Test for Local Structural Identifiability of High-order Non-linearly Parametrized State Space Models

HANS G. M. DÖTSCH† and PAUL M. J. VAN DEN HOF†

Structural identifiability of high-order, physically parametrized, and possibly unstable state space models can be assessed by rank evaluation of an information matrix that can be computed based on simple analytical expressions.

Key Words—System identification; physical models; identifiability; state space models; gradients.

Abstract—In this paper the issue of local structural identifiability of high-order state space models with non-linear parametrizations is addressed. Two methods are presented that provide analytical expressions for information matrices of which the rank determines identifiability. The first method requires solving a Lyapunov equation of high dimension and is applicable only to stable models. The second method applies also to unstable models and is based on a gradient computation algorithm by dynamic programming, that normally is used in an identification framework. Copyright ©1996 Elsevier Science Ltd.

1. INTRODUCTION

The issue addressed in this paper concerns identifiability of linear, time invariant model structures where the parametrization is based on, for example, physical a priori knowledge of the process. If the physically interpretable parameters are to be determined using system identification, identifiability of the parameters is imperative for two reasons.

Firstly, if different parameter values correspond to the same input–output behavior, the parameters do not provide a unique physical description of the process. Secondly, a non-unique model parametrization might result in an ill-posed identification problem. For these reasons investigation of the existence of a one-to-one relation between the input–output behavior of the model and the physical parameters is a necessary exercise before the actual parameter estimation procedure is carried out. The problem of investigating this relation is referred to as structural identifiability of a model parametrization and is the subject of this paper.

In literature the topic of structural identifiability has received an extensive amount of attention. Bellman and Aström (1970) stated the concept; the subject has been thoroughly studied in the field of biological and biochemical modeling (Rubinow and Winzer, 1971; Cobelli et al., 1979; Norton, 1980; Godfrey, 1983).

State space model parametrizations are analyzed by Glover and Willems (1974), Grewal and Glover (1976) and Walter (1981). The problem has been treated in a stochastic framework by Rothenberg (1971) and Tse (1973). Structural identifiability of models in terms of differential-algebraic expressions has been investigated by Ljung and Glad (1991). Dasgupta and Anderson (1987) consider the situation of processes with transfer functions that are multilinear in the unknown parameters.

We focus on the case that available a priori knowledge leads to formulation of a linear, time invariant high-order state space model where the model parameters are non-linear expressions of the physically interpretable parameters. Investigation of local structural identifiability using existing techniques in this case has its limitations. On one hand methods proposed in the field of biological modeling are restricted to a specific type of parametrization, i.e. compartmental model parametrizations (Godfrey, 1983; Norton, 1980). On the other hand the calculation effort required by methods based on non-linearly parametrized state space models increases drastically or may even become impossible in case of increasing model order (Grewal and

Received 7 November 1994; revised 24 July 1995; received in final form 8 January 1996.
In this paper two methods are proposed for analysis of local structural identifiability of non-linearly parametrized, high-order state space model representations. Both methods are based on rank evaluation of a Jacobian matrix, being similar to a rank test on the information matrix as formulated by Rothenberg (1971) and Tse (1973). A problem in their work still is the computation of the information matrix in the related identification problem.

We will present two different methods where the required rank test is formulated on information matrices related to an infinite-time and a finite-time identification criterion. The first method provides a compact solution to the problem but requires solving a Lyapunov equation of (very) high dimension. The method only holds for stable models which may pose problems in case the physics of the process dictate, for instance, an integrator. An alternative method provides an extension to unstable systems. Hence, calculation of an analytical expression for the (finite-time) information matrix is enabled through use of an algorithm for gradient computation, based on a dynamic programming formulation and normally used in a prediction-error identification framework. Both methods require analytical expressions for the partial derivatives of the state space matrices with respect to the argument parameters and show limited complexity.

In our notation we will consider the discrete-time case, however, it will be explained a posteriori that both methods are also applicable to continuous-time state space realizations. Firstly we will briefly review the local structural identifiability problem. The approach based on calculation of the infinite-time information matrix is presented in Section 3. Next, the computational aspects of local structural analysis based on gradient computation are elaborated in Section 4. A simulation example is treated in Section 5.

1. LOCAL STRUCTURAL IDENTIFIABILITY

Consider a linear, time invariant single-input, single-output discrete-time state space model structure, parametrized in θ:

$$
\begin{align*}
x(k + 1) &= A(\theta)x(k) + b(\theta)u(k), \\
y(k) &= c(\theta)x(k),
\end{align*}
$$

(1) where $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}$, $y(k) \in \mathbb{R}$ and $\theta \in \Theta \subset \mathbb{R}^q$. Without loss of generality the direct feedthrough $d(\theta)$ is assumed to be 0. The elements of $A(\theta)$, $b(\theta)$, $c(\theta)$ are supposed to be algebraic functions of the elements of θ.

For a definition of local structural identifiability we adopt the formulation by Glover and Willems (1974):

Definition 1. A model structure (1), (2) is said to be locally identifiable from the transfer function at the point $\hat{\theta} \in \Theta$ if there exists $\epsilon > 0$ such that the following conditions:

(1) $\|\theta_1 - \hat{\theta}\| < \epsilon$, $\|\theta_2 - \hat{\theta}\| < \epsilon$; and

(2) $c(\theta_1)(zI - A(\theta_1))^{-1}b(\theta_1) = c(\theta_2)(zI - A(\theta_2))^{-1}b(\theta_2)
$ for all $z \in \mathbb{C} \setminus \{\lambda(A(\theta_1)), \lambda(A(\theta_2))\}$

where $\lambda(\cdot)$ indicates the set of eigenvalues of a matrix;

imply that $\theta_1 = \theta_2$. □

In words, in the neighborhood of $\hat{\theta}$ there are no two models with distinct parameters which have the same transfer function. In Definition 1 equality of the transfer functions is related to equality of the parameters. To mould this in a mathematical framework the following lemma on injective maps is presented (Glover and Willems, 1974):

Lemma 1. Let Ω be an open set in \mathbb{R}^n and $f : \Omega \rightarrow \mathbb{R}^m$ be a k-times continuously differentiable map with $k \geq 1$. If $\partial f(x)/\partial x$ has constant rank r in a neighborhood of \hat{x}, then f is locally injective at \hat{x} if and only if $r = n$.

Now Definition 1 together with Lemma 1 lead to the following proposition (see also Grewal and Glover, 1976; Norton, 1980).

Proposition 1. Consider the map $S_m : \Theta \subset \mathbb{R}^q \rightarrow \mathbb{R}^m$ defined by:

$$
S_m(\theta) := [h(1, \theta) \ h(2, \theta) \ \ldots \ h(m, \theta)]^T,
$$

(3)

where $h(k, \theta) = c(\theta)A^{k-1}(\theta)b(\theta)$ $(k = 1, 2, \ldots, m)$ are the first m Markov parameters of the model.

Then, the model structure (1), (2) is locally structural identifiable in $\theta = \theta_0$ if for any $m \geq 2n$, rank($\partial S_m/\partial \theta$) = q in $\theta = \theta_0$. □

So, analysis of local structural identifiability of (1), (2) amounts to evaluation of the rank of the Jacobian matrix

$$
\frac{\partial S_m(\theta)}{\partial \theta} \bigg|_{\theta = \theta_0} = \begin{bmatrix}
\begin{array}{cccc}
\frac{\partial h(1)}{\partial \theta_1} & \frac{\partial h(1)}{\partial \theta_2} & \ldots & \frac{\partial h(1)}{\partial \theta_q} \\
\frac{\partial h(2)}{\partial \theta_1} & \frac{\partial h(2)}{\partial \theta_2} & \ldots & \frac{\partial h(2)}{\partial \theta_q} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial h(m)}{\partial \theta_1} & \frac{\partial h(m)}{\partial \theta_2} & \ldots & \frac{\partial h(m)}{\partial \theta_q}
\end{array}
\end{bmatrix}
$$

(4)
with dimensions $m \times q$, while $m \geq 2n$. A test on the rank of (4) is equivalent to a rank test on the matrix

$$
\left(\frac{\partial S_m(\theta)}{\partial \theta} \right)^T \frac{\partial S_m(\theta)}{\partial \theta} \bigg|_{\theta = \theta_0},
$$

and so local structural identifiability can be determined by a rank test on (5). With (slight) abuse of terminology we will refer to (5) as an information matrix, as it can be shown to be equal to the Fisher information matrix for specifically formulated identification problems. In the next two sections analytical expressions for two information matrices are presented for the situations of $m \to \infty$ and for $m = 2n$.

3. IDENTIFIABILITY ANALYSIS BASED ON INFINITE-TIME INFORMATION MATRIX

In this section we will present a result that is based on the evaluation of the separate elements in the infinite-time information matrix, of which element (i, j) is determined by

$$
\left(\frac{\partial S_m(\theta)}{\partial \theta} \right)^T \frac{\partial S_m(\theta)}{\partial \theta} \bigg|_{\theta = \theta_0} = \sum_{k=1}^{\infty} \frac{\partial h(k)}{\partial \theta_i} \frac{\partial h(k)}{\partial \theta_j}. \tag{6}
$$

Following an approach that is taken by Peeters (1994), for any dynamical system in state space form (1), (2) the derivative of the output with respect to θ_i can be written as:

$$
\begin{bmatrix}
 x(k + 1) \\
 x^{(i)}(k + 1)
\end{bmatrix}
= \begin{bmatrix} A & 0 & \cdots & 0 \\
 A^{(i)} & A \\ . & . & . & . \\
 0 & 0 & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
 x(k) \\
 x^{(i)}(k)
\end{bmatrix}
+ \begin{bmatrix} b \\
 b^{(i)}
\end{bmatrix} u(k) \tag{7}
$$

where the notation $(\cdot)^{(i)}$ refers to the derivative $\partial / \partial \theta_i$. This expression was employed by Peeters (1994) for finding explicit expressions for an information matrix in a closely related situation. We can now employ the following proposition.

Proposition 2. Consider a state space model structure (1), (2) with u a stationary stochastic white noise process. If $A(\theta_0)$ has all eigenvalues within the open unit disc, then

$$
\begin{bmatrix}
 x(k + 1) \\
 x^{(i)}(k + 1)
\end{bmatrix}
= \begin{bmatrix} A & 0 & \cdots & 0 \\
 A^{(i)} & A \\ . & . & . & . \\
 0 & 0 & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
 x(k) \\
 x^{(i)}(k)
\end{bmatrix}
+ \begin{bmatrix} b \\
 b^{(i)}
\end{bmatrix} u(k) \tag{7}
$$

Stability of (7), (8) is required to ensure boundedness of (9).

For convergence of the right-hand side of (9), this approach is confined to stable state space models. The expression in the proposition is equal to the (i, j)-element of the infinite-time information matrix, as shown in (6). Building on the state space expressions (7), (8) we can now write

$$
\begin{bmatrix}
 y^{(1)}(k) \\
 y^{(2)}(k)
\end{bmatrix}
= \begin{bmatrix} c^{(1)} & 0 & \cdots & 0 \\
 c^{(2)} & c \\ . & . & . & . \\
 0 & 0 & \cdots & \cdots \\
\end{bmatrix}
\begin{bmatrix}
 y(k) \\
 y^{(i)}(k)
\end{bmatrix}
\times \begin{bmatrix}
 x(k) \\
 x^{(i)}(k)
\end{bmatrix} \tag{8}
$$

This leads to the following theorem.

Theorem 1. Let $A(\theta_0)$ have all eigenvalues in the open unit disc. Then

$$
\left(\frac{\partial S_m(\theta)}{\partial \theta} \right)^T \frac{\partial S_m(\theta)}{\partial \theta} \bigg|_{\theta = \theta_0} = C_2 P C_1^T \tag{12}
$$

with P the solution to the Lyapunov equation

$$
P = A_x P A_x^T + B_x B_x^T, \tag{13}
$$

where A_x, B_x and C_x are the respective matrices in the state space representation (10), (11) for $\theta = \theta_0$.

Proof. It follows from Proposition 2 that the considered information matrix is given by the covariance matrix of the output process (11). This covariance can directly be calculated by using the state covariance P.

Local identifiability of the model structure can now be tested in $\theta = \theta_0$ by testing the rank of (12).
Note that for solving (13) a Lyapunov equation has to be solved having dimension \((q + 1)n\). This comes down to the calculation of the controllability Gramian of the state space model \((A_x, B_x, C_x)\). Especially for high-order state space models (large \(n\)), the dimension of this problem can become very large.

To solve the equation (13) accurately, the specific structural properties of the matrix \(A_x\) should be efficiently used. A further analysis of this problem is outside the scope of this paper.

With respect to the high-dimensionality of the concerned problem, it has to be stressed that in the approach of Glover and Willems (1974), a rank test has to be performed on a square matrix of dimension \(n^2 + q\), which in general will be essentially larger than \((q + 1)n\).

Remark 1. For the method presented in this section there exists an equivalent formulation for a continuous-time model structure. In that case the discrete-time Lyapunov equation (13) is naturally replaced by the continuous-time Lyapunov equation \(A_x P + P A_x^T = B_x B_x^T\).

4. IDENTIFIABILITY ANALYSIS BASED ON FINITE-TIME INFORMATION MATRIX

As stated in the previous section, calculation of an infinite-time information matrix only holds for stable state space models. As will be shown in the example in Section 5, there are many processes that are marginally stable, e.g. when their dynamic behavior contains an integrator.

In this section it is shown that the problem of evaluating the rank of (4) for finite values of \(m\) enables identifiability analysis of unstable models and can be solved by adequately rephrasing the identifiability problem and applying an algorithm for gradient computation.

4.1. Rephrasing the identifiability problem

Consider the following "thought" identification problem, i.e. the identification is not actually carried out. Let there be given a linear, time-invariant system that generates input-output data \(\{u(k), y(k)\}_{k=0}^{\infty}\), determined by

\[
\begin{align*}
 x(k + 1) &= A(\theta)x(k) + b(\theta)u(k), \\
 y(k) &= c(\theta_0)x(k) + e(k),
\end{align*}
\]

where state \(x(k) \in \mathbb{R}^n\), input \(u(k) \in \mathbb{R}\), output \(y(k) \in \mathbb{R}\) and \(\{e(k)\}\) a sequence of independent, identically distributed random variables (white noise) with unit variance. When identifying a model on the basis of measurement data obtained from this data generating system, we consider a state space model structure

\[
x(k + 1) = A(\theta)x(k) + b(\theta)u(k), \\
\epsilon(k, \theta) = y(k) - c(\theta)x(k),
\]

where \(A(\theta), b(\theta), c(\theta)\) is a parametrized state space model with \(\theta \in \Theta \subset \mathbb{R}^q\) and \(\epsilon(k, \theta)\) the one-step-ahead prediction error (Ljung, 1987). The corresponding least squares identification criterion is given by

\[
V_N(\theta) = \frac{1}{2} \sum_{k=1}^{N} \epsilon^2(k, \theta).
\]

To this end the following proposition will be fruitful.

Proposition 3. Consider a parametrized model structure (16), and any \(\theta_0 \in \Theta\). Let a data generating system \((A(\theta_0), b(\theta_0), c(\theta_0))\) generate input-output data according to (14), (15) with \(u(k)\) a unit pulse signal, i.e. \(u(k) = 1, k = 0; u(k) = 0, k > 0\). Then

\[
E \left(\frac{\partial V_N(\theta)}{\partial \theta} \right) \left(\frac{\partial V_N(\theta)}{\partial \theta} \right)^T |_{\theta_0} = E \left(\frac{\partial S_N(\theta)}{\partial \theta} \right) \left(\frac{\partial S_N(\theta)}{\partial \theta} \right)^T |_{\theta_0}
\]

with \(V_N(\theta)\) and \(S_N(\theta)\) as expressed in (17), (4), and \(E\) the expectation operator.

Proof. Under pulse input conditions, the prediction error satisfies

\[
\epsilon(k, \theta) = y(k) - h(k, \theta),
\]

where \(h(k, \theta)\) represents the \(k\)-th element of the pulse response of the model. The gradient \(\partial V_N(\theta)/\partial \theta\) can now be expressed as

\[
\frac{\partial V_N(\theta)}{\partial \theta} = - \sum_{k=1}^{N} \epsilon(k, \theta) \frac{\partial h(k, \theta)}{\partial \theta}.
\]

Consequently

\[
E \left(\frac{\partial V_N(\theta)}{\partial \theta} \right) \left(\frac{\partial V_N(\theta)}{\partial \theta} \right)^T |_{\theta_0} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{\partial h(k, \theta_0)}{\partial \theta} E \epsilon(k, \theta_0) \epsilon(l, \theta_0) \left(\frac{\partial h(l, \theta_0)}{\partial \theta} \right)^T.
\]

\[
= \sum_{k=1}^{N} \frac{\partial h(k, \theta_0)}{\partial \theta} \left(\frac{\partial h(k, \theta_0)}{\partial \theta} \right)^T,
\]

where the last equality follows from the unit-variance white noise property of \(\epsilon(k, \theta_0)\).

* For reasons that will become clear later on, we will not consider a factor \(\frac{1}{N}\) in \(V_N(\theta)\).
So, for any $N > 0$

$$E \left[\frac{\partial V_N}{\partial \theta} \frac{\partial V_N}{\partial \theta}^T \right]_{\theta = \theta_0} = \sum_{k=1}^{N} \left[\begin{array}{cccc} \frac{\partial h(k)}{\partial \theta_1} & \frac{\partial h(k)}{\partial \theta_2} & \cdots & \frac{\partial h(k)}{\partial \theta_q} \\ \frac{\partial h(k)}{\partial \theta_1} & \frac{\partial h(k)}{\partial \theta_2} & \cdots & \frac{\partial h(k)}{\partial \theta_q} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial h(k)}{\partial \theta_1} & \frac{\partial h(k)}{\partial \theta_2} & \cdots & \frac{\partial h(k)}{\partial \theta_q} \end{array} \right]$$

$$= \left(\frac{\partial V_N}{\partial \theta} \right)^T \left(\frac{\partial V_N}{\partial \theta} \right)_{\theta = \theta_0}. \quad (22)$$

Using the result of Proposition 3 local structural identifiability analysis amounts to rank evaluation of a finite-time information matrix under the conditions as specified in the "thought" experiment of Proposition 3, and by choosing a data interval $N \geq 2n$ according to Proposition 1.

4.2. An algorithm for gradient computation

In Van Zee and Bosgra (1982) an algorithm has been proposed that, based on measurements $(u(k), y(k))_{k=0, \ldots, N}$ and analytic expressions for the partial derivatives $\frac{\partial A(0)}{\partial \theta}, \frac{\partial b(e)}{\partial \theta}$ and $\frac{\partial c(e)}{\partial \theta}$ with respect to θ, $(r = 1, \ldots, q)$, generates the gradient $\frac{\partial V_N(\theta)}{\partial \theta}$ for a prechosen value of θ. This algorithm that is based on a dynamic programming formulation, is sketched next.

Consider the "thought" identification experiment as stated in Section 4.1. Dynamic programming formulation is based on the definition of a partial criterion function:

$$W_i(x(i), \theta) := \frac{1}{2} \sum_{k=i}^{N} \varepsilon^2(k, \theta) \quad (23)$$

and derivation of the partial derivatives of $W_i(x(i), \theta)$ with respect to $x(i)$ and θ on the given trajectory $x(i)$, where $W_i(x(i), \theta)$ is expressed as

$$W_i(x(i), \theta) = \frac{1}{2} \varepsilon^2(i, \theta) + W_{i+1}(x(i + 1), \theta). \quad (24)$$

This leads to

$$\frac{\partial}{\partial x(i)} W_i(x(i), \theta) = \frac{1}{2} \frac{\partial}{\partial x(i)} \varepsilon^2(i, \theta)$$

$$+ \frac{\partial}{\partial x(i + 1)} W_{i+1}(x(i + 1), \theta) \frac{\partial x(i + 1)}{\partial x(i)}$$

$$= -\varepsilon(i, \theta) c(\theta)$$

$$+ \frac{\partial}{\partial x(i + 1)} W_{i+1}(x(i + 1), \theta) A(\theta). \quad (25)$$

Local structural identifiability test

$$\frac{\partial}{\partial \theta} W_i(x(i), \theta) = \frac{1}{2} \frac{\partial}{\partial \theta} \varepsilon^2(i, \theta)$$

$$+ \frac{\partial}{\partial x(i + 1)} W_{i+1}(x(i + 1), \theta) \frac{\partial x(i + 1)}{\partial \theta}$$

$$+ \frac{\partial}{\partial \theta} W_{i+1}(x(i + 1), \theta). \quad (26)$$

Adopting the following notation:

$$\lambda_i^T := \frac{\partial}{\partial x(i)} W_i(x(i), \theta) \quad (27)$$

$$H_i(x(i), \lambda_{i+1}, \theta) := \frac{1}{2} \varepsilon^2(i, \theta)$$

$$+ \lambda_{i+1}^T [A x(i) + b u(i)] \quad (28)$$

calculation of the gradient $\frac{\partial}{\partial \theta} V_N(\theta)$ is carried out in the following two steps:

1. λ_i is computed for $i = 1, \ldots, N$ from

$$\lambda_i^T = \lambda_{i+1}^T A(\theta) - \varepsilon(i, \theta) c(\theta). \quad \lambda_N^{T+1} = 0. \quad (29)$$

This implies a backward run on the error sequence $\varepsilon(i, \theta)$;

2. $\frac{\partial}{\partial \theta} H_k$ is calculated for $k = 0, \ldots, N$ as

$$\frac{\partial}{\partial \theta} H_k = -\varepsilon(k, \theta) \frac{\partial}{\partial \theta} c(\theta)x(k) + \lambda_{k+1}^T [\frac{\partial}{\partial \theta} A(\theta)x(k) + \frac{\partial}{\partial \theta} b(\theta)u(k)]. \quad (30)$$

where $\frac{\partial}{\partial \theta} A(\theta)$, $\frac{\partial}{\partial \theta} b(\theta)$ and $\frac{\partial}{\partial \theta} c(\theta)$ are determined analytically.

The gradient $\frac{\partial V_N(\theta)}{\partial \theta}$ is finally found as:

$$\frac{\partial V_N(\theta)}{\partial \theta} = \sum_{k=0}^{N} \frac{\partial}{\partial \theta} H_k(x(k), \lambda_{k+1}, \theta). \quad (31)$$

4.3. An analytical expression for the information matrix

The results of the previous two subsections can now be employed to formulate an expression for the derivative $\frac{\partial V_N}{\partial \theta}$.

Lemma 2. Consider the gradient expressions (31), (28) and (27) and the experimental conditions as specified in Proposition 3. Then

$$\frac{\partial V_N}{\partial \theta} = -\sum_{k=1}^{2n} \varepsilon(k, \theta) \frac{\partial c}{\partial \theta} A^{k-1} b$$

$$- \sum_{k=1}^{2n} \varepsilon(k, \theta) c A^{k-1} \frac{\partial b}{\partial \theta}$$

$$- \sum_{j=1}^{2n} \sum_{k=1}^{j-1} \varepsilon(j, \theta) c A^{j-k-1} \frac{\partial A}{\partial \theta} A^{k-1} b. \quad (32)$$
Proof: An explicit expression for λ^T_1 is derived which follows from (27) in a straightforward way:

$$\lambda^T_1 = - \sum_{j=k}^{2n} \epsilon(j, \theta) c A^{j-k},$$

(33)

where $k = 1, \ldots, 2n$ and $\lambda^T_{1+1} = 0$. Substitution of (33) in (31) and taking into account the "thought" experimental conditions as stated in Proposition 3 result in expression (32) for the gradient. The third term of the expressions follows by rewriting the summation $\sum_{j=1}^{2n} \sum_{j=1}^{2n+1}$ into $\sum_{j=1}^{2n} \sum_{j=1}^{2n+1}$.

The information matrix can now be calculated element-wise by multiplying (32) with a similar expression for $\partial S_e/\partial \theta$ and taking the expectation. Since $E(\epsilon, \theta_0)$ is assumed to be a standard white noise, the terms of this product containing $E_\epsilon(i, \theta_0) E_\epsilon(j, \theta_0)$, where $i \neq j$ will disappear. The exact elaboration is quite technical and is presented in the Appendix. Here, we only state the result.

Before we do so, some notational conventions are introduced:

1. The extended controllability and observability matrices W_c are defined as

$$W_c := \left[b \ Ab \ A^2b \ldots \ A^{2n-1}b \right];$$

(34)

$$W_o := \left[c^T \ A^Tc^T \ldots \ (A^T)^{2n-1}c^T \right]^T;$$

(35)

2. For $i \leq j$, $E_c(i, j) \in \mathbb{R}^{2n \times (j-i+1)}$ is defined as the matrix that selects the i-th up to the j-th column of a matrix with $2n$ columns by post-multiplication:

$$E_c(i, j) := \left[\begin{array}{c} 0_{(i-1) \times (j-i+1)} \\ I_{(j-i+1) \times (j-i+1)} \\ 0_{(2n-j) \times (j-i+1)} \end{array} \right].$$

(36)

where $i, j = 1, \ldots, 2n$. $0_{p \times r}$ denotes the $(p \times r)$ 0-matrix; $I_{p \times p}$ denotes the $(p \times p)$ identity matrix;

3. For $i \leq j$, $E_o(i, j) \in \mathbb{R}^{(j-i) \times 2n}$ is defined as the matrix that selects the i-th up to the j-th row of a matrix with $2n$ rows by pre-multiplication:

$$E_o(i, j) := \left[\begin{array}{c} 0_{(j-i+1) \times (i-1)} \\ I_{(j-i+1) \times (j-i+1)} \\ 0_{(j-i+1) \times (2n-j)} \end{array} \right].$$

(37)

where $i, j = 1, \ldots, 2n.$

With these notational conventions we state the following result:

Proposition 4. Under the conditions stated in Proposition 3 and using the notational conventions (34), (35), (36) and (37) the (r,s)-element of the information matrix is expressed as:

$$E \left(\frac{\partial V_2}{\partial \theta_r} \right) \left(\frac{\partial V_2}{\partial \theta_s} \right)$$

$$= \frac{\partial b^T}{\partial \theta_r} W_e^T W_o \frac{\partial b}{\partial \theta_s} + \frac{\partial c}{\partial \theta_r} W_e W_c^T \frac{\partial c^T}{\partial \theta_s}$$

$$+ f_1(\theta, \theta) + f_2(\theta, \theta) + f_3(\theta, \theta) + f_4(\theta, \theta)$$

$$= f_1(\theta, \theta) + f_2(\theta, \theta) + f_3(\theta, \theta) + f_4(\theta, \theta)$$

(38)

with

$$f_1(\theta, \theta) = \frac{\partial c}{\partial \theta_1} W_e W_o \frac{\partial b}{\partial \theta_2}$$

(39)

$$f_2(\theta, \theta) = \sum_{k=1}^{2n-1} \frac{\partial c}{\partial \theta_1} W_e E_\epsilon(k + 1, 2n)$$

$$\times E_\epsilon(1, 2n - k) \left(W_e \frac{\partial A}{\partial \theta_2} W_c \right) E_\epsilon(k, k).$$

(40)

$$f_3(\theta, \theta) = \sum_{k=1}^{2n-1} \frac{\partial b^T}{\partial \theta_1} W_e W_c^T E_\epsilon(k + 1, 2n)$$

$$\times E_\epsilon(1, 2n - k) \left(W_e \frac{\partial A}{\partial \theta_2} W_c \right) E_\epsilon(k, k).$$

(41)

$$f_4(\theta, \theta) = \sum_{k=1}^{2n-1} \frac{\partial b^T}{\partial \theta_1} W_e W_c^T$$

$$\times E_\epsilon(\max(k, \ell) - k + 1, 2n - k)$$

$$\times E_\epsilon(\max(k, \ell) - \ell + 1, 2n - \ell) \left(W_e \frac{\partial A}{\partial \theta_2} W_c \right).$$

(42)

Proof: See the Appendix.

Although the analytical expression (38) seems quite elaborate, the calculation is straightforward.

Computation of the partial derivatives of the state space matrices $(A(\theta), b(\theta), c(\theta))$ with respect to $\theta_i (i = 1, \ldots, q)$ for $\theta = \theta_0$ is done by hand and the extended controllability and observability matrices are calculated straightforwardly.

Note that using the notation based on row- and column-selection the (r,s)-element of the information matrix is expressed in terms of:

$$W_o \left(\frac{\partial A}{\partial \theta_r} \right) W_e, W_o \left(\frac{\partial b}{\partial \theta_r} \right), \left(\frac{\partial c}{\partial \theta_r} \right) W_c,$$

(43)

From a computational point of view expression (38) constitutes an attractive basis for formulation of an algorithm for local structural analysis since the main computation effort consists of calcula-
Local structural identifiability test

The structure of the model is based on discrete-time mass conservation laws that describe mass exchange between an arbitrarily chosen number of compartments. The states represent the concentration of one component in each compartment. The model order is determined by the number of compartments that constitute the vessel, denoted as \(n_1 + n_2 \).

The state space matrices are partitioned accordingly and are expressed as follows:

\[
A(\theta) = \begin{bmatrix} A_{11}(\theta) & A_{12}(\theta) \\ A_{21}(\theta) & A_{22}(\theta) \end{bmatrix},
\]

where

\[
A_{11}(\theta) = \begin{bmatrix} 1 - \theta_1 - \theta_2 & 0 & \ldots & 0 & \theta_1^{-1} \theta_6 \\ \theta_5^{-1} \theta_1 \theta_4 & 0 & 0 \\ 0 & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \\ 0 & \ldots & 0 & 1 \\ \end{bmatrix}
\]

with dimension \(n_1 \times n_1 \) and

\[
A_{22}(\theta) = \begin{bmatrix} 1 - \theta_3 & 0 & \ldots & 0 \\ \theta_3 & 1 - \theta_3 & 0 & 0 \\ 0 & \theta_3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \ldots & 0 & \theta_3 \\ 0 & \ldots & 0 & f_0 - \theta_3 \\ \end{bmatrix}
\]

with dimension \(n_2 \times n_2 \). In the case where the process has a structural integrator, the parameter \(f_0 \) is equal to 1; in case of a continuous mass flow (structurally stable process) \(f_0 \) must satisfy \(f_0 < 1 \) and is chosen equal to 0.55.

The elements of \(A_{12}(\theta) \) and \(A_{21}(\theta) \) are all equal to zero except the \((1,1)\) element of \(A_{21}(\theta) = \theta_5^{-1} \theta_1 \theta_4 \) and the \((1,n_2)\) element of \(A_{12}(\theta) = \theta_4^{-1} \theta_3 \theta_5 \).

The input and output vector are:

\[
b(\theta) = \begin{bmatrix} 0 & \ldots & 0 & (\theta_4 + n_2 \theta_5 + n_1 \theta_6) & 0 & \ldots & 0 \end{bmatrix}^T
\]

\[
c(\theta) = \begin{bmatrix} 0 & \ldots & 0 & 0 & 0 \end{bmatrix}.
\]

The model has six parameters with a physical interpretation: \(\theta_{1,2,3} \) represent flow-rates and \(\theta_{4,5,6} \) compartment volumes. The choice of parameter for which structural analysis is carried out is based on physical insight and model simulations:

\[
\theta_0 = [0.0792 \ 0.1759 \ 0.9500 \ 9.4406 \ 1.6608 \ 0.7867]^T.
\]

For \(f_0 = 0.55 \) the infinite and finite-time information matrix is calculated; for \(f_0 = 1 \) only the finite-time information matrix is calculated. The results are shown in terms of the singular values of the calculated information matrices in Table 1.

From the zero singular value it may be concluded that for \(f_0 = 0.55 \) and \(f_0 = 1 \) the model is not locally structural identifiable at \(\theta = \theta_0 \).

A natural step to take now is to eliminate those parameters from the identification problem that show very small contribution to the input-output
algorithm for gradient computation, as formulated finite-time information matrix a specific "thought" matrix enables identifiability analysis for stable time model structures. Their applicability is verified methods apply to discrete-time and continuous-time information matrix. In the infinite-time case a compact solution is presented that requires solving a high-dimensional Lyapunov equation and only elements of the information matrices are shown. In this case the model dynamics seem to be the least sensitive with respect to θ_4.

6. CONCLUSIONS

In the case of model parametrizations based on physical modeling it is imperative to test local structural identifiability before parameter estimation is carried out. In this paper two methods are presented to test local structural identifiability of SISO, non-linearly parametrized state space models of high order. They are based on calculation and rank evaluation of an infinite-time and finite-time information matrix. In the infinite-time case a compact solution is presented that requires solving a high-dimensional Lyapunov equation and only holds for stable models. A finite-time information matrix enables identifiability analysis for stable as well as unstable models. For calculation of a finite-time information matrix a specific "thought" identification experiment is formulated and an algorithm for gradient computation, as formulated by Van Zee and Bosgra (1982), is applied. Both methods apply to discrete-time and continuous-time model structures. Their applicability is verified by showing the results of tests with a stable and marginally stable model of an industrial mixing process of order 40.

Acknowledgements—The work of Hans Dötsch is supported by Philips Research Laboratories, Eindhoven, The Netherlands. The authors gratefully acknowledge Ralf Peeters, for bringing his work to their attention.

REFERENCES

APPENDIX A. PROOF OF PROPOSITION 4

Calculation of the product E_{ij} is carried out by employing the expression (32) in Lemma 2 together with $E(i, \theta_0)E(j, \theta_0) = 0$ for $i \neq j$.

The first two terms in the expression (38) follow directly by considering the quadratic terms of the first and second terms in (32).

<table>
<thead>
<tr>
<th>λ_0</th>
<th>λ_1</th>
<th>λ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1375642</td>
<td>1.7522639</td>
<td>3.8864028</td>
</tr>
<tr>
<td>0.9858777</td>
<td>0.8815305</td>
<td>1.9976371</td>
</tr>
<tr>
<td>0.0540982</td>
<td>0.0409189</td>
<td>0.0967318</td>
</tr>
<tr>
<td>0.0014224</td>
<td>0.0010992</td>
<td>0.0030977</td>
</tr>
<tr>
<td>0.0000210</td>
<td>0.0000026</td>
<td>0.0000999</td>
</tr>
<tr>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_0</th>
<th>λ_1</th>
<th>λ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7965260</td>
<td>1.4037585</td>
<td>3.3047459</td>
</tr>
<tr>
<td>0.2337355</td>
<td>0.1445630</td>
<td>0.3544174</td>
</tr>
<tr>
<td>1.1234486</td>
<td>1.1042209</td>
<td>2.2674753</td>
</tr>
<tr>
<td>0.0001111</td>
<td>0.0000202</td>
<td>0.0000551</td>
</tr>
<tr>
<td>0.0136405</td>
<td>0.0112508</td>
<td>0.0277019</td>
</tr>
<tr>
<td>0.0145179</td>
<td>0.0119745</td>
<td>0.0294838</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_0</th>
<th>λ_1</th>
<th>λ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_0 = 0.55$</td>
<td>$f_0 = 1$</td>
<td>$f_0 = 2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_0</th>
<th>λ_1</th>
<th>λ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
<tr>
<td>0.0000210</td>
<td>0.0000026</td>
<td>0.0000999</td>
</tr>
<tr>
<td>0.0014224</td>
<td>0.0010992</td>
<td>0.0030977</td>
</tr>
<tr>
<td>0.0000210</td>
<td>0.0000026</td>
<td>0.0000999</td>
</tr>
<tr>
<td>0.0000000</td>
<td>0.0000000</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>
The f_1-terms in (38) follow from

$$
\sum_{k=1}^{n} \frac{\partial c}{\partial \theta_k} A^{t-1} b \left(c A^{t-1} b \right) - \frac{\partial c}{\partial \theta_k} W \frac{\partial c}{\partial \theta_k} A^{t-1} b
$$

The f_2-terms reflect the product of terms dependent on $\frac{\partial c}{\partial \theta_k}$ and $\frac{\partial c}{\partial \theta_j}$, and so

$$
f_2(\theta_k, \theta_j) = \sum_{j=1}^{n} \frac{\partial c}{\partial \theta_j} A^{t-1} b \sum_{t=1}^{k} c A^{t-1} b \frac{\partial A}{\partial \theta_k} A^{t-1} b.
$$

Rewriting the summations shows that this is equivalent to the expression

$$
\sum_{k=1}^{n} \sum_{t=1}^{k} \frac{\partial c}{\partial \theta_k} A^{t-1} b c A^{t-1} b \frac{\partial A}{\partial \theta_k} A^{t-1} b
$$
from which the expression for f_2 in the proposition follows directly.

The f_4-terms reflect the quadratic terms dependent on $\frac{\partial c}{\partial \theta_k}$ and $\frac{\partial c}{\partial \theta_j}$. They are calculated in a way that is similar to the calculation of f_2.

The f_4 term reflects the quadratic term of $\frac{\partial c}{\partial \theta_k}$. It follows from (32) that this term is given by

$$
f_4(\theta_k, \theta_j) =
\sum_{j=2}^{n} \sum_{k=1}^{n} \sum_{t=1}^{k} \left(c A^{t-1} b \frac{\partial A}{\partial \theta_k} A^{t-1} b \right)
\times \left(\frac{\partial A}{\partial \theta_j} A^{t-1} b \right)^T
\times \left(c A^{t-1} b \frac{\partial A}{\partial \theta_j} A^{t-1} b \right)^T
\times \left(c A^{t-1} b \frac{\partial A}{\partial \theta_j} A^{t-1} b \right)
\times E^{k} \left(\max(k, \ell) - k + 1, 2n - k \right)
\times E^{\ell} \left(\max(k, \ell) - \ell + 1, 2n - \ell \right) W \frac{\partial A}{\partial \theta_k} A^{t-1} b,
$$
which proves the result.