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Abstract: We study the modeling of a stationary multivariate stochastic process as the output
of a dynamic network driven by white noise. When this noise corresponds to the innovation,
i.e. the unpredictable part of the process, we show that the network satisfies certain stability
conditions. Restricting the network model to having diagonal noise structure, we show that
the innovation-driven representation is unique and internally stable. We provide a one-to-
one correspondence between this representation and the spectral factor associated with the
innovation model. For two-node networks, we show that a representation with diagonal noise
model can be obtained from a generic one through an explicit map.

1. INTRODUCTION

A dynamic network model can be seen as the natural
extension to a general multivariate scenario of input-
output feedback models a la Caines-Chan-Gevers-Anderson
(Caines and Chan, 1976; Gevers and Anderson, 1981, 1982).
These models encode the (dynamical) dependences among
components of a multivariate stochastic process in terms
of a graph (network) whose links are dynamical systems
(dynamic).

The study of such models has gained considerable attention
in the recent years. The main reason is that dynamic
network models can help gaining insights on the underlying
mechanisms of complex systems, ranging from biological
systems (e.g. gene regulatory networks, Hecker et al. (2009);
Nimmegeers et al. (2017), and whole brain network models,
Friston et al. (2003); Prando et al. (2017)), econometrics
(see e.g. Materassi and Innocenti (2010) and references
therein), and engineering (see e.g. Hill and Chen (2006);
Kotevska et al. (2017)) just to mention a few.

In the past decade, several techniques for inference in
dynamic networks have been proposed. These methods
may be grouped into two main categories. In the first
category are methods for topology detection (Materassi
and Salapaka, 2012; Sanandaji et al., 2011; Chiuso and
Pillonetto, 2012), where the main goal is to find direct
relations among the network output signals. The second
category comprises methods for estimating the direct
relation – usually modeled as a linear time-invariant system
– between two or more outputs (see, e.g., Dankers et al.
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(2015, 2016); Van den Hof et al. (2013); Everitt et al.
(2017)).

More recently, increasing attention has been devoted
to the study of the identifiability of dynamic networks
(Hayden et al., 2016; Weerts et al., 2015, 2018; Gevers
and Bazanella, 2015; Bazanella et al., 2017). Here, the
focus is on understanding the uniqueness of a dynamic
network representation of a given multivariate process
(possibly driven by external controllable inputs). Results
show that, for parametric descriptions of dynamic networks,
uniqueness is guaranteed under a persistency of excitation
condition from the external signals (Weerts et al., 2018).
When there is no external excitation, the noise model
characterizing the network must be spatially uncorrelated
to guarantee identifiability (Weerts et al., 2018).

This paper also deals with identifiability of dynamic net-
works. Focusing on networks without external references, we
explore different ways to model a p-dimensional stationary
stochastic process as the output of a dynamic network
driven by white noise. In particular, our interest is on
network representations where the driving noise corre-
sponds to the innovation process (Lindquist and Picci,
2015, Ch. 4), due to its close connection to the best linear
predictor of the process and Granger causality graphs. The
main contributions of this paper are as follows: (i) we
show that networks driven by the innovation satisfy, under
the assumption that the noise model is diagonal, certain
internal stability properties; (ii) restricting to diagonal noise
models, we show that there always exists only one dynamic
network model driven by the innovation process, and this
representation can be constructed using the elements of
the spectral factor of the output process associated with
the innovation. Our results extend those of Gevers and
Anderson (1982, 1981) for closed-loop systems to general
dynamic networks; we also demonstrate that this model is
always internally stable, i.e. the sensitivity transfer function

Paul
Text Box
Version 22-12-2017. Submitted for presentation at 18th IFAC Symposium on System Identification (SYSID 2018), 9-11 July 2018, Stockholm, Sweden.



associated with the network is always stable; (iii) finally, for
a two-node network we also give a closed form expression
of the unique internally stable model with diagonal noise
process from a generic one.

2. DYNAMIC NETWORK REPRESENTATION OF
STATIONARY PROCESSES

We consider a zero-mean p-dimensional stationary stochas-
tic process w(t). In particular, we focus on its power
spectrum, denoted by Φ(z) ∈ Cp×p. We assume that
Φ(ejω) > 0 for every ω ∈ [0, 2π).

We want to represent the dynamics of w(t) as the output
of a structured multivariate system fed by a white noise
process of the same dimension of w(t). In particular, we
are interested in the representations stated in the following
definitions.

Definition 1. (Innovation Model) (Lindquist and Picci,
2015, Ch. 4) The Innovation Model (IM) of w(t) is a
representation of the type

w(t) = Γ(z)ε(t) , (1)

where ε(t) is white noise with positive definite covariance
matrix Λ, and Γ(z) ∈ Cp×p is such that:

• Φ(z) = Γ(z)ΛΓ∗(z);
• Γ(z) and Γ−1(z) are stable;
• Γ(∞) = Ip.

Under the conditions stated in the definition of IM, ε(t) is
called the innovation of w(t) and is such that

w(t) = ŵ(t|t− 1) + ε(t) ,

where ŵ(t|t− 1) is the minimum variance predictor of w(t)
given its past values up to t − 1. This predictor can be
obtained as

ŵ(t|t− 1) = (I − Γ−1(z))w(t) . (2)

While this is a standard representation of a stochastic
process, it does not give particular insights on the relations
among the components of the process. Therefore, we will
focus on structured representation for w(t). A first network
representation is given in the following definition.

Definition 2. (Dynamic Network Model). A Dynamic Net-
work Model (DNM) is a representation of the type

w(t) = G̃(z)w(t) + H̃(z)ẽ(t) , (3)

where G̃(z) ∈ Cp×p is a rational transfer matrix such that

• G̃ii(z) = 0, for any i = 1, . . . , p,

• G̃ij(z), i, j = 1, . . . , p, i 6= j is a strictly causal
transfer function,

H̃(z) ∈ Cp×p is a rational transfer matrix such that

H̃(∞) = Ip, and ẽ(t) is white noise with positive definite
covariance matrix.

We now consider innovation-driven models.

Definition 3. (Innovation-driven DNM).
An Innovation–driven Dynamic Network Model (IDNM)
is a DNM with ẽ(t) = ε(t).

A special case of interest, as we shall see below, is when
the matrix H̃(z) is diagonal; we define formally this class
of Dynamic Network Models as follows:

Definition 4. (Diagonal Dynamic Network Model). A Di-
agonal Dynamic Network Model (DDNM) is a representa-
tion of the type

w(t) = G(z)w(t) +H(z)e(t) , (4)

where G(z) ∈ Cp×p is a rational transfer matrix such that

• Gii(z) = 0, for any i = 1, . . . , p,
• Gij(z) i, j = 1, . . . , p, i 6= j is a strictly causal (i.e.,
Gij(∞) = 0) transfer function,

H(z) ∈ Cp×p is a rational transfer matrix such that

• Hii(z) is monic (i.e., Hii(∞) = 1 for any i = 1, . . . , p,
• Hij(z) = 0 i, j = 1, . . . , p, i 6= j,

and e(t) is white noise with positive definite covariance
matrix.

Despite the restriction to diagonal noise models, there are
infinite representations of the DDNM type. For instance,
given the DDNM (4), by multiplying each Hii(z) by
an all-pass filter Qii(z) one can obtain another DDNM
representation where the driving noise is Q−1ii (z)e(t). We
therefore concentrate on a particular DDNM representation,
given by the following definition.

Definition 5. (Innovation-driven DDNM). An Innovation-
driven Diagonal Dynamic Network Model (IDDNM) is a
representation of the type (4) with e(t) = ε(t).

For completeness, we also introduce the following funda-
mental property of dynamic networks.

Definition 6. (Internally stable dynamic network). A dy-
namic network such that (I −G(z))−1 is stable is referred
to as internally stable.

3. PROPERTIES OF THE DYNAMIC NETWORK
MODELS

In this section, we establish connections between the
network representations introduced in the previous section,
showing their stability properties.

Proposition 1. Every DNM such that (I − G̃(z))−1H̃(z)
is stable, defines a stationary process w(t) with spectral
density

Φ(z) = (I − G̃(z))−1H̃(z)ΛH̃>(1/z)(I − G̃(1/z))−>.

Proof: The proof is obvious from the fact that given a
DNM w(t) = G̃(z)w(t) + H̃(z)ẽ(t), the output w(t) can be
written as

w(t) = (I − G̃(z))−1H̃(z)ẽ(t)

i.e. the output of the stable linear model with transfer
function (I− G̃(z))−1H̃(z), fed with white noise input e(t).
�

3.1 Properties of Innovation driven DNM

Given a stationary processes w(t), we first discuss the
properties that an innovation-driven DNM satisfies.

Proposition 2. Any DNM, which satisfies the conditions:

(i) H̃−1(z), H̃−1(z)G̃(z) and (I−G̃(z))−1H̃(z) are stable

is an innovation model, i.e. ẽ(t) = ε(t).



Proof: We have that w(t) = (I − G(z))−1H(z)ẽ(t) =
Ψ(z)ẽ(t). From (i) it follows that Ψ(z) = (I−G(z))−1H(z)
as well as Ψ−1(z) = H−1(z)(I − G(z)) = H−1(z) −
H−1(z)G(z) are both stable. In addition Ψ(∞) = I holds
true. Therefore the model w(t) = Ψ(z)ẽ(t) is the innovation
model. , i.e. Ψ(z) = Γ(z) and ẽ(t) = ε(t). �

Proposition 2 states sufficient conditions for a DNM to be
an IDNM. However, these conditions are not necessary as
the following example shows:

Example 1. Consider a 2-node DNM where

G̃12(z) =
−2

z − 0.6
, G̃21(z) =

1

z + 2
,

and

H̃(z) =

 z3 + 0.1z2 − 4.5z − 0.352

z3 − 0.6z2 − 0.01z + 0.006

−3z2 − 4.9z − 0.32

z3 + 2z2 − 0.01z − 0.02
2.1z − 0.98

z2 − 0.4z − 0.12

z3 + 0.9z2 − 2z + 0.58

z3 + 1.6z2 − 0.92z − 0.24

 .

We note that this network is internally stable, since (I −
G̃(z))−1 is stable, while H̃−1(z) is unstable, having a pole
at z = −2. If we compute the spectral factor of w(t) we
get

Ψ(z) =

z + 0.8

z + 0.1

−2

z − 0.1
0.1

z − 0.6

z − 0.5

z + 0.2

 , (5)

which is stable and with stable inverse. Since also Ψ(∞) =
I holds, we conclude that the model is an IDNM, showing
that not all the conditions of Proposition 2 are necessary.

In case H(z) is diagonal, instead, necessary and sufficient
conditions for a DDNM to be in innovation form can be
given:

Proposition 3. Given a DDNM, the following two condi-
tions are equivalent:

(i) H−1(z), H−1(z)G(z) and (I −G(z))−1H(z) are sta-
ble;

(ii) e(t) = ε(t), i.e. the model is an IDDNM.

Proof: 1) ⇒ 2) follows from the previous Proposition since
a DDNM is a special case of a DNM.

Let us now prove that 2) ⇒ 1): if the model w(t) =
Γ(z)ε(t) with Γ(z) = (I − G(z))−1H(z) is the innova-
tion model, then (I −G(z))−1H(z) is stable. In addition
Γ−1(z) = H−1(z)(I − G(z)) = H−1(z) − H−1(z)G(z) is
stable. Since G(z) has zero diagonal entries and H(z)
is diagonal, [Γ(z)]ii = [H−1(z)]ii which implies that
H−1(z) (which is diagonal by assumption) is stable. There-
fore (I − G(z))−1 = Γ(z)H−1(z) is stable (since both
Γ(z) and H−1(z) are so; the same conclusion holds for
H−1(z)G(z) = H−1(z)−Γ−1(z), which concludes the proof.
�

The following result is a direct consequence of the previous
one.

Corollary 1. An IDDNM is internally stable.

Proof: Since in an IDDNM H−1(z) is stable and diagonal,
(I − G(z))−1 must be stable, for otherwise Γ(z) = (I −
G(z))−1H(z) would be unstable, due to the fact that

eventual unstable poles of (I − G(z))−1 could not be
canceled by poles of H−1(z). �

It is useful to observe that, while for a generic DNM
(i.e. without the assumption that H(z) is diagonal) the
conditions (i) in Proposition 2 are only sufficient for a
DNM to be an innovation model (see Proposition 2 and
Example 1), in the diagonal case the same conditions are
also necessary. This fact has been exploited in Corollary
1 to show that a diagonal innovation network model is
always internally stable. This is not true in general as the
following example shows:

Example 2. Consider a 2-node DNM where

G̃12(z) =
−2

z − 0.6
, G̃21(z) =

1

z + 0.2
,

and

H̃(z) =

 z2 − 0.6z + 1

z2 − 1.1z + 0.3

−0.5z + 0.1

z2 − 0.3z − 0.1
2.5z − 0.3

z2 − 1.1z + 0.3

z2 + 0.2z − 0.5

z2 − 0.3z − 0.1

 .
We note that both G̃(z) and H̃(z) are stable, but the
network is not internally stable, since

(I − G̃(z))−1 =

z
2 − 0.4z − 0.12

z2 − 0.4z + 1.88

z − 0.6

z2 − 0.4z + 1.88
−2z − 0.4

z2 − 0.4z + 1.88

z2 − 0.4z − 0.12

z2 − 0.4z + 1.88


has unstable poles at z = 0.2 ± j1.36. Nevertheless, the
resulting spectral factor is

Γ(z) =

 z

z − 0.5

0.5

z − 0.5
0.5

z − 0.5

z

z − 0.5

 ,
because the unstable poles cancel with unstable poles of
H̃−1(z) at the same location. Therefore, the network is an
IDNM, since Γ(z) is stable and with stable inverse.

3.2 Canonical IDDNM

We now show that every stationary process w(t) admits a
canonical IDDNM, which is unique under certain conditions
given in the following proposition

Proposition 4. Any stationary process w(t) can be mod-
eled as the output of an IDDNM as introduced in Defi-
nition 6, in which H(z) and G(z) satisfy the conditions
of Proposition 3. In addition, there is a canonical link
between the pair (G(z), H(z)) and Γ(z) in (1) given by
equations:

Gij(z) =−
([

Γ−1(z)
]
ii

)−1 [
Γ−1(z)

]
ij

(6)

Hii(z) =
[
Γ−1(z)

]
ii

(7)

showing that such model is unique.

Proof: The stationary process w(t) can represented using
the canonical (stable, minimum phase and normalised at
infinity) spectral factor Γ(z) as follows:

w(t) = Γ(z)ε(t) = (Γ(z)− I)ε(t) + ε(t)

= (Γ(z)− I)Γ−1(z)w(t) + ε(t) ,

so that

ŵ(t|t− 1) := (Γ(z)− I)Γ−1(z)w(t) = L(z)w(t)



is the one step-ahead predictor of w(t) and the last equation
defines L(z) = I − Γ−1(z). Let us also define LD(z) as the
square transfer matrix which coincide with L(z) on the
diagonal and is zero out of the diagonal, thus leading to
the decomposition

L(z) = LD(z) + L̃D(z)

where L̃D(z) := L(z) − LD(z) equals L(z) for the off-
diagonal terms and is zero on the main diagonal. Since
L(z) = I − Γ−1(z) is stable, so are LD(z) and L̃D(z). It
thus follows that we can write the output process w(t) as
follows:

w(t) = (L(z)− LD(z) + LD(z))w(t) + ε(t)

and thus

w(t) = (I − LD(z))−1L̃D(z)w(t) + (I − LD(z))−1ε(t)

Defining

G(z) = (I − LD(z))−1L̃D(z) H(z) = (I − LD(z))−1.
(8)

Since H(z) as defined in (8) is diagonal we have shown
that w(t) can be represented as the output of a DDNM

w(t) = G(z)w(t) +H(z)ε(t)

Recalling that L(z) = LD(z) + L̃D(z) = I − Γ−1(z) we
have that

H(z) = (I − LD(z))−1 =
[
diag

{[
Γ−1(z)

]
ii

}]−1
so that

Hii(z) =
([

Γ−1(z)
]
ii

)−1
(9)

while

G(z) = (I − LD(z))−1L̃D(z)

=
[
diag

{[
Γ−1(z)

]
ii

}]−1
L̃D(z) .

Since (I − LD(z)) is diagonal, the element in position i, j
of G(z) is given by

Gij(z) =
[
(I − LD(z))−1

]
ii

[
L̃D(z)

]
ij

=
([

Γ−1(z)
]
ii

)−1 [
L̃D(z)

]
ij
.

Using now the fact that, for i 6= j[
L̃D(z)

]
ij

= Lij(z) =
[
I − Γ−1(z)

]
ij

= −
[
Γ−1(z)

]
ij
,

we conclude that

Gij(z) = −
([

Γ−1(z)
]
ii

)−1 [
Γ−1(z)

]
ij
. (10)

Conversely, given an IDDNM

w(t) = G(z)w(t) +H(z)ε(t)

we can write

H−1(z)w(t) = H−1(z)G(z)w(t) + ε(t)

so that

w(t) = (I −H−1(z) +H−1(z)G(z))w(t) + ε(t)

It thus follows that (I −H−1(z) +H−1(z)G(z))w(t) is the
one step ahead predictor of w(t) and therefore

(I −H−1(z) +H−1(z)G(z))w(t) = I − Γ−1(z)

since Gii(z) = 0 (and thus [H−1(z)G(z)]ii = 0) it follows
that [H−1(z)]ii = [Γ−1(z)]ii and

[H−1(z)G(z)]ij = −[Γ−1(z)]ij
implying that

Gij(z) = −[H(z)]ii[Γ
−1(z)]ij = −[Γ−1(z)]−1ii [Γ−1(z)]ij .

This observation concludes the proof showing that the
IDDNM is unique. �

As an illustration we specialize this decomposition to the
two-nodes network case.

Example 3. Consider the case of a two-node network (i.e.
i ∈ {1, 2}); we have that

Γ(z) =

[
Γ11(z) Γ12(z)
Γ21(z) Γ22(z)

]
Γ−1(z) =

1

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

[
Γ22(z) −Γ12(z)
−Γ21(z) Γ11(z)

]
Therefore, equation (9) can be rewritten as

H11(z) =
([

Γ−1(z)
]
11

)−1
=

(
Γ22(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)−1
= Γ11(z)− Γ12(z)Γ−122 (z)Γ21(z)

H22(z) =
([

Γ−1(z)
]
22

)−1
=

(
Γ11(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)−1
= Γ22(z)− Γ21(z)Γ−111 (z)Γ12(z)

(11)

Similarly, as far as the G̃ij(z)’s are concerned, we have

G12(z) = −
([

Γ−1(z)
]
11

)−1 [
Γ−1(z)

]
12

= −
(

Γ22(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)−1
×
(

−Γ12(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)
= Γ−122 (z)Γ12(z)

G21(z) = −
([

Γ−1(z)
]
22

)−1 [
Γ−1(z)

]
21

= −
(

Γ11(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)−1
×
(

−Γ21(z)

Γ11(z)Γ22(z)− Γ12(z)Γ21(z)

)
= Γ−111 (z)Γ21(z)

(12)

Equations (11) and (12) are the classical expressions
found in the literature (see (Gevers and Anderson, 1981))
which link the minimum phase spectral factor, normalized
at infinity, and the (unique) internally stable feedback
representation (with the terminology of this proposition
the “diagonal network innovation model”).

4. TWO NODE NETWORKS

In this section, we focus on networks having two nodes,
and establish an explicit map that transforms a DNM rep-
resentation into DDNM representation, keeping the same
driving noise (whether or not it is the innovation process).
The result is particularly important since, according to
the network identifiability results of Weerts et al. (2018),
having a diagonal noise model leads to identifiability of
the network. In other words, when the noise model is
diagonal, the network structure (and dynamics) is uniquely
determined from the spectrum of the noise-contribution on
the node signals, and the transfer from reference signals to
node signals. This result has an interpretation in a relation
setting, where we consider whether any dynamic network
with non-diagonal noise model, can be equivalently written



in a network with diagonal noise model, which would result
to be identifiable.

Fig. 1. Two-node case: DNM (left) and DDNM (right).

Proposition 5. Consider a two-node DNM. There exists an
equivalent DDNM driven by the same noise process, i.e.
e(t) = ẽ(t), such that (the argument z is omitted)

G21 =
H̃21 + H̃11G̃21

H̃11 + H̃21G̃12

G12 =
H̃12 + H̃22G̃12

H̃22 + H̃12G̃21

H1 =
(H̃11 + H̃21G̃12)

(1− G̃12G̃21)
− (H̃21 + H̃11G̃21)(H̃12 + H̃22G̃12)

(1− G̃12G̃21)(H̃22 + H̃12G̃21)

H2 =
(H̃22 + H̃12G̃21)

(1− G̃12G̃21)
− (H̃12 + H̃22G̃12)(H̃21 + H̃11G̃21)

(1− G̃12G̃21)(H̃11 + H̃21G̃12)
.

Proof: The system equations of the DNM are written as:

w2 = (H̃21 + H̃11G̃21)S̃ẽ1 + (H̃22 + H̃12G̃21)S̃ẽ2 (13)

w1 = (H̃11 + H̃21G̃12)S̃ẽ1 + (H̃12 + H̃22G̃12)S̃ẽ2 (14)

with S̃ := (1− G̃12G̃21)−1, while the DDNM follows

w2 =H1G21Se1 +H2Se2 (15)

w1 =H1Se1 +H2G12Se2 (16)

with S := (1−G12G̃21)−1.

We now derive a DNM representation enforcing ẽ = e. In
order to guarantee that the wi’s are the same in the two
representations, the transfer G21 then needs to be given
by the quotient of the transfers e1 → w2 and e1 → w1. In
other words, by using (13) and (14) we obtain

G21 =
H̃21 + H̃11G̃21

H̃11 + H̃21G̃12

.

A similar type of reasoning will providfe an expression for
G12 by taking the quotient of the transfers e2 → w1 and
e2 → w2, leading to

G12 =
H̃12 + H̃22G̃12

H̃22 + H̃12G̃21

.

In order to find the expressions for H1 and H2 we first
need to evaluate S. Note that

S =
1

1−G12G21
=

1

1− H̃12+H̃22G̃12

H̃22+H̃12G̃21

H̃21+H̃11G̃21

H̃11+H̃21G̃12

=
(H̃22+H̃12G̃21)(H̃11+H̃21G̃12)

(H̃22+H̃12G̃21)(H̃11+H̃21G̃12)−(H̃12+H̃22G̃12)(H̃21+H̃11G̃21)
.

We can now determine H1 on the basis of H1S = (H̃11 +

H̃21G̃12)S, leading to

H1 =
(H̃11 + H̃21G̃12)S̃

S
,

which can be shown to be equal to the expression reported
in the statement of the proposition. Using the properties
of H̃ that H̃11 and H̃22 are monic, and H̃12 and H̃21 are
strictly proper, it follows that

H∞1 := lim
z→∞

H1(z) =
1−G∞21G∞12
1− G̃∞21G̃∞12

= 1

so that H1 is monic too, implying that the requirements of
Definition 4 are satisfied.

For H2 we utilize the equality H2S = (H̃22 + H̃12G̃21)S̃,
leading to

H2 =
(H̃22 + H̃12G̃21)S̃

S
and with the same reasoning as above it follows that
H∞2 = 1. �

Remark 1. We note that H̃21(z) = 0 implies thatG21(z) =

G̃21(z). This means that, if one applies the direct method

to identify G̃21(z) (assuming that the noise sources on
w1(t) and w2(t) are uncorrelated), the resulting estimate

would be consistent. This does not hold if H̃21(z) 6= 0.
This result is in line with the findings of Van den Hof et al.
(2017), where a method called the joint direct method is
introduced to deal with dynamic networks with correlated
noise sources.

We also observe that, even if G̃21(z) = 0, we have that
G21(z) 6= 0. The latter term appears in the DDNM to
account for correlation among the original noise sources.

Example 4. Consider a DNM consisting of a two nodes,
with

H̃(z) =

[
H̃11(z) H̃12(z)

H̃21(z) H̃22(z)

]
=

z + 0.8

z + 0.7

0.1

z − 0.9
−2

z + 0.3

z − 0.2

z + 0.8


and

G̃12(z) =
−0.58z + 0.186

z2 + 1.2z + 0.32
, G̃21(z) =

z + 0.4

z2 − 1.2z + 0.27
.

Note that H̃(z) is stable, minimum phase, and monic,

while G̃(z) and (I − G̃(z))−1 are both stable, thus ful-
filling the assumptions of Proposition 2 and Proposition
5. Therefore, this is an IDNM Using Proposition 5, we
transform the network into an IDDNM representation,
obtaining

H1(z) =
z6 − 1.2z5 − 0.32z4 + 0.94z3 − 0.28z2 − 0.12z + 0.04

z6 − 1.3z5 − 0.22z4 + 0.1z3 + 0.08z2 − 0.002z + 0.02
,

H2(z) =
z5 + 0.4z4 − 0.59z3 − 0.004z2 + 0.25z + 0.06

z5 + 1.4z4 + 0.97z3 − 1.66z2 − 1.16z + 0.17
,

which can be shown to be minimum phase (and monic)
but not stable, since H1(z) has the unstable poles at
z = 1.0531 ± j0.5436, while H2(z) has the unstable poles
at z = −0.8621± j1.1790. We also get

G12(z) =
−0.48z5 + 1.6z4 − 1.54z3 + 0.55z2 − 0.12z + 0.02

z6 − 1.1z5 − 0.57z4 + 1.11z3 + 0.21z2 − 0.03z + 0.03
,

G21(z) =
−z5 + 1.3z4 + 4.5z3 + 2.7z2 + 0.24z − 0.09

z6 + 1.1z5 + 0.55z4 − 1.94z3 − 0.66z2 + 0.51z − 0.05
,



which have the same unstable poles of H1(z) and H2(z),
respectively. Hence, H−1(z)G(z) is stable (as also shown
by Proposition 3). Finally, it can be also shown that the
sensitivity function

S(z) =
z3 − 0.4z2 − 0.69z + 0.216

z3 − 0.4z2 − 0.11z + 0.03
is stable, a fact that agrees with Corollary 1.

5. CONCLUSIONS

In this paper we have discussed the representation of a
multivariate stationary stochastic process as the output
of a dynamic network model driven by noise. Our results
extend those of Gevers and Anderson (1982, 1981) from
the single feedback loop case to the dynamic network
case. We have provided stability conditions on the network
that depend on whether the noise model is general (full)
or diagonal. Furthermore, focusing on dynamic networks
driven by the innovation process and with diagonal noise
model, we have shown that these networks are internally
stable and provided a constructive way to obtain the
network components from the elements of the spectral
factor associated with innovation process. For two-node
networks, we have shown how to explicitly obtain a diagonal
noise representation starting from a full noise one.

We are currently studying how the models analyzed in this
paper relate to those proposed by Materassi and Salapaka
(2012), where non-strictly causal elements are allowed, and
by Hayden et al. (2016), where specific state-space network
models are studied.
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