over the set U, by computing a probability of
performance, or reliability, as:

R = Pr {F (x) ≤ 0} ,

where F (uqj+k|k) = J(xk|k, U j(k))− vjk.
Note that if R = 1, then F (x) ≤ 0 holds for all x ∈ U. We estimate R by the empirical

reliability R̂nj , as in Chapter 5.2.1.
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However, this solution might be over–pessimistic as to what concerns the number of
samples, because it requires an estimation of the reliability R on the whole set U, while
in fact when a non–zero value of the estimation R̂nj = 1

nj
is achieved, then, no further

sampling of the set U is necessary, because the solution to Problem 6.5.9 was obtained. �

Solution 2: A solution to Problem 6.5.9 can be achieved also by following, as in
Chapter 5.2.1, a randomized worst–case performance evaluation, as follows.

Let p∗, δ ∈ R(0,1) be assigned probability levels. The randomized algorithm should
estimate a performance level γ such that

Pr{Pr{F (x) ≤ γ} ≥ p∗} ≥ 1− δ,

for all x ∈ U, where, in this case F (uqj+k|k) = vjk − J(xk|k, U j(k)). The corresponding
lower bound on nj is now

ln 1
δ

ln 1
p∗

, (6.30)

which gives considerably less samples than the Chernoff bound. It is expected that, with a
sufficiently low δ and large p∗, the bound γ is close enough to the true maximum bound on
F (x) for x ∈ U, and therefore we expect γ ≥ 0, which is sufficient to guarantee that the
U j(k) required by Problem 6.5.9 has been achieved. If γ ≥ 0 has not yet been satisfied,
then new samples have to be drawn, which in turn improves the probability levels. �

6.6 Input smoothing
Due to the sampling procedure having a discontinuous behaviour, the inputs might vary
more than it is safe for the actuators. This problem could be alleviated by either smoothing
the inputs via interpolation of the obtained previous sequence with the initial sequence, or
by penalizing ∆uk = uk − uk−1 via constraints or via the cost function, such that the input
variability is limited to acceptable bounds.

In this section we propose input smoothing by penalizing ∆uk via an inequality

|∆uk| ≤ α, (6.31)

where α ∈ Rm>0. Then, we can add (6.31) as an additional constraint to the set of constraints
(6.3) and (6.4). The value of α can be set constant, or it can varied to an extent that the
problem remains feasible. Note that, if the problem is not feasible due to the additional
constraint (6.31) for any sample, then the iterated warm sequence still remains a feasible
input sequence.

Notice that the constraint (6.31) affects step 3 of Algorithm 8 in the following way. We
can distinguish two cases:

• If k ∈ Z≥1 and j = 0:

U0 =
{
uk|k : |uk|k − uk−1| ≤ α, α ∈ Rm>0

}
.

• Else, for each k ∈ Z≥0, if j ∈ Z[1,N−1]:

Uj =
{
uk+j|k : |uk+j|k − uk+j−1|k| ≤ α, α ∈ Rm>0

}
.
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For each case, in step 3 of Algorithm 8 we will sample in U∩Uj for all j ∈ Z[1,N−1] instead
of sampling in the complete constraint set U. An illustrative example will be provided in
Section 6.7.2.

6.7 Illustrative examples
The following examples illustrate the algorithm SDNMPC developed in this chapter and all
the related concepts: backward and forward implementation, input smoothing, complexity
and convergence analysis, SDNMPC with and without stability guarantees.

These examples have a state space dimension of maximum three. For a more complex
illustration, inspired by the real time model of an interventional X–ray machine, a robotic
arm with six states, complex constraints and obstacles and strict constraints on the com-
putational time, we suggest the interested reader to consult the Master of Science (MSc.)
thesis (Groen, 2017). This reference provides also an indepth analysis on computational
aspects and a comparison with the IPOPT solver (Wächter and Biegler, 2006), instead of
fmincon.

6.7.1 Cart–spring system

SDNMPC is applied first to a system incorporating an exponential nonlinearity, i.e., the
model of a cart with mass M , which is moving on a plane, see (Raimondo et al., 2009).
This cart is attached to a wall via a spring with elastic constant k varying with the first state
k = k0e

−x1 , where x1 stands for the displacement of the carriage from the equilibrium
position. A damper acts as a resistor in the system, with damping hd. The discretized
nonlinear model of the cart and spring system is the following:

x(k + 1) =

[
x1(k + 1)
x2(k + 1)

]
= f1(x(k)) + F2u(k), (6.32)

where

f1(x(k)) =

[
x1(k) + Tsx2(k)

x2(k)− Ts ρ0M e−x1x1(k)− Ts hdM x2(k)

]
,

F2 =
[

0 Ts
M

]T
, (6.33)

where x2 is the velocity of the cart and u is an external force which acts as an input to the
system. The parameter values are Ts = 0.4s, ρ0 = 0.33, M = 1, hd = 1.1.

The MPC controller has to steer the cart to the origin from a non–zero initial state, while
satisfying the input and state constraints, which are

|u| ≤ 4.5, |x1| ≤ 2.65, (6.34)

and reducing the cost (6.2), where the stage cost and terminal cost are quadratic functions,
i.e., L(x, u) = xTQx + uTRu and Vf (x) = xTPx. Choose the following parameters for
the MPC problem:

M = 4, P =

[
7.0814 3.3708
3.3708 4.2998

]
, Q = diag(1, 1), R = 1.
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State trajectory
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Figure 6.2: State trajectories xk of the system (6.32), with input sequences computed ac-
cording to both backward and forward SDNMPC, with different number of sample points
nj .
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Figure 6.3: Inputs uk|k applied to system (6.32), with input sequences computed with back-
ward and forward SDNMPC, with different number of sample points nj .
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Figure 6.4: The computational time of applying Algorithm 8 to system (6.32) for different
number of sample points nj , at each time step k.
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Figure 6.5: The cost Jsub of the suboptimal NMPC solution computed according to Algo-
rithm 8 for system (6.32), with different number of sample points nj .
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Figure 6.6: The value of J(xk|k, U(k))− J(xk|k, Ufmincon(k)) for system (6.32), to illus-
trate the convergence rate of Algorithm 8 with different number of sample points nj .
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Figure 6.7: The computational complexity of Algorithm 8 as a function of the control hori-
zon N versus the bounds computed in Section 6.4, for system (6.32).
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In (Raimondo et al., 2009) it is shown that the control law

u = kf (x) = −
[

0.8783 1.1204
]
f1(x),

is locally stabilizing in the set

XT = {x|Vf (x) ≤ 4.7},

which is a terminal set where the conditions for stability of MPC mentioned in Remark 6.2.2
are satisfied.

Algorithm 8 is applied for the MPC control of system (6.32) in a both forward as well
and backward implementation. We compare the results of this method with the results
provided by fmincon in Matlab, even though, as it will be seen later, the optimization tool
does not always provide the optimum, due to local minima. The scalability of the algorithm
is tested by varying both the number of samples n and the control horizon N . The tests are
performed on a feasible initial state x0|0 = [−2.5, 3]. The choice of the initial condition
does not influence greatly the results, which are similar for other feasible initial states.

For the first experiment, fix N = 10. An initial Uwarm(0) is provided by a random
“oracle”, with values

Uwarm(0) =[−1.7441,−3.4905,−0.5104,−0.2991,−4.3680,

1.4765, 2.0166,−1.9653,−2.1436, 1.8762] (6.35)

Consider nj = n, for all j ∈ Z[0,N−1], taking various values in the set {0, 5, 10, 30}.
For n = 0, Uwarm(0) is propagated though iterations without any intervention or change
from the sampling mechanism. This serves as a reference, to notice the improvements
brought in by Algorithm 8. The results are illustrated in Figure 6.2–6.6, where the legend
from Figure 6.2 holds until Figure 6.6. Iterations are considered from k = 1 until k = 20.
Though the different sampling options proposed in Remark 6.3.1 provide in this example
similar outcomes, Halton sample points have been used here for a comparison between the
backward and forward versions of the SDNMPC algorithm. This choice is motivated by the
practical feature that, adding extra points only when they are required does not have impact
on the coverage of the set U.

In Figure 6.2 and Figure 6.3 the state trajectory and the inputs u(k) applied to the system
are illustrated. The constraint specifications (6.34) are satisfied for all cases, at all times.
Notice the immediate smoothing of the trajectories and input sequence even for a small
n, and even though in this example no input smoothing was used, as in Section 6.6. In
Figure 6.3 a convergence of the inputs to the optimal input is observed for both the back-
ward and the forward implementation of Algorithm 8. In Figure 6.4, the computational
time, without parallelization, is illustrated. At k = 1, the computational cost of finding
an “oracle” is included. Notice that a backward or forward implementation has the same
complexity for the same number of samples n. Figure 6.5 illustrates the values of Jsub for
each iteration. Notice, overall, that even for a small number of samples, the performance of
the closed loop system is significantly improved and the computational time is promising,
even for a non–parallel implementation. Also, as the iteration k advances, the initially mod-
est performance increases significantly, converging to the optimal sequence as discussed in
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Section 6.5.2. Interestingly, even for n = 5, at iteration k = 7, the cost Jsub(7) is smaller
than the cost computed via fmincon, which, due to local minima, provided a feasible but
not optimal solution. Figure 6.6 illustrates J(xk|k, U(k)) − J(xk|k, Ufmincon(k)), to gain
insight in the contraction of J(xk|k, U(k))− J(xk|k, U∗(k)) with increasing time k. Most
of the input sequences, computed with any number of samples, converge generally to the
optimal sequence.

In this experiment, due to the starting Uwarm(0), the cost Jsub for the forward im-
plementation decreases faster than for the backward implementation. However, for other
Uwarm(0), the cost for the backward implementation has a faster convergence. For this rea-
son, there exists no clear distinction in terms of convergence for the two implementations.

For the second experiment we aim to test the computational complexity of Algorithm 8
in terms of the control horizon. We use a backward implementation without parallelization.
Fix n = 10 and N takes values in the set {3, 10, 20, 50, 100}. The results are illustrated
in Figure 6.7. With red, the computational complexity for Algorithm 8 is depicted, and it
is always smaller than the bound (6.9). It is expected that on dedicated devices, the com-
plexity of Algorithm 8 is even smaller, due to the processors not running in parallel threads
related to other system applications. With parallelization, further reduction in complexity is
expected, as described in Section 6.4 and illustrated in Figure 6.7. for large horizons in fact,
the computational complexity achieved with sampling is already smaller than the bound for
parallel computation (6.10). Notice that, for all the horizons, the complexity of Algorithm 8
is smaller than the complexity of fmincon, even without parallelization. For N = 100,
fmincon provides solutions which are not feasible, while the proposed Algorithm 8 still
terminates in less than 0.05 seconds.

6.7.2 Buck–Boost power converter

The bilinear model of a Buck–Boost power converter is considered, as in (Spinu et al.,
2011):

x(k + 1) = Ax(k) +Bu(k) +

[
x(k)TC1

x(k)TC2

]
u(k), (6.36)

where x :=
[
vC iL

]T ∈ X ⊂ R2 is the state vector consisting of the voltage across the

output capacitor and the current through the filter inductor. The input u :=
[
d1 d2

]T ∈
U ⊂ R2 stands for the duty–cycle ratio of the control signal applied to the switching node.
The parameters are

A =

(
I2 + Ts

[ − 1
RHC

0

0 −RLL

])
, B =

[
0 0
vs
L 0

]
Ts,

C1 =

[
0 0
0 1

C

]
Ts, C2 =

[
0 − 1

L
0 0

]
Ts,

with the values RL = 0.2Ω, C = 22µF , L = 220µH , Ts = 10µs.
The aim of the control loop is to stabilize the system to the equilibrium point xe :=[

20 0.5
]T

, ue :=
[

0.81 0.4
]T

, under the constraints iL ∈ R[0,3], vC ∈ R[−0.1,22.5],
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Figure 6.8: An illustration of the results of applying Algorithm 8 for the power converter,
with varying number of sample points nj , at each time step k; from left to right and up–
down: the cost function Jsub, the measure of convergence σk from (6.12), the inputs u1

and u2, the computational time of SDNMPC in comparison with the solution provided
by fmincon, and a close–up illustration of the computational time only on the SDNMPC
solution.
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u ∈ R2
[0,1]. The terminal controller

u = ue +K(x− xe),K =

[
−0.0014 −0.3246
0.0001 −0.0055

]
,

stabilizing the system in the terminal set XT given in (Spinu et al., 2011, set P in Section
IV.C), and the quadratic cost with the matrices

Q = diag(1, 2), R = diag(1, 1), P =

[
46.6617 42.8039
42.8039 69.4392

]
,

satisfies all the conditions for stability formulated in Remark 6.2.2.
Similarly to the previous example, we apply Algorithm 8 for the MPC control of system

(6.36), with only the backward implementation. Fix the initial state x0|0 =
[

1 2
]T

+xe,
which is outside of the terminal set XT , and N = 10. Uwarm(0) is given by an oracle and
we use random sampling of U. One of the experiments uses the same number of samples as
a previous experiment, i.e., nj = 10, but the inputs are smoothened as in Section 6.6, with
α = [0.1 0.1]T .

See in Figure 6.8 the effect of varying n on the cost function Jsub and the convergence
measure σk, the inputs and the computation time, per iteration. Notice that, for all the
considered cases, the convergence is maintained at all times. Increasing the number of
samples generally increases the convergence of the current cost function to the optimal
cost function. However, this is not always the case, especially in randomized sampling.
Smoothing the inputs, in this case, had a positive influence on the convergence rate as well,
which became at times better than the convergence rate for an experiment with five times
more samples. This is caused by the fact that smoothing had an effect of reducing the strong
variations of the inputs caused by the sampling mechanism. Thus, when we have already
reached a region in the set U which is close to the optimum, choosing the new sample input
in a neighborhood of the previous input increases the chance that the new input is close to
the optimal input as well.

The last two plots in Figure 6.8 show the effect of varying n on the time necessary,
per iteration, to compute the corresponding control law. Notice the effect of the unknown
termination time on the evaluation time for the optimization performed through fmincon
and the relatively equal computational time of Algorithm 8 over the iterations k. Also, the
computational time in case of the sampling–based strategy is significantly smaller compared
to fmincon. It is expected that, through implementation on dedicated multi–thread sys-
tems, the computational time for the control law decreases to the extent of fitting the tight
sampling period of the power converter.

6.7.3 Wheeled mobile robot

The last example illustrates the methodology developed in this chapter for an obstacle avoid-
ance task by a nonholonomic system with trigonometric nonlinearities, due to kinematics,
i.e., a model of the wheeled mobile robot (WMR), as described in (Kuhne et al., 2005):

x(k + 1) =

 x1(k) + u1(k) cosx3(k)Ts
x2(k) + u1(k) sinx3(k)Ts

x3(k) + u2(k)Ts

 . (6.37)
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In (6.37), the state x ∈ R3 describes the position and the orientation of the robot with
respect to a global inertial frame {O,X, Y }, and the input u ∈ R2 gives the linear and
angular velocity, respectively. The parameter Ts = 0.1s is the discretization period of
system (6.37).

Figure 6.9: Trajectories of WMR.
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Figure 6.10: Time performance of WMR.

The MPC strategy aims at driving the WMR from an initial state x0|0 =
[

0 6 0
]T
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to the origin of the inertial frame, i.e., xg =
[

0 0 0
]T

, while satisfying the input
constraints u1 ∈ R[−0.47,0.47], u2 ∈ R[−3.77,3.77]. A quadratic cost function of the form

J(xk|k, U(k)) = xTk+N |kPxk+N |k +

N−1∑
j=1

xTk+j|kQ(j)xk+j|k +

N−1∑
j=0

uTk+j|kRuk+j|k

is considered, with the parameters: Q(j) = 2j−1Q, P = 50Q(N), Q = diag(1, 1, 0.5),
R = diag(0.1, 0.1), N = 5.

In this example we illustrate Algorithm 8 with the above parameters. ConsiderUwarm(0)
generated by an “oracle”, and sampling of U based on random sequences. The result for
n = 30 is illustrated in Figure 6.9. fmincon could not be applied due to feasibility issues
related to non–convexity caused by the presence of the obstacle. Notice the avoidance of the
obstacle of the WMR under the control law generated by Algorithm 8. For comparison we
illustrate also the result using SBMPC (Dunlap et al., 2010), with the same horizon N and
n = 30. Notice, in the state trajectory plot in Figure 6.9 the fact that, after 400 iterations,
the WMR did not reach xg yet, and the input values are not yet 0, which means that the
sampling mechanism did not consider that the WMR is close to the goal. In this case, it is
recommended to sample more densely around 0 in the set U, rather than uniformly covering
U with samples.

Notice in Figure 6.10 that, due to the building of a tree and the search in a tree for the
best path, SBMPC is more computationally demanding. Even though in this example a
more conservative case was implemented, with computing the complete cost Jsub(k) for
each time in the horizon, the complexity of Algorithm 8 with the given n fits the sampling
period Ts = 0.1s of the WMR, which makes the method applicable for real–time control of
this system.

6.8 Conclusion
In this chapter, an algorithm, SDNMPC, based on sampling of the input space at each time
in the horizon has been proposed, which iteratively improves in terms of cost an initially
feasible control sequence. This suboptimal NMPC strategy provides a promising computa-
tional complexity even for large control horizons, with good perspectives for parallel imple-
mentation. This chapter has introduced also conditions for convergence of the solution of
SDNMPC to the optimal solution of the NMPC problem, as well as a proposal for smooth-
ing of the sampled inputs, to avoid over–use of the actuators. The algorithm provides a
recursively feasible solution and the sampling of the input space can be stopped at any mo-
ment, as required in real–time by the sampling frequency of the system for which we design
the control. The low computational complexity, finite–termination time, the convergence
properties, the opportunities for achieving a smooth input and the real–time stability guar-
antees of SDNMPC make it a suitable solution for real–time NMPC. Future work aims at
investigating the scalability of SDNMPC in terms of system dimension and the effect of
parallelization on computational time for real–life applications.
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Chapter 7

Conclusions and recommendations

7.1 Overview of the results
In this thesis we have considered the following two problems: (i) stability analysis (ii) con-
trol synthesis via MPC, with formal guarantees of real–time feasibility and stability, for
nonlinear systems. Both problems require solving non–convex optimization problems. To
avoid this, a sampling approach has been undertaken. For problem (i), we have developed
methods for sampling–driven stability verification that verify the satisfaction of Lyapunov’s
inequality on a finite number of samples selected from the constraint set, and then extend
the verification to an infinite, but bounded set inside the set of constraints. Then, based on
the samples previously generated, a subset of the DOA is computed. Methods have been
developed for the verification of both discrete–time as well as continuous–time systems.
Deterministic methods have been developed for stability verification of nonlinear systems
of relatively small state space dimension, and probabilistic sampling–based stability verifi-
cation was proposed for nonlinear systems of larger dimension. For problem (ii), we have
developed methods for sampling–driven NMPC with a bound on complexity quadratic in
the prediction horizon and linear in the number of samples. Conditions for stability and con-
vergence to the optimum have been established as well. The SDNMPC approach developed
in this thesis guarantees recursive feasibility and it is suitable for real–time implementation
of MPC for nonlinear systems. More precisely, the contributions for each problem can be
summarized as follows.

7.1.1 Sampling–driven analysis

The first question that has been investigated in this thesis was question Q1 posed in Chap-
ter 1. Answering this question involves formulating the stability analysis problem via opti-
mization problems and evaluating the limitations in solving analysis problems via optimiza-
tion for constrained nonlinear systems. More specifically, for stability domains computa-
tion, LFs have to be computed. However, before even formulating a typical optimization–
based stability analysis, we need to show how to constructively compute a LF for nonlinear
systems, which is in itself an NP–hard problem, for general nonlinear systems. For this
purpose, Chapter 2 develops a systematic approach for computing a LF on a compact set for
nonlinear discrete–time systems. The developed solution relies on nonlinear optimization
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and on a converse theorem, which is applied to obtain an explicit LF from a finite–step LF. It
is shown in Chapter 2 that this approach can be applied to any Lipschitz continuous nonlin-
ear dynamics with convex constraints. If the system dynamics is not Lipschitz continuous
or the constraints are not convex, then the optimization problems may still be used, at the
expense of a loss in formal guarantees. Additionally, there are limitations on the level of
scalability of the corresponding optimization problems with the state space dimension. This
chapter creates though the foundation for the following three chapters of the thesis, where a
similar approach is undertaken to computing a subset of the DOA of the origin, due to the
advantage that we can construct a LF from a “freely chosen” FSLF.

To avoid the limitations related to non–Lipschitz dynamics, non–convex optimization
problems, feasibility and scalability, solving the corresponding optimization problem is re-
placed in the following chapters by a constructive, sampling–driven approach. As such, in
Chapter 3, we have formulated a sampling–driven algorithm for verification of generic prop-
erties of the type F (x) ≤ (<)0 on compact sets S. This property can represent properties
of interest for analyzing safety of constrained nonlinear, possibly discontinuous systems,
which opens up the application of sampling–driven verification to hybrid systems. The pro-
posed approach distributes the verification of the property on a finite sampling of a bounded
set of states of interest. Then, it extends the validity of the property to an infinite, bounded
set of states by automatically exploiting local continuity properties via interval analysis.
Efficient state–space exploration is achieved using multi–resolution sampling and hyper–
rectangles as basic sampling blocks. The operations that need to be performed for each
sampling point in the state–space can be carried out in parallel, which improves scalability.
The procedure returns a subset A of points in S which satisfy the given property.

The sampling–driven strategy developed in Chapter 3 is adopted in Chapter 4 for con-
structing DOAs for nonlinear systems, in both discrete–time, as well as continuous–time
settings. A result has been introduced which offers a solution to the problem that the LF
is zero at the origin, which does not allow verification of the inequality F (x) < (≤)0 at
the origin via a conservative inequality as proposed in Chapter 3. For discrete–time sys-
tems, the same converse result as in Chapter 2 is used to construct a LF from a FSLF. For
continuous–time systems two different alternatives have been explored. The first proposal
is to compute a LF for the discretized system and then verify its validity for the original
continuous–time system via the sampling–driven Algorithm 3 in Chapter 3. This approach
relies on the same arguments discussed in Chapter 1 about the legitimacy of abstractions.
The alternative proposal is to construct approximations of a FTLF via polynomial approx-
imations of the continuous–time dynamics. Then again, from the converse theorem, this
FTLF can be exploited to compute a LF, which is verified as in Chapter 3. To this point,
we use only a deterministic approach for computing a DOA estimate, because it provides
the advantage of a rigorous certificate. However, the bounds axs and bxs introduce con-
servatism, and they also reduce the scalability of this deterministic certificate with both the
state space dimension, n, and with the step of the FSLF, i.e., M . The sampling strategy
based on hyper–rectangle refinement has also an exponential growth with the number of
axes nr on which the refinement is performed (which is smaller or equal than n).

The problem of non–scalability with the system dimension and the value of the step M
in the deterministic method presented in Chapter 4 for DOA computation is addressed in
Chapter 5 by a non–deterministic alternative. Thus, we propose methods for computing
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candidate LFs and DOAs for nonlinear systems in a constraint set S, with probabilistic
guarantees. These methods scale linearly with the step M and the state space dimension
n. However, due to the rejection methods employed for sampling, the algorithms developed
in this chapter may still suffer from the “curse of dimensionality”. The number of samples
which are selected to draw the conclusions regarding the stability certificate depends only
on the desired accuracy and confidence, which are both specified by the user. The iterative
strategy employed in these algorithms allows for constructively finding the set S0 which is
an estimate of a DOA of the origin, with a small bound on the number of samples. This
bound can be computed as in randomized methods for worst–case performance evaluation,
rather than the Chernoff bound, which is used to compute the maximum number of samples
for performance verification. Resorting to a probabilistic certificate, as in this chapter, is
wise to the extent to which a relaxation in the certainty of the certificate is allowed in the
system of interest.

7.1.2 Sampling–driven nonlinear model predictive control

In Chapter 5 we evaluate the extent to which we can attain guarantees of stability and real–
time feasibility for NMPC when using a sampling–driven approach. It is observed that a
sampling–driven NMPC can be posed in a suboptimal NMPC strategy, which we integrate
via an algorithm, SDNMPC. This algorithm is based on sampling of the input space at each
time in the horizon, to iteratively improve in terms of cost a warm start, i.e., an initially fea-
sible control sequence. This suboptimal NMPC strategy provides resursive feasibility and
complexity which is quadratic with the horizon and linear with the number of samples. This
low complexity makes the approach computationally suitable for systems of large dimen-
sions and with large control horizons. Also, conditions for convergence of the SDNMPC
output to the optimal solution are discussed in this chapter. Many times it is necessary
to have a smooth input sequence, which does not allow for excessively high variations in
the input, to avoid damaging the actuators. To achieve this, we recommend bounding both
along the time k, but also with the control horizon, the increase in the input amplitude.
The guaranteed recursive feasibility, stability and improved cost function at every iteration,
make SDNMPC suitable for real–time implementation.

7.2 Recommendations and future work
This thesis has explored the different aspects involved in solving problems (i)–(ii), which
generally involve nonlinear, even non–convex optimization problems. These problems are
mostly NP–hard. We have shown that sampling–driven methods can be effective in avoiding
solving nonlinear optimization problems. The complex optimization problem has been dis-
tributed to verification on samples, which does not involve solving optimization problems,
but introduces particular challenges. Thus, new questions have been revealed, as well as
specific precautions and recommendations.

7.2.1 Recommendations and extensions

We start with recommendations for stability domains computation, with the deterministic
approach, as follows.

• Notice that the sampling–driven methods formulated in Chapter 4 can compute au-
tomatically a stability domain in a set S where there might exist regions where Lya-
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punov’s inequality is not satisfied. This is achieved by the multi–resolution iterative
sampling strategy. In contrast, for the optimization–based results in Chapter 2, the
refinement of the candidate finite–step invariant set X in Algorithm 2 is not obvious.
The same holds for the choice of another candidate FSLF V in Algorithm 1. As such,
future work deals with the problems of automatically choosing X and maximizing W.
For the example in Chapter 2.4.2, the refinement of X is performed by selecting the
new set X as 1

2X. Of course, a bisection type of approach can be followed for finding
a finite–step invariant set X, which exists, according to Remark 2.3.6 in Chapter 2.
However, one should consider that existence of a set is guaranteed theoretically, but
it may be practically very difficult to construct, in the case when the resulting step M
is very large. This brings us to the next point of discussion.

• Particularly because of the use of FSLFs and finite–step invariant sets, the iterated
maps, for instance, V ◦ GM , pose difficulties when M is large. In what concerns
the deterministic sampling–driven result of Chapter 4, the difficulty is computational,
because with each extra function in the map composition, the interval analysis prob-
lem becomes more computationally demanding. Secondly, because of iterating these
maps over intervals, and because a function of an interval provides another inter-
val, which is over–aproximating, when we have a map composition, then the over–
approximation aggravates. In this case, the conservatism of the inequality (3.3) in-
creases. The size of M impacts also the computability of the optimization programs
in Chapter 2 for the verification of finite–step Lyapunov’s inequality and finite–step
invariance. A solution is to use from the start a FSLF V which gives a small M . This
can be achieved by using simulation traces of the dynamics starting from a set of ini-
tial conditions and solving an LP problem to fit the parameters of a, e.g., polynomial
candidate LF, as in (Kapinski et al., 2014), or by statistical learning strategies, see,
e.g., the support vector machine approach in (Prokhorov and Feldkamp, 1999). Both
these methods fit data from simulations to obtain polynomially parameterized LFs,
which can be close to a true LF. This gives a high chance that the computed candidate
function is a FSLF with a small step M , which can further be used within the verifi-
cation methods proposed in this thesis. Also, notice that, from all the methods in this
thesis, the probabilistic approach in Chapter 5 is the least affected by the size of M .

As to what concerns the DOA estimation via the non–deterministic approach in Chap-
ter 4, notice the following:

• When using rejection methods, the rate of rejection has to be evaluated. If the rate of
rejection is large, then the approach will suffer from dimensionality issues. In such a
case we recommend upper–bounding the set in which we have to sample uniformly
with a more tight polytope, as in (Sijs, 2012), or a set defined via suitable p–norms, for
which there exist uniform sampling strategies, as explained in (Tempo et al., 2012).
Generating methods for upper–bounding a set given by the level set of a non–convex
function constitutes a research topic in itself. Alternative methods, which are not
based on rejection, as in (Smith, 1984), should also be explored.

• If the rejection rate is small, then the computability of new samples will not suffer
from dimensionality. However, along the iterations of Algorithm 7, the level set c
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decreases. It is recommended, at each iteration step, to apply the rejection method
not from the large set S, but from a set which more tightly includes the new level set
of the LF.

• Probably the most serious concern in the probabilistic approach is the issue revealed
by the example in Chapter 5.6.1. The probabilistic certificate holds provided that the
current set can be uniformly sampled. If the boundary of the set S is not sufficiently
dense sampled, then the level set of the LF, which is a new set S0 to be sampled,
might exceed the boundary of the set S, especially in the cases when the set S0 is
highly non–convex and non–uniform. Future work has to develop methods that avoid
the situation when the boundary of the set S is exceeded by the new level set S0.

For SDNMPC, future work aims at investigating the scalability of SDNMPC in terms
of system dimension and the effect of parallelization on computational time for real–life
applications. Additional research is necessary to investigate:

• alternative solutions to guarantee recursive feasibility when a terminal set can not
be found; for example, see the approach in (Ding et al., 2014), which imposes a
constraint of decreasing energy of the control system at each time step, instead of
terminal constraints. More specifically, for an energy function V , the constraint
V (xk+N |k) ≤ V (xk+N−1|k−1) is imposed. This approach is helpful also when the
terminal set is small, or when we can not afford a large horizon. That is the case, in
general, for path planning.

• adaptive smoothening; the additional constraints introduced for smoothening have to
be relaxed when feasibility is threatened. The constraints can be reinforced when
sampling on the complete input range is not necessary, or when it affects the perfor-
mance of the SDNMPC algorithms, as in the last steps of the example in Section 6.7.3.
In that case, for instance, when the system is already close to the goal, sampling of
the complete input range introduces excessive wobbling around the goal, while the
goal is found already.

• concrete strategies for obtaining a warm start, such as, e.g., the heuristic in (Dunlap
et al., 2010), which should be automatically generated.

7.2.2 Future outlook

The methods developed in this thesis address systems without disturbances or model uncer-
tainties. However, the problem addressed by this thesis in Chapter 1 is: Can formal guaran-
tees be attained for (complex) nonlinear systems in terms of stability and DOA estimation,
and real–time feasibility and stability of NMPC, using a sampling–driven approach? To
fully address this question, it is necessary to consider nonlinear systems in real–life, in
cases when the model of the system is not fully known, or when disturbances act on the
system.

To analyze nonlinear systems with disturbances, we have to extend the stability verifica-
tion to input–to–state stability (ISS). In this case, the disturbance space can also be sampled,
as we do with the state space when analyzing stability. The same holds for systems with
parametric uncertainty, when the interval on which the parameters vary is known. Then,
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this interval may be sampled as well. However, additional research is necessary to evaluate
the corresponding implications.

The formal guarantees in Chapters 2–4 require knowledge of an explicit model of the
nonlinear system, through the mapG. Many real–life nonlinear systems have at most a com-
plex description in Matlab/Simulink, instead of a model defined via differential/difference
equations, see, e.g., the Toyota engine model in (Watanabe and Ohata, 2014). Other sys-
tems, like in power networks, lack information about the dynamic subsystems in the model,
due to either confidentiality, or complexity and heterogeneity in the system. In that case it
is necessary to use simulations of the system trajectories directly to learn information about
the system. In (Wang and Liu, 2013) for instance, for a certain class of nonlinear systems
with only one equilibrium point, at the origin, the authors recommend using directly mea-
sured data from the system, relying on the high precision of the modern sensors or state
estimation algorithms. Other methods at the core of data–based analysis are: computational
intelligence, data–mining approaches and machine learning methods. Also, an extension of
the methods developed in this thesis to stochastic systems is of interest.

In SDNMPC we have assumed also a fixed system model, G. If the model G is known
and it is deterministic, then the methods developed in Chapter 6 apply with recursive feasi-
bility guarantees. Else, if the model G is not explicitly known, assume that it can be used as
a black box to obtain a predictive model. Then, if a terminal set, terminal cost and a terminal
controller are known and the system is deterministic, then recursive feasibility can still be
guaranteed. However, for systems with uncertainty or disturbances, methods for stochastic
and respectively robust SDNMPC need to be further developed.
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Appendix A

Detailed elaborations

A.1 Mean Value Theorem to obtain the Lagrange remainder
In what follows we will need to use the Mean Value Theorem to process the Taylor se-
ries expansion in (3.11), see (Berz and Hoffstätter, 1998, Section 2). However, the Mean
Value Theorem can not be directly applied to multivariate functions, and therefore a one–
dimensional function fR : [0, 1]→ R is introduced by the formula fR(s) = Fi(xs + s(x−
xs)), where x and xs are given. Note that

f
(v)
R (s) = ([(x− xs)∇]vFi)(xs + s(x− xs)),

and
f

(v)
R (0) = ([(x− xs)∇]vFi)(xs).

Denote

TR(s, s0,m) :=

m∑
v=0

f
(v)
R (s0)

v!
(s− s0)v.

Notice that the formulae of T and TR are similar, but T is multivariate, while TR is univari-
ate. Furthermore

TR(1, 0,m) =

m∑
v=0

f
(v)
R (0)

v!
=

m∑
v=0

([(x− xs)∇]vFi)(xs)

v!

= T (x, xs,m).

Apply Taylor expansion formula to fR around 0 and evaluate in s = 1:

fR(1) = TR(1, 1,m) = TR(1, 0,∞)

= TR(1, 0,m) + remainder.

Let us apply the Mean Value Theorem to TR and an arbitrary function g : R → R with
g′(x) 6= 0 on (0, 1). There exists ξ ∈ (0, 1) such that:

TR(1, 1,m)− TR(1, 0,m)

g(1)− g(0)
=
T ′R(1, ξ,m)

g′(ξ)
,
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and therefore

TR(1, 1,m) = TR(1, 0,m) +
g(1)− g(0)

g′(ξ)
T ′R(1, ξ,m). (A.1)

To analyse the expression of T ′R(1, ξ,m) when we derivate TR with respect to the second
argument we see that

T ′R(1, ξ,m) =

m∑
v=0

(
f

(v+1)
R (ξ)

v!
(1− ξ)v − f

(v)
R (ξ)

v!
(1− ξ)v−1

)

=
f

(m+1)
R (ξ)

m!
(1− ξ)m. (A.2)

If g(ξ) = (1−ξ)m+1, then g′(ξ) = −(m+1)(1−ξ)m. Notice that g′(ξ) 6= 0 for ξ ∈ (0, 1).
Then, from (A.1) and (A.2) it follows that

TR(1, 1,m) = TR(1, 0,m) + Lm(x, xs, ξ),

where

Lm(x, xs, ξ) =
−1

−(m+ 1)(1− ξ)m (1− ξ)m f
(m+1)
R (ξ)

m!

=
f

(m+1)
R (ξ)

(m+ 1)!

=
([(x− xs)∇]m+1Fi)(xs + ξ(x− xs))

(m+ 1)!
(A.3)

is the Lagrange remainder and ξ ∈ (0, 1).

A.2 Comparison between backward DP, rollout and SDNMPC

A.2.1 Backward DP

Considering the cost function (6.2) and the state prediction (6.3), in backward DP, the opti-
mization problem which provides the optimal input sequence U∗(k) for a given initial state
xk|k is computed via backward iterations, as follows (Bertsekas, 2005a):

min
U(k)∈UN

J(xk|k, U(k)) = min
uk|k,xk+1|k,...,uk+N−2|k,xk+N−1|k

[
N−2∑
i=0

L(xk+i|k, uk+i|k)

]
+

+ min
uk+N−1|k,xk+N|k

[
L(xk+N−1|k, uk+N−1|k) + Vf (xk+N |k)

]
s.t. xk+j|k = f(xk+j−1|k, uk+j−1|k), ∀j ∈ Z[1,N ],

xk+i|k ∈ X, uk+i|k ∈ U, ∀i ∈ Z[0,N−1], xk+N |k ∈ XT .
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At the first step of a DP iteration, the problem to be solved is

J◦N−1(xk+N−1|k) = min
uk+N−1|k,xk+N|k

[
L(xk+N−1|k, uk+N−1|k) + Vf (xk+N |k)

]
s.t. xk+N |k = f(xk+N−1|k, uk+N−1|k),

uk+N−1|k ∈ U, xk+N |k ∈ XT ,

where xk+N−1|k is a parameter which is not known at this step. Thus, in backward DP, the
optimal cost and decisions at the last stage are parameterized by the state at the previous
stage. Then, J◦N−1(xk+N−1|k) is called the optimal cost to go from state xk+N−1|k to the
last state, xk+N |k, under optimal control law u◦N−1(xk+N−1|k).

Similarly, at the next stage of the DP recursion, the problem to be solved is

J◦N−2(xk+N−2|k) = min
uk+N−2|k,xk+N−1|k

[
L(xk+N−2|k, uk+N−2|k) + J◦N−1(xk+N−1|k)

]
s.t. xk+N−1|k = f(xk+N−2|k, uk+N−2|k),

xk+N−1|k ∈ X, uk+N−2|k ∈ U,

where again xk+N−2|k is a parameter. The procedure repeats until J◦N−1(xk|k), where the
first state xk|k is known and the input sequence U∗(k) can be computed. The DP solution
to MPC yields the implicit MPC control law u◦i (·) for all i ∈ Z[0,N−1], thus providing the
optimal policy U∗(·) =

{
u◦0(·), u◦1(·), . . . , u◦N−1(·)

}
. DP is a general solution, however, it

is more practical for linear systems. When the system is nonlinear, the implicit MPC control
law is very difficult to obtain. For that reason, in NMPC with DP, ADP is used, with the
difficulties mentioned in Section 6.2.2.

We specify, however, that the backward version of SDNMPC resembles DP because of
selecting, at each stage j, the best cost (from within the nj available samples), only from
the part of the total cost J(xk|k,U(k)) from j to N − 1.

A.2.2 Rollout

In rollout algorithms, see, e.g., (Bertsekas, 2005b), a trajectory is defined as a sequence of
inputs and states: (

xk|k, uk|k, xk+1|k, uk+1|k, . . . , uk+N−1|k, xk+N |k
)
,

where xk+j|k = f(xk+j−1|k, uk+j−1|k), for all j ∈ Z[1,N ]. A partial trajectory, generated
by a base policy Uwarm(k), is defined as

H(xk+j|k) :=
(
xk+j|k, uk+j|k, xk+1|k, uk+1|k, . . . , uk+N−1|k, xk+N |k

)
.

The cost corresponding to the partial trajectory H(xk+j|k) is:

J̃(xk+j|k) =

N−1∑
i=j

L(xk+i|k, uk+i|k) + Vf (xk+N |k).

The rollout algorithm starts at stage 0 and it sequentially proceeds to the last stage, N − 1.
At stage j, it maintains a partial trajectory:

Tk+j :=
(
xk|k, uk|k, xk+1|k, uk+1|k, . . . , uk+j−1|k, x̄k+j|k

)
.
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The algorithm starts with a partial trajectory Tk =
(
xk|k

)
, at j = 0. For j = 0 : N − 1,

given the current Tk+j , we form, for each uk+j|k ∈ Uk+j(xk+j|k), a complete trajectory
T ck+j(uk+j|k) as follows:

T ck+j(uk+j|k) = Tk+j ∪
(
uk+j|k

)
∪H(f(xk+j|k, uk+j|k)),

where Uk+j(xk+j|k) is a chosen subset of U, for which T ck+j(uk+j|k) is a feasible trajec-
tory. Then, we select from Uk+j(xk+j|k) a control uk+j|k that minimizes over uk+j|k ∈
Uk+j(xk+j|k) the cost from j to N − 1, i.e.:

L(xk+j|k, uk+j|k) + J̃(f(xk+j|k, uk+j|k)).

For this step, a DP type of recursion is used in rollout algorithms. To summarize, the rollout
algorithm selects at each stage j the input

uk+j|k ∈ arg min
uk+j|k∈Uk+j(xk+j|k)

L(xk+j|k, uk+j|k) + J̃(f(xk+j|k, uk+j|k)).

Then, the partial trajectory Tk+j+1 is created by adding the pair
(
uk+j|k, xk+j+1|k

)
to

Tk+j as follows:
Tk+j+1 = Tk+j ∪

(
uk+j|k, xk+j+1|k

)
,

where xk+j+1|k = f(xk+j|k, uk+j|k). In SDNMPC, according to Algorithm 8, the set
Uk+j(xk+j|k) is selected by sampling, and we do not rely on optimization to obtain the
solution ukj |k. We only select the best candidate from Uk+j(xk+j|k).

Additionally, in SDNMPC, conditions for stability are established as in Remark 6.2.2.
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