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SUMMARY 
Identification of linear models in view of robust control design requires the identification of a control- 
relevant nominal model, and a quantification of model uncertainty. In this paper a procedure is presented 
to quantify the model uncertainty of any prespecified nominal model, from a sequence of measurement 
data of input and output signals from a plant. By employing a nonparametric empirical transfer function 
estimate (ETFE), we are able to split the model uncertainty into three parts: the inherent uncertainty in 
the data due to data imperfections, the unmodelled dynamics in the nominal model, and the uncertainty 
due to interpolation. A frequency-dependent hard error bound is constructed, and results are given for 
tightening the bound through appropriate input design. 

KEY WORDS Identification Frequency domain Model uncertainty Robust control 

1. INTRODUCTION 

In the systems and control community there is a growing interest in merging the problems of 
system identification and (robust) control system design. This interest is based on the 
conviction that, in many situations, models obtained from process experiments will be used as 
a basis for control system design. On the other hand, in model-based robust control design, 
models and model uncertainties have to be available that are essentially provided by, or at least 
validated by, measurement data from the process. 

Recently several approaches to the identification problem have been presented, considering 
the identification in view of the control design. By far the most attention is paid to the 
construction of so-called hard error bounds, often referred to as &-identification; see, for 
example, References 7, 8, 5, 10 and 15. In Reference 3 an identification procedure is presented 
that provides probabilistic (soft) error bounds. 

In the references mentioned, there is a strong connection between the identification of 
nominal models and the quantification of model uncertainty. This has two serious drawbacks. 
Firstly, only identification methods for nominal models are selected for which (H-)  error 
bounds can be derived. This seems to exclude many methods and model structures that could 
be useful but are rather intractable when it comes to deriving error bounds. When discussing 
the suitability of models as a basis for control system design, the availability of reliable hard 
error bounds certainly is important in order to obtain robust stability, and possibly also robust 
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performance. However, the nominal model that is used as a basis for the design will determine 
the nominal performance of the control system, and one will definitely not be willing to 
implement a control system when the nominal performance does not meet the specifications. 
As a result, the identification of nominal models, apart from the quantification of model 
uncertainty, is an important issue in identification for control design; see, for example, 
References 1, 2, 6, 13 and 14. 

The second drawback is that one is not able to further tighten the error bound by doing 
additional experiments, without simultaneously changing the nominal model. For example, 
when the error bound is not tight enough and needs improvement in a specific frequency 
region, new experiments could be performed to reduce the uncertainty. However, when 
designing a new input signal it is not possible to restrict attention to the specific frequency 
region of interest, since this would essentially also affect the nominal model and the error 
bound outside this frequency region, and data sets from the different experiments cannot 
directly be combined to reduce the model uncertainty. 

In addition to this reasoning, in this paper we will deal with the following problem: given 
a prespecified nominal model Gnom for an unknown linear plant GO, can we construct an error 
bound for 

(1) 

based on noise corrupted measurements from input and output samples of the plant? Note that 
the nominal model may be available from any (control-relevant) identification procedure. 

The problem is going to be tackled, through the construction of an intermediate data 
representation in the frequency domain, leading to the inequality: 

I Go (e j" ) - Gnom (e'" 1 I 

I Go(ej"') - Gnom(ej"') 1 Q I Go(e'"*) - e(eJ"*) I + I e(ej"*) - Gnom(ej"') I (2) 
with e(ej"*) an (intermediate) representation of the measurement data in the frequency 
domain. This means that e<ej"') basically is a finite number of complex points on the unit 
circle, obtained from the discrete Fourier transformation (DFT) of the time-domain data. The 
first term on the right-hand side of (2) can be considered to reflect inherent uncertainty in the 
data, whereas the second term is related to the quality of the nominal model, e.g. determined 
by unmodelled dynamics. Having constructed a data representation e(ej"*), the second term 
can be calculated exactly. Hence, to give an upper bound on the model error 
I GO(e!'''') - Gnom(&"*) 1, the problem is to construct an upper bound for the error 
I Go(el"k) - e(e'"*) I. Note, however, that inequality (2) is only defined at the finite number 
of frequency points o k ,  while our aim is to bound the model error for all o E [0,27r). The fact 
that the data does not contain information for frequencies w # gives rise to the uncertainty 
due to interpolation. The second problem therefore is to bound the model error for all 
wE [0,2?r) using the error bounds at ok.  These two problems will be the main topics of this 
paper. 

Related work has been published in References 10 and 8 where error bounds for 
1 GO(ejuk) - e(ej"*) 1 have been obtained at a finite number of frequency points. In 
Reference 10 this has been done by employing the empirical transfer function estimate (ETFE, 
see Reference 1 l), and in Reference 8 through sinewave excitation and actually measuring the 
frequency response in a finite number of points. In References 5 and 7 the frequency-domain 
estimate and discrete error bound are used to obtain a model in H m  and a continuous error 
bound (valid on the whole unit circle). An attempt is made to keep the H m  error small by using 
an intermediate high order L m  model and Nehari approximation, obtaining a finite impulse 
response (FIR) model. 
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In Section 3 of this paper the ETFE is also used to obtain a nonparametric frequency- 
domain estimate G(ejUr), and a discrete error bound. In contrast with References 5 ,  7 and 8, 
this error bound is frequency-dependent, which makes it more informative than a simple 
&-bound. Moreover it does not require the frequency points of the discrete estimate to be 
equidistantly distributed over the unit circle. This paves the way for designing specific input 
signals in order to improve the estimates, and tightening the bound. Next a frequency- 
dependent continuous error bound is constructed in Section 4 by interpolation of the discrete 
bound, using smoothness properties of the system. In Section 5 it is shown how robust control 
design specifications can advocate new experiments in order to reduce the model uncertainty 
in specific frequency ranges. Finally, in Section 6, a simulation example is given to illustrate 
the merits of the procedure proposed. 

2. PRELIMINARIES 

It is assumed that the plant, and the measurement data that is obtained from this plant, allow 
a description 

(3) Y ( t )  = G o ( Q ) W  + w 
with y ( t )  the output signal, u ( t )  the input signal, u ( t )  an additive output noise, q - l  the delay 
operator, and GO a proper transfer function that is time-invariant and exponentially stable. 
The transfer function can be written in its Laurent expansion around z =  00, as 

with go(k) the impulse response of the plant. Throughout the paper we will consider discrete 
time intervals for input and output signals denoted by TN:= [O,N- 13, 
T$, := [N,, N + Ns - 11 with N and Ns appropriate integers. We will denote 

sup l u ( t ) l =  ii 
t E T N f N ,  

For a signal x ( t ) ,  defined on TN,  we will denote the N-point discrete Fourier transform (DFT) 
and its inverse by 

N -  1 

x ( ~ T ~ / N )  = C x ( t )  e-j(2rk/N)t for k c  TN ( 5 )  
t = O  

1 N-1 

N k=O 
x ( t )  = - c X(27rk/N) eJ(2*k/N)t for t E TN 

When a signal x ( t )  is defined on the interval T$,, N, > 0, then we will denote the N-point 
DFT of a shifted version of the signal x,  shifted over N, time instants, by 

Note that this reflects the N-point DFT of a signal, of which the first Ns time instants are 
discarded. Throughout this paper we will adopt a number of additional assumptions on the 
system and the generated data. 
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Assumption 2. I 

There exists a finite 

(i) 3, such that I u( t )  I Q iip for t < 0; 
(ii) pair of reds ( M , p )  E IT?, p > 1, such that 1 go(k) I Q Mp-&, for kE Z+; 

(iii) upper bound on the DFT of the output noise: I Vs(2ak/N) 1 Q p(2(2ak/N), for k E TN. 

3. DISCRETE ERROR BOUND 

3. I .  Motivation 

The motivation to consider the ETFE is that we want 8(ejak) to be an intermediate data 
representation in the frequency domain. The ETFE is the quotient of the DFT of the output 
signal and the DFT of the input signal. In discrete Fourier transforming a signal no 
information is lost or added, the mapping from time to frequency domain is one to one. Also, 
the system is assumed to be linear. Therefore the ETFE can indeed be regarded as a 
representation of the data in the frequency domain. 

The motivation to look at input design is that the ETFE for an arbitrary input signal is in 
general not satisfactory. We will try to improve the quality of the frequency domain data by 
input design. 

3.2. Results 

A nonparametric frequency-domain discrete upper bound on the additive error for the 
ETFE will be presented in this section. Errors due to unknown initial and final conditions of 
the system and additive noise on the output are taken into account. We will use a partly 
periodic input signal for excitation, and we will discard the first part of the signals in the 
estimation. 

Definition 3. I 

A partly periodic signal x is a signal having the first part equal to the last part: 
x =  [Xl x2 XI]. 

The length of XI will be denoted by N,. Only the part [x2 x l ]  will be used in the identification 
and has length N. The total length of the signal x now is N, + N. We will show that the value 
of N, influences the error due to initial and final conditions in the estimate. Note that the 
largest possible value of N, is N. 

Theorem 3.2 

periodic input signal, N,E TN+',  and the estimate 
Consider a SISO system, satisfying the assumptions stated in Section2. Using a partly 
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the following error bound is satisfied 

I Go(2d/N) - G S ( 2 d / N )  I < ~ t ( 2 d / N )  

with 

Proof. See Appendix A. 0 

The first term on the right-hand side of the error bound given in the theorem is the error 
due to the effects of initial and final conditions of the system, i.e. the effects of the unknown 
signals outside the measurement interval. This error converges exponentially with N, 
(convergence as P - ~ ~ ) .  The properties of I Us(27rl/N) 1 of course depend on the specific choice 
of the input signal u ( t )  for t~ TS,. For a random signal the expectation of the magnitude of 
the N-point DFT, as defined in ( 5 )  and (7), is asymptotically proportional to @; 
see Reference 11, Lemma 6.2. Hence, if the input is random for t E TS,, the error due to the 
effects of initial and final conditions converges approximately as P - ~ , / @ .  The second 
term on the right-hand side is the error due to the additive noise on the output. This error does 
not converge at all, it is just the noise to signal ratio in the frequency domain. By designing 
an appropriate input signal, one can of course shape the error due to the noise. An input signal 
having a DFT with desired magnitude can be designed easily; see Reference 12. 

We will now focus on the error due to the noise, the second term on the right-hand side of 
the error bound given in Theorem 3.2. It is possible to obtain convergence for this error by 
choosing the input signal to be periodic. The highest rate of convergence is obtained by an 
input signal having an integer number of periods in the interval TS,. Let NO denote the length 
of one period of the input signal and let the interval TEs contain exactly ko periods, so that 
N = k&o. In this case Us(27rk/N) = 0 if k/ko is not an integer, only VS(27rk/N0) is not 
identically equal to zero, see Reference 11, Example 2.2. It is now straightforward to show that 
the DFT over ko periods of a periodic signal is exactly ko times as large as the DFT over one 
period. In conclusion, I US(2?rk/N0) I is exactly proportional to N if N=  k0N0 with ko € Z. 

Corollary 3.3 

Consider a SISO system, satisfying the assumptions stated in Section 2. Using a partly 
periodic input signal having an integer number of periods in the interval TS,, N, E TN+l ,  and 
the estimate 

The error bound given in the corollary goes to zero if N, and N are going to infinity, NO is 
constant, and the noise v ( t )  does not contain a periodic component. The error due to the 
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effects of initial and final conditions converges as P - ~ ~ / N .  The error due to the additive noise 
on the output converges approximately as l/@ if u(t) is a random signal, because the 
expectation of the magnitude of the N-point DFT of a random signal is asymptotically 
proportional to fl, see Reference 11, Lemma 6.2 ,  while the magnitude of the DFT of the 
periodic input is exactly proportional to N. The price for this convergence is that less points 
of the transfer function are estimated (NO instead of N =  koN0). 

3.3. Remarks 

A partly periodic signal can be seen as a generalization of a sinewave input. This 
generalization is useful because sinewave testing (sinewave excitation and actually measuring 
the frequency response in a finite number of frequency points) is time-consuming. For each 
new sinewave input one must wait until the system has reached its steady-state response. A 
partly periodic signal can consist of N sinewaves, but one has to wait only one time for the 
effects of initial and final conditions to vanish. 

For Ns = 0 the ETFE as defined in Reference 11 arises. In this case the error due to initial 
and final conditions converges as l/@if u(t)  is a random signal for t E TN, as was also shown 
in Reference 11. Note that for Ns = 0 the input signal is completely free. The choice for Ns > 0 
hence is a choice to restrict the input signal in order to be able to obtain a tight error bound 
for the nominal model. 

Finally we note that the extension to the MIMO case of Theorem 3.2 has been made by the 
authors. To do this, the Fourier transforms of the different input signals have to satisfy an 
orthogonality condition. 

4. CONTINUOUS ERROR BOUND 

4. I .  Motivation 

We now have an upper bound ( ~ ( w k )  on the error 1 GO(ejuk) - C?(ejWk) I. This error bound 
is only defined in a finite number of frequency points W k € n ,  with 
a:= (wk E IR n [ 0 , 2 r )  1 I Us(ejok) I # 0). This is due to the fact that G(ejwk) is only defined at 
a finite number of frequency points when N, the number of data points used in the estimate, 
is finite. The aim is to find an upper bound 6(w) such that 

I Go (ejw ) - Gnom (e'" 1 I < 6 (w 1 
for all frequencies in the interval [0,27r). It is straightforward to give a discrete upper bound 
6(wk). First note that p(wk)  = 1 8(ejUk) - Gnom(ejw*) I can be calculated exactly because Gno, 
is assumed to be known. From the inequality 

1 Go(ejok) - Gnom(ejak) I < 1 Go(ejar) - G(ejWk) I + 1 &e'"*) - Gnom(ejwk) I (9) 
it now follows that a possible choice for 6(wk) is 6(wk) = ~ ( w L )  + B(wk). Hence the problem 
is to find the behaviour of 6(w) between the estimated frequency points for the prespecified 
nominal model. As argued in Section 3.1, the data does not essentially contain more 
information about the transfer function of the system than is captured by the discrete estimate 
8(ejok). Therefore, assumptions about the system must be used to be able to bound the error 
at frequencies w # W k .  We will use smoothness assumptions on the system, and we will 
interpolate the discrete error bound 6 ( o k )  using these smoothness properties. 
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Note that we will not interpolate ( l I ( W k ) ,  as is done in Reference 7. To be able to interpolate 
a(ok), one first has to interpolate the discrete estimate 6(ejUk). However, in doing this, an 
intermediate model is constructed that is not based on the data. Therefore we take the 
approach of interpolating the error bound &k). 

4.2. Bounds on derivatives 

Smoothness properties of the system in the form of upper bounds on the derivatives of 
Go(&") with respect to frequency, can be obtained from the assumed upper bound on the 
impulse response. 

Proposition 4. I 

For a SISO system with 1 go(rn) I Q Mp-'" there holds 

Proof. See Appendix B. 0 

The SISO system is allowed to be an element of a MIMO system. In that case GO must be 
replaced by Gorij1,go by go[ijl,M by Mrij1 and P by prijl. 

Note that the upper bounds on the derivatives are not obtained in the same way as in 
Reference 7, the M and p used in this paper are different from the ones used there. It is the 
authors' opinion that it is easier in practice to obtain a good upper bound on the impulse 
response, than to obtain a margin of relative stability of the system together with the infinity 
norm of the system over the circle in the complex plane with radius equal to this margin as 
used in Reference 7. 

To be able to bound the derivatives of the magnitude of the error system 
I Go(ej") - Gnom(ejw) 1 we need the following proposition. 

Proposition 4.2 

For a SISO system there holds 

f o r k =  1 and k = 2 .  

Proof. See Appendix C .  0 

Again, the SISO system is allowed to be an element of a MIMO system. 
An upper bound for (1 1) can be calculated using Proposition 4.1 and the knowledge of 

Gnom(ej"). If an upper bound on I go(rn) - gnom(m) I is known, we are able to calculate an 
upper bound for (10) directly from Proposition 4.1. 
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4.3. Interpolation 

In this section we will address the problem of calculating an upper bound on the error 
I Go(ej") - Gnom(ej"') 1 between the frequency points o k  where an upper bound 6 ( W k )  is known. 
Hence, we have to find the highest possible value 6 ( w )  of this error for each frequency (J 

between two given points, say 8(wk) and 8((Jk+1) .  We are able to bound this error by taking 
into account the bounds on the first and second derivatives of 1 Go(ej") - Gnom(ej"') I that were 
derived in Section 4.1, say yl and y2 respectively. The maximum value of the error 6(0) now 
arises by interpolating the discrete error bound 8 ( w )  using the function f ( x )  depicted in 
Figure 1. To explain the construction of this function f ( x ) ,  assume that there is a maximum 
between the two frequency points. Starting at the maximum ( x  = 0, f ( x )  = 0 and df (x ) /du  = 0)  
we want f ( x ) ,  in a smooth way, to decrease as fast as possible: the faster f ( x )  decreases, the 
higher the maximum lies above the two given points 6 ( w k ) ,  6 ( 0 k + l ) .  Hence we use a function 
having a constant second derivative equal to the bound y2 on this derivative. In this way parts 
I1 and I11 of the error bound are constructed. The absolute value of the first derivative of this 
function will clearly increase with the distance 1 x I to the maximum. At I x I = 71/72 the first 
derivative becomes equal to the bound 71 on this derivative. Hence, for 1 x 1 > 7 1 / 7 2  we use 
a function having a constant first derivative equal to the bound 71. In this way part I or IV 
of the error bound is constructed. The function constructed in this way is unique and given by 

6 ( w k )  

Figure 
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W 

Figure 2. A situation in which the point 6 ( w k )  must not be used 

The function f ( x )  given in (12) directly gives the value of 6 ( w )  

6(0) = 6 ( w )  - f ( A x l )  + f ( x )  for w E [w, wk+d (13) 

However, in (13) the values of Ax1 and x are unknown, because the location of the maximum 
is as yet unknown. Analytic expressions for the location of the maximum can be given, by 
specifying Ax1 or Ax2 as a function of 6 ( w k ) ,  6 ( ~ k + ~ ) ,  y l  and y2. These expressions are given 
in Algorithm D.l ,  see Appendix D. Using this algorithm we are able to give an upper bound 
for the difference between the system and the nominal model for all w E  [0,27r). 

When I A y  I > yl A x  the estimated point of the discrete estimate with the highest error 
bound must not be used. Interpolation from neighbouring points, although over a greater 
distance, gives a lower error bound. This situation can also arise when I A y  I < 71 Ax; see 
Figure 2. 

Note that, as opposed to References 7 and 5 ,  Algorithm D.l allows for a discrete error 
bound that is frequency-dependent, and it yields a continuous error bound that is frequency- 
dependent. Moreover the discrete frequency points are not required to be equidistant. 

4.4. Remarks 

following way. In Section 3 a bound ( ~ ( w k )  has been derived 
Taking a closer look at the results of this and the previous section, we can summarize in the 

I Go(ejUk) - G(ejUk) I < a ( w )  (14) 

for all wk in a set Q c IR n [0,2?r) containing a finite number (< N) of elements. Since the 
nominal model is known, the error 

(15) /3(wk)  := I e(ejUk) - Gnom(ejwk) I 
can be calculated exactly for all wk E Q. In this Section 4, a continuous bound 6(0) is derived, 
such that 

1 Go (e'" - Gnom (e'" ) I < 6 (w ) (16) 
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In the nonparametric discrete estimate, cf. (14), no error due to under-modelling is present, 
i.e. no error due to approximation is made, because complete freedom exists for each 
frequency point to fit GO(ej" )̂. The approximation error therefore is completely due to the 
nominal model, cf. (15). 

In the procedure presented, the determination of the nominal model and the determination 
of the error bound clearly are completely separated. We addressed the problem of determining 
the error bound. The problem of determining, from the discrete estimate, a nominal model 
such that the error bound is as low as possible is addressed in References 7 and 5. Methods 
for tuning the nominal model to nominal control design specifications are discussed in 
References 2, 6, 13 and 14. 

The procedure presented can very well be used to obtain an upper bound on the unmodelled 
dynamics, as is needed in References 15 and 9. 

5 .  RELATION WITH CONTROL DESIGN SPECIFICATIONS 

To show the applicability of the approach presented in this paper to robust control design, we 
will consider the following situation. In order to verify desired robustness properties of a 
designed controller for the system, an allowable error bound is specified for the difference 
between GO and Gnom: 

I Go (e'" ) - Gtlom (e'" ) I G 6a (w 1 
The allowable error &(a) is a function of the nominal model, the designed controller and the 
robust control design specifications. Given measurement data from the system, it now has to 
be verified whether a specific nominal model lies within the specified error bound. If not, it 
should be determined which action should be taken in order to solve the problem: either 
constructing a new nominal model, or performing additional experiments to reduce the 
uncertainty. 

The actual error bound 6(w) for the nominal model clearly is a function of the nominal 
model itself and of the discrete estimate 8. Therefore both should be tuned to the robust 
control design specifications. This can be done by comparing the allowable error &(a) with 
the actual error bound 6(w). For those values of w where 6 ( 0 )  > 6,(w) we can analyse 6 ( w )  
and evaluate its different components. 

At the finite number of frequency points wk E Q, we have 6 ( w )  = a ( w )  + p ( w k ) .  Therefore 
we know that 

(1) when a(w)  P(or), the uncertainty is maidy due to the inherent uncertainty in the 
data a ( w k ) ,  i.e. effects of initial and final conditions, bad signal-to-noise ratio and/or 
restricted length of the data set. Actions to be taken to improve the bound include: 
increasing N,, increasing the power of the input signal, and increasing N .  In the case of 
periodic input signals, the signal-to-noise ratio in the frequency domain is proportional 
to m o .  Consequently the error bound can also be improved by decreasing NO; 

(2) when a(w)  4 P ( w k ) ,  the uncertainty is mainly due to a bad nominal model. A 
straightforward action is then to choose a new nominal model that is better able to 
represent the system dynamics in the specific frequency range. 

In between the finite number of frequency points wk E Q, say for wk c w c wk+l, the error 



QUANTIFICATION OF MODEL UNCERTAINTY 311 

bound 6 ( w )  is determined through interpolation between the adjacent points 
Therefore 

6 ( w +  1). 

max(6(wk), 6 ( w +  I)), the uncertainty is mainly due to the interpolation 
step. Note that uncertainty due to interpolation is strongly determined by the distance 
between two adjacent discrete frequency points. Consequently new experiments should 
be performed with a smaller distance between the discrete frequency points in the specific 
frequency region. 

Note that it is possible to determine whether the main source of the actual error is the inherent 
uncertainty in the data, the nominal model, or the interpolation step caused by the absence 
of data due to the specific excitation of the system. Also it is possible to decrease the 
contribution of these different error sources almost independently. Now it is possible to 
iteratively decrease the error bound, until the level of the allowable error is reached, 
successively by input design and additional experiments, and by tuning the nominal model. 
Using this procedure we can determine whether or not specific robust control design 
specifications can be met. 

Both the inherent uncertainty in the data ( ~ ( o k ) ,  and the error due to interpolation can be 
made arbitrarily small, cam quo the error bound can be made arbitrarily tight, in a certain 
frequency region by improving the discrete estimate. Note that the error bound ( ~ ( w k )  is 
essentially frequency-dependent and that the frequency points o k  E Q need not be positioned 
equidistantly over the frequency axis. In comparison with References 7 and 5 ,  this creates a 
lot of freedom to shape the error bound into an accepted (allowable) form, which - from a 
control point of view - definitely should be frequency-dependent. 

3. when 6 ( w )  

6. EXAMPLE 

To illustrate our results a simulation was made of a fifth-order system 

whose impulse response satisfies a bound given by MO = 3 and PO = 1 -256. There was 10 percent 
(in amplitude) coloured noise (high-pass-filtered white noise) on the output. The nominal 
model is given as 

0.79 + 0.092-l - O.24~-~ + 0.63~-~ 
Gnom(Z)= 1 - 1 -252-'+ 0~752-~ + O-OSZ-~ 

Based on this nominal model a robust controller was designed for the system 

In this example we will focus on the following two questions 

0 When the controller is applied to the true system Go(z), will the resulting closed loop 

0 What is the quality of the nominal model? 
configuration be stable? 

To answer the first question we will investigate whether the loop gain G o ( o ) C o ( w )  does encircle 
the point -1 in the Nyquist diagram. In order to build in some safety, caw quo some robust 
performance, we require in addition that the loop gain does not enter a circle with radius 0.3 
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around the point -1. The resulting allowable uncertainty is 

As a priori information on the impulse response we choose M =  3 and p = 1.2. The upper 
bound p ( w k )  was set to p ( w k )  = 3 d w N ,  where CP&) denotes the spectrum of the 
noise. For normally distributed noise this upper bound has a probability of 99-99 per cent of 
being valid, and indeed was satisfied for all experiments. 

The input signal was chosen to obey U p  = 2 and U = 1 .  For the first experiment we used 178 
points with N= 128, NO = 128 and N, = 50. The magnitude of the DFT of the input signal in 
the interval Tg,, I Us(wk) I ,  is given in Figure 3. In Figure 4 the allowable error 6a(w), the 
error bound A(w) and the error due to approximation P ( w k )  are given. The inherent uncertainty 
in the data ( ~ ( w k )  equals 8 ( w k )  - ~ ( w L ) .  The error due to interpolation is indicated by the 
curves between the points B(wk). Clearly, in the frequency interval w = [0 .8 ,1*3]  rad/s it is 
possible that the actual error is larger than the allowable one, so that no stability guarantee 
can be given. 

In order to be able to improve the error bound we will take a closer look at the error- 
generating processes. The true error due to approximation is fuced, because the nominal model 
is fixed. Using the prior information M, p, UP and U, it follows from Corollary 3.3 that the 
error due to initial and final conditions is less than 0.01, and therefore is neglectable. Hence 
we can only improve upon the errors due to noise and interpolation. From Figure 4 it follows 
that in the frequency interval w = [0 .8 ,1*  11 rad/s the noise as well as the interpolation error 
needs to be improved. In the frequency interval w = [ l  - 1,1*3]  rad/s it probably will suffice to 
decrease the error due to the noise only. 
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Figure 3. I U"(wk) 1, the magnitude of the DFT of the input signal in the interval TE, 
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Figure4. The error bounds and the true error: & ( w )  (dashed line), S ( w )  (solid line), 6(0*) (0). P ( w r )  (*), 
I Go(o) - G,,(w) I (chain line) 

The specific improvements mentioned above can be achieved accurately by input design. The 
magnitude of the DFT of the new input signal is given in Figure5. We choose N=512, 
NO = 256 and N, = 50. We used an input signal having two periods, in order to obtain a higher 
signal to noise ratio in the frequency domain I Us(wk)  111 Vs(wk)  I compared to the previous 
experiment, while maintaining the constraint U = 1. Also, the period length NO was increased 
to obtain a denser DFT frequency grid. This denser grid is needed in the frequency interval 
w = [0.8,1* 11 rad/s to be able to reduce the distance between two frequency points wk when 
compared to Figure 3, in order to decrease the error due to interpolation in this frequency 
region. The magnitude of the DFT of the input signal was shaped as follows. Because the error 
due to initial and final conditions is neglectable, we have a ( w k )  = p ( w k ) / l  Us&) I. 
Also 6(ok) = a ( w k )  + /3(wk)  < 2ru(wk) + I G o ( w k )  - Gnom(wk) I. Choosing I Us(~k) I = 2 ( 6 a ( ~ )  - 
1 G o ( w k )  - Gno,(Wk) I ) - ' p ( w k )  therefore would result in 6 ( w k )  < 6a(wk). However, because 
Go is unknown, we choose I Us(ok) I to be proportional to (&(wk)  - /3 (wk) ) - l  p ( w k ) .  

In Figure 6 the resulting error bounds are given, together with the allowable error and the 
true error. Note that p ( w k )  provides a good indication of the true error, and that the error 
bound 6 ( w )  can be made almost equal to the true error by input design. 

Combining the two error bounds, which is possible because the nominal model is fixed, 
proves that the actual error is indeed lower than the allowable error, meaning that the true 
closed loop system will be stable. The controller therefore can be implemented safely. 
However, the nominal model is not correct. A better nominal model certainly is desirable. If 
the control requirements would have been slightly more severe, a better (higher order) nominal 
model even would have been necessary to be able to prove stability of the closed loop. Clearly, 
the modelling error in the frequency interval w = [0.8,1- 11 rad/s is crucial. A shorter 
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experimentation time would have been sufficient if the nominal model had been more accurate 
in this frequency interval. 

The above demonstrates the interplay between the accuracy of the error bound 
(experimentation time), modelling accuracy (modelling effort, model order), and control 
specifications (robustness, performance). 

7. CONCLUSIONS 

In this paper a procedure is presented to quantify the model uncertainty of any prespecified 
nominal model, given a sequence of measurement data from a plant. In the procedure 
presented the empirical transfer function estimate (ETFE) is used to construct a 
(nonparametric) estimate of the transfer function in a finite number of frequency points, 
together with an upper bound on the error. Through interpolation, this error bound can be 
transformed to a bound which is available on a continuous frequency interval. A frequency- 
dependent upper bound is obtained, which is much more tailored to the needs of a robust 
control design scheme than an Ha-bound. In order to obtain a tight error bound, a special 
input signal is proposed (partly periodic) which has advantages over (classical) sinewave 
experiments. 

The estimated upper bound for the model error of a prespecified nominal model can be split 
into three parts: one part due to the inherent uncertainty in the data, a second part due to 
interpolation, and a third part due to imperfections of the nominal model. These three 
components can be tuned almost independently, by appropriate experiment design and by 
choosing an appropriate nominal model. When the error bound is too conservative in relation 
with control design specifications, information is provided as to which action should be taken 
(new experiments or alternative nominal model) in order to satisfy the design requirements. 
Because the nominal model is not a fixed function of the data, it is not necessary to change 
the nominal model when a new set of measurements is used. Therefore it is possible to restrict 
attention to a specific frequency region when designing the new input signal, the error bound 
for other frequencies remains valid if the nominal model is not changed. 

APPENDIX A: PROOF OF THEOREM 3.2 

A.1. Properties of the N-point DFT 

To give the proof we have to start by taking a closer look at the properties of the N-point DFT, and 
by dealing with some additional definitions and notation. The periodic continuation of a signal x(t) is 
denoted by xR(t) 

xR(t+kN)=x(t) for kcZ, t c T N  
The N-point DFT and inverse DFT are defined in ( 5 )  and (6). A set of N-complex orthogonal time-domain 
elementary functions (complex sinewaves) now can be given as 

There holds 

N -  1 

x(t) = h ( t )  for t c  TN 
k=O 
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Note that the elementary functions are also defined outside TN, and that outside TN they are given by 
periodic continuation. Hence, for t TN the inverse N-point DFT gives a periodic continuation 

N -  1 

X R ( t )  = C &(t) for f 6 (19) 
k=O 

Consider the transformation matrix WNE C N x N  

(20) 

1 ... 1 
... 

e-j(N- 1)(2~(N- 1)/N) ... 
Note that WN/@ is an orthonormal matrix: W N ~ ~ / N =  W;WN/N= I. W; denotes the complex 
conjugate transpose of the matrix WN. The N-point DFT can now be seen as a change of basis, where 
the new orthogonal set of basis functions is given by the columns of the matrix WN. There holds 

where the nonzero element appears in the (k + 1)th row. When a signal is used only over the time interval 
TRS the DFT is defined according to (7), (8), and the elementary functions read 

N -  1 
x ( t )  = C ni( t )  for t~ TE, 

k=O 

1 

N 
2i(t)  = - X s ( 2 r k / N )  eJ(2Tk”)(‘-Ns) for t E TEs 

Finally, the past values of the input signal (t < 0) are sometimes denoted as u P ( t )  to stress that they are 
unknown. 

A.2. Proof 
key observation is that we are able to decompose the input signal u(t )  over a measurement interval 
in the basis WN. 

N -  1 

u(t )  = C rii(t) for t c  ~ ~ + ~ s  

k=O 

This can be done only for partly periodic input signals, see (19). For t E TN”, the output now can be 
written as 

m 

y ( t )  = C go(i)u(t - i )  + v ( t )  
i=O 

Note that for an elementary function there holds 
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where * denotes convolution. Hence 

N- 1 m 

= c Go(2uk/N)fii(t) - C go(i)uR(t - i )  
k=O i = f + l  

Equation (23) now can be written as 
N- 1 m 

y ( t )  = G0(2uk/N)rif(t) + c go(i) [uP( t  - i )  - uR(t  - ill + u ( t )  ( 2 5 )  
k=O i = r + 1  

Define 
OD 

e ( t )  = c go(i) [up(? - i) - uR(t - ill (26) 
i= i+ l  

Writing down equation (25) for all r 6 TgS, and using equations (22) and (26) results in 

Premultiplying with the (I + 1)th row of WN and using equation (21) gives 

Ys(2rI/N) = Go(2d/N)US(2rf /N)  + Es(2rf /N)  + V S ( 2 d / N )  

By using the assumptions made on the impulse response and the input signal, an upper bound for 
E"(2rlIN) can be derived 

I E S ( ~ ~ I / N )  I I c e-j(2*I/N)(t-Ns) 2 go(i)  [ u p ( t  - i) - u ~ ( t  - ill I N,+N-I 

t=N, i =i+ 1 

N,+N-I 

6 ( f i P + f i )  c 2 lgo(i)I 
r=N, i = I + l  

The result now follows by using the assumption made on the noise. 

APPENDIX B: PROOF OF PROPOSITION 4.1 

m 

6 2 I* I g o ( 0  I 6 M c I kP-k  
I = O  I = O  

The use of standard Taylor series concludes the proof. 



318 D. K. DE VRIES AND P. M. J. VAN DEN HOF 

APPENDIX C: PROOF OF PROPOSITION 4.2 

Write F(ej") = Go(ej") - Gm,(ej"). To prove the first inequality of Proposition 4.2 we now have to 
prove that for a scalar complex function F(e'") there holds 

We will only give the proof for k =  1 (first derivative), the proof for k = 2 (second derivative) is 
completely analogous. Writing down the 6rst derivative of I FJ = (F*F)l" gives 

d 
dw 2 l F I  

Note that for any scalar complex function F(ej") there holds d(F*)/dw = (dF/dw)* because 
lim F*(ej"*) - FS(ej"l) = lim (F(ejWz) - F(ej"1)Y 

W b l  0 2  - w1 WZlW 4 2 - w 1  

Therefore 

The first inequality of Proposition 4.2 now follows by noting that for any complex scalar a there holds 
1 a* I = I a I. The second inequality of Proposition 4 . 2  is just the triangle inequality. 

APPENDIX D: INTERPOLATION ALGORITHM 

To be able to give analytic expressions for the location of the maximum one has to distinguish several 
cases, depending on which part of the interpolating function f(x) actually is used. It is, for example, 
possible that 71, 7 2 ,  6(Wk) and &&+I) are such that the interpolating function f(x) reduces to part I. 
In all, there are ten possibilities: only part I, only part 11, part I and 11, etc. 

Algorithm D.1 

function of Ax,  Ay, 71 and 72. 
All possibilities of the function given in equation (12) to interpolate two points are given below, as a 

A maximum occurs if 

or if 

I A y I < X A x 2  and A x < Z  
2 7 2  

If a maximum occurs we can distinguish the following four cases. 

All four parts of f(x), as depicted in Figure 1, are used. 

Parts I, I1 and I11 of f(x) are used. 

Parts 11, 111 and IV of f(x) are used. 

Parts I1 and I11 of f(x) are used. 

1. If Ax1 2 yl/yz and Ax2 2 7 1 / 7 2  then Ax1 = (AY + 71 Ax)/(271). 

2 .  If Axl  2 YI/YZ and Ax2 < yl /y~  then Ax1 = (TI/YZ) + A x  - J(2/72)(71 A x  - 0 ) .  

3. If Axl < 71/72  and Ax2 2 Y I / ' ~ Z  then Ax1 = &2/72)(71 A x +  AY) - (71/71). 

4 .  If Ax1 < 71/72 and Ax2 < y l / y ~  then Ax1 = (Ay/(72 Ax)) + (Ax/2). 

The maximum height hl above 6(w&) is given by hl = -f(Axl), where f(x) is given in equation (12). 
If no maximum occurs we can distinguish the following six cases. 
1 .  If 71 AX - (742) AX' 6 A y  < 71 AX then AXI = (*/1/72) + AX - 4(2/72)(71 AX- AY). 

Note that Ax1 ) Ax. Parts I and I1 of f(x) are used. 
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2. If (742) Ax2  Q A y  < 71 A x  - (y2/2) Ax2  then Ax1 = (Ax/2)  + ( A y / ( y ~  Ax) ) .  

3. If yl A x  - (y2/2) Ax2 Q - A y  < 71 A x  then Ax2 = (yl/y2) + A x  - , / (2/y2)(yl  A x  + A y ) .  

4. If ( y2 /2 )  Ax2  < - A y  < 71 A x  - (y2/2) A x  then Ax2 = (Ax/2)  - ( A y / ( y ~  Ax) ) .  

5 .  If A y  = 71 A x  then Ax1 = ( y l / y z )  + Ax. 

6 .  If A y  = - y l  A x  then Ax2 = (y1/yz) + Ax. 

Note that Axl 2 Ax. Only part 11 of f ( x )  is used. 

Note that Ax2 2 Ax. Parts 111 and IV of ( x )  are used. 

Note that Ax2 2 Ax. Only part 111 of f ( x )  is used. 

Only part I of f ( x )  is used. 

Only part IV of f ( x )  is used. 

I 

Proof. Direct computation. 0 

Using (12) and (13) an upper bound for the difference between the system and the nominal model over 
the whole frequency interval can be calculated. 
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