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Abstract 

In iterative schemes of identification and control one of the 
particular and important choices to make is the choice for a 
model uncertainty structure, capturing the uncertainty con- 
cerning the estimated plant model. This is typically done 
in some norm-bounded form, in order to guarantee robust 
stability and/or robust performance when redesigning the 
controller. Structures that are used in the recent literature 
encompass e.g. gap metric uncertainty, coprime factor un- 
certainty, and the Vinnicombe gap metric uncertainty. In 
this paper we study the effect of these choices when our 
aim is to maximize the (re)tuning freedom for a present con- 
troller under conditions of robust stability. Particular atten- 
tion will be given to the representation of plant uncertainty 
and controller tuning freedom in terms of Youla parame- 
ters. This so-called double Youla parametrization provides 
a norm-bounded set of robustly stabilizing controllers that 
is larger than corresponding sets that are achieved by using 
any of the other uncertainty structures. 

1 Problem Set-up 

We consider linear time-invariant finite dimensional sys- 
tems and controllers in RHoo, in a feedback configuration 
depicted in figure 1, denoted by H(Go,C), where Go is the 
plant to be (modelled and) controlled, and C a present and 
known controller to be redesigned. The closed-loop dynam- 

+• r l  

ra ~, ] C I +~ u ] Go I Y 
+-I 1 I 1 I 

Figure 1" Feedback interconnection H (Go, C). 

1This work is part of the research program of the 'Stichting voor Funda- 
menteel Onderzoek der Materie (FOM)', which is financially supported by 
the 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)'. 

ics of H(Go, C) are described by the transfer matrix 

-- I alO (I-Jr- Cao)-l[c I], T(Go, C) 

which maps the vector of variables col(rl,r2) into col(y,u). 
The closed-loop system is stable if and only if T(Go, C) ¢ 
RHo~. 
The problem field that we consider can be formulated as 
follows: 

Consider an (unknown) plant Go controlled by 
a known controller C, redesign the controller 
so as to achieve a better control performance 
for the controlled plant Go. 

There are several different aspects that can be distinguished 
in this problem, as e.g. 

• One can construct an identified (uncertainty) model 
of the plant Go on the basis of experimental data, 
e.g. composed of a nominal model and some norm- 
bounded model or parameter uncertainty. See e.g. 
[13,10,6,1]. 

• The redesigning of the controller can be performed 
on the basis of a single model (nominal design possi- 
bly extended with robustness verifications), a (norm- 
bounded) uncertainty model (robust design), or on no 
model at all (as e.g. in iterative feedback tuning [ 11]). 

If in the controller redesign a (norm-bounded) uncertainty 
model is taken into account, then the worst-case perfor- 
mance of the newly designed control system can be opti- 
mized. This approach is e.g. followed in [6] where the 
control design step is a robust control design optimizing 
the worst-case performance cost. If the uncertainty set that 
is identified contains the underlying real plant, guaranteed 
performance bounds will hold for the controlled real plant 
also. In this approach the control design utilizes all (uncer- 
tain) information on the plant that is available. The result- 
ing control design algorithm becomes relatively complex 
(/x-synthesis in the work of [6]). 
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When in the controller redesign only a nominal model is 
taken into account for the design itself, and an uncertainty 
model for the plant is used a posteriori to verify the robust- 
ness of this design, there is a need for robustness tests con- 
cerning stability (and possibly performance). 
In this contribution we focus on the latter situation, assum- 
ing that the controller C has to be redesigned (retuned) into 
Chew by some (not specified) design method, and that the 
aim is to construct a (norm-bounded) area around C that 
characterizes the tuning freedom for Chew under conditions 
of robust stability, i.e. under the condition that Chew stabi- 
lizes all models in the identified uncertainty set. 
The answer to this question, i.e. the size of the norm- 
bounded set of controllers, is typically dependent on the 
uncertainty structure that is chosen to represent the plant 
identification uncertainty. In this paper different structures 
will be analysed and compared. In particular a gap metric 
uncertainty structure will be applied and will be shown to 
lead to results that are more conservative than the results 
that are obtained when employing a so-called double Youla 
representation of plant uncertainty and controller retuning 
freedom. 

2 Preliminaries 

A coprime factor framework will be used to represent plants 
and controllers, employing both right coprime and left co- 
prime factorizations: 

G(s) -- N(s)D -1 (s) -- 0 -1 (s)Af(s) 

C(s) -- Nc(s)Dcl(s)  -- Dcl(s)Nc(s) (1) 

where (N,D) and (Nc,Dc) are right coprime factorizations 
(rcf) and (~',D) and (A[c,[:)c) are left coprime factorizations 
(lcf) over RHoo. [ 17] The coprime factorizations are normal- 
ized (nrcf), (n lc f ) i f  they additionally satisfy 

~ * ~ + b * b - /  N N * + D D * - - I  

where (.)* denotes complex conjugate transpose. 

Let G and C have coprime factorizations as in (1) and let 
A, ft E IRHoo be defined as 

a -- ~cN + / )c / )  X -- ~Nc +/) / )c ,  (2) 

then H(G,C) is stable iff A -1 C RHoo which is equivalent to 
the condition f t -  1 C RHoo ( [ 17]). 

3 Robust stability results for double-Youla 
representations 

Uncertainty on a plant Go can be described in very many 
different ways. In a norm-bounded formulation, there are 
options for additive, multiplicative, coprime-factor, gap- 
metric uncertainties, all having their particular robust sta- 
bility tests. See e.g. [5] for an overview in a rather uniform 
(coprime factor) framework. 
When considering robust performance tests on norm- 
bounded uncertainty sets, it has been motivated in [6] 

that for general classes of performance measures, norm- 
bounded uncertainty in a dual Youla parametrization frame- 
work has particular advantages. In this parametrization, 
a norm-bounded plant uncertainty set is considered of the 
form: 

Nx +DcAR IIARll < 
[P(Gx) - {G I G A -  D x - N c A n '  - 

with the present controller C given by the rcf C = NcDc 1 
and a nominal model Gx (stabilized by C) given by Gx = 
NxDx 1. In terms of stability, the dual-Youla parametriza- 
tion has the basic property that an element in ~P is stabilized 
by C if and only if the corresponding An is stable. 
Similar to characterizing plant uncertainty, a retuning or 
adaptation of the controller can be represented as a Youla- 
type "perturbation" on the present controller C. This results 
in the so-called double Youla parametrization, indicated in 
Figure 2, where 

Cnew := CA = (Nc 9- DxAc)(Dc -- NxAc) -1 • 

The following stability results apply to this situation ([16, 
14]). 

Proposition 1 Let Gx and C have normalized coprime fac- 
torizations as described above, and let H(Gx, C) be stable. 
Denote 

cA = (~+bc;XR)(Dx-~cTXR) -1 (3) 

CA : (~[c @ ff)x£C)(ff)c -- ~[x£C) -1" (4) 

Then for 7~R,7~C E RHoo 
(a) H(GA, CA) is stable if and only if H(7~R,[Xc) is stable; 
(b) H(GA,CA) is stable if there exist some unimodular 
Q, Qc E RHoo such that 

[IQ-l cOcll. Ilecl ROIl  < 1 (5) 

The unimodular matrices Q and Qc reflect the freedom in 
choosing the coprime factorizations of Gx and C. 
Based on the sufficient condition (b) for stability the follow- 
ing result can be formulated. 

Proposition 2 Given a nominal model Gx and a nominal 
controller C, with nrcf's as described before, such that 
H(Gx,C) C RHoo. Define a set of  plants ~y(~[G) and a set 
of  controllers Ct" (Yc) as 

- -  { a , ,  = I IIXRIIoo < w}  
e,,  { c A -  l llf, lloo < 
Then all plants in gY(YG) are stabilized by all controllers 
contained in the set Cy(yc) if and only if 

YG'Yc < 1. 

This Proposition serves as a means to specify the allowable 
area for retuning the controller C so as to guarantee robust 
stability for all models in the plant uncertainty set. Since 
the result is based on a small gain criterion, the resulting set 
of controllers equals the set of all controllers stabilizing the 
set ~Y(YG). Note that the freedom in choosing the coprime 
factorization of Gx and C has not been exploited yet. 
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Figure 2: Double Youla parametrization. 

4 Gap metric results 

When considering the gap metric as a measure for bound- 
ing plant uncertainty a similar analysis can be given as pre- 
sented in the previous section. The gap metric distance be- 
tween two systems Gx, GA is defined by 

8(Gx, GA) -- max{8(Gx, GA), 8(GA, Gx) } 

where the directed gap is: 

~(Gx, GA)-- inf OxNX ] _  [ NADA ] Ql]oo (6) 

where (Nx,Dx) and (Na,/)a)are nrcf's Gx and Ga. 
The stability result that is applicable to our problem set up 
is the following, see e.g. [9, 18]. 

Proposition 3 Let H (Gx, C) be stable. Then H (GA, CA) is 
stable if 

8(Gx, GA)4-8(C, CA) < l Z(ax,C)ll21. (7) 

This sufficient condition for stability leads to the following 
formulation in terms of stabilizing sets of controllers. 

Proposition 4 Given a nominal model Gx and a nominal 
controllerC such that H(Gx,C) C IRH~o. The set ~8(8a) de- 
fined as 

~8(8G) "-- {GA[ 8(Gx, GA) <_ 8G} 

is stabilized by all controllers contained in the set C8(8c) 
defined as 

e8(8c) . -  {cAI 8(Cx,CA) < 8c} 

if and only if 8c <_ I T (Gx, C) 21 _ 8G" 

In this proposition the maximum size of retuning range (or 
the allowed "perturbation" from the present controller) is 
specified that is allowed under guarantee of robust stability. 

5 Comparison of the two uncertainty structures 

Theorem 1 Given a nominal model Gx and a nominal con- 
troller C such that H(Gx, C) C RHoo. Consider any plant 

GA E RHoo, and determine the minimal values of ~lG and ~)a 
such that GA E ~Y(~IG) and GA E ~6(~)G). Then the sets of 
controllers that result from Propositions 2 and 4, i.e. 

ey = er (?~ l )  

e8 - Q(Sc), 8c-IIv(G,C)l o 1-SG 
relate to each other according to 

e8 Z e r .  

Proof. A sketch of proof is added in the appendix. 

The result of this theorem implies that when describing 
plant uncertainty in either a gap metric bound or a norm 
bound in a dual-Youla representation, the latter format al- 
lows for a larger set of controllers that guarantee robust sta- 
bility. In other words: the related robust stability test for 
the Youla-structured uncertainty is less conservative than 
the test for the gap metric. 
The formulation of the theorem allows that the two sets of 
controllers actually are equal. The fact that the two sets are 
not equal is shown in the next section by a (counter) exam- 
ple which is taken from [14]. 
One of the principal differences in the two uncertainty struc- 
tures is that a gap-metric distance between two plants is 
controller independent. A Youla formulation of the "dis- 
tance" between two plants is taken under the presence of 
(and therefore dependent on) a particular controller. In the 
latter situation the closed-loop properties of the two plants 
can therefore more particularly be taken into account. 

6 Example 

An example is considered in which robust stability is guar- 
anteed by the condition of Proposition 2, but not by the gap- 
metric condition of Proposition 4. The systems of concern 
have the following transfer functions: 

Gx 

C z 

GA -- 

- s + l  

4s 3 4- 0.4s 2 4- 4s 

17s 2 - 2.3s 4- 10 

S 2 4- 3.3S 4- 11 

0.2S 7 4- 3S 6 4-5.4S 5 4-7.8S4-- 22S 3 4-5.2S2--2 lS4- 3.2 

C~ z 

10S 7 -4- 31S 6 4-150S 5 -4-- 123S 4-4- 218S 3 + 87S 2 +69S + 7.1 

30S 7 4-87S 6 4-13 lS 5 + 148S4 4-130S 3 4-63S 2 +41S+9.3 

S 7 4- 8.3S 6 4- 38S 5 + 83S 4-4-107S 3 + 97S 2 +62S + 13 
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The Bode diagrams of these systems have been depicted 
in Fig. 3. The Figures 3.a and c display that Gx (solid) 
and Ga (dashed) are strikingly different. The difference 
G x -  GA (dotted) is quite large: its frequency response 
magnitude is at least 40% of IGx(im)[ over all frequen- 
cies, and it is even larger than 60% at those frequencies 
where [Gx(im)C(im)l ~ 1. The controller variation seems 
to be moderate, but IC( im)-  Ca(im)[ is larger than 15% of 
IC(im)t over all frequencies, and it is up to 70% at the fre- 
quencies where I GxCI ~ 1. 
GA and Ca are modelled as perturbations of the normalized 
coprime factors of Gx, C. The corresponding plant and con- 
troller perturbations AR and Ac are shown in Fig. 4. The 
IHLo-norms of these perturbations are IIARII~ = 0.968 and 
IIAcI[~ = 0.764. The product of these norms is 0.734, so that 
even larger plant and controller perturbations are allowed in 
view of the robust stability test of Proposition 2. 
For the robust stability test based on the gap-metric condi- 
tion of Proposition 4 we have the following numbers: 

8(Gx, GA) - 0.917 

8(C, CA) -- 0.286 

IIr(Gx,C)l ~1 = 5.73" 10 -2. 

Clearly 8(Gx, GA)+ 8(C, Ca) is much larger than 
[IT(Gx,C)I]21. Hence from (7) it cannot be con- 
cluded that H(Ga,CA) is robustly stable. Moreover, as 
8(Gx, Ga) > [Ir(Gx,C)[121 and 8(C, Ca) > IIT(Gx,C)ll21, 
the gap-metric condition fails even to guarantee stability 
of H (GA, C) or of H(Gx, CA). Finally, the small value of 
II Z(Gx, C)It~ 1 indicates that H (Gx, C) has poor robustness 
properties in gap metric sense, while H(Gx, C) is robustly 
stable against rather large perturbations as shown in Fig. 3. 
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Figure 3: Bode diagrams of the nominal and perturbed plants and 
controllers, a: Magnitudes of Gx (solid), GA (dashed) 
and Gx- GA (dotted); b: Magnitudes of C (solid), CA 
(dashed) and C -  CA (dotted); c: Phases, see a; d: 
Phases, see b. 
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Figure 4: Plant perturbation AR (solid) and controller perturba- 
tion Ac (dashed). 

7 Extension to A -  gap  and Vinnicombe gap 

The analysis as presented in this paper so far can readily be 
extended to other uncertainty structures as well, as e.g. the 
A-gap and the Vinnicombe gap. 

The A-gap 8A(Gx, GA) between two plants Gx and GA is 
defined as ([3, 4, 5]) 

8A (Gx, Ga) -- inf 
QER/-/oo 

( N x  1 ) Q I  /~x ) A-  _ (  /VA bA , ( 8 )  
oo 

with (Nx,JOx) and (NA,DA) nrcf's of Gx and GA, and A as 
defined in (2). 
The Vinnicombe or v-gap metric is defined as ([ 18])" 

• E- x II, ° 
i f d e t ( [ / ~ *  /)x ] /Va ) Vco bA 

8v(Gx, GA)-  a n d W ( d e t ( [  1~* D=~ ] ~ t  ] ) ) - - 0  

• 1, otherwise, 
(9) 

where W(g) denotes the winding number about the origin 
of g(s) as s follows the standard Nyquist D-contour. 
The robust stability results -known from the literature- that 
now can be exploited for our purpose of specifying a norm- 
bounded area around C under robust stability guarantees 
read as follows ([4, 18]). 

Proposition 5 Let H (Gx, C) be stable. Then H (GA, CA) is 
stable if 
(a) 8A(G, GA)+SA(C, CA) < 1 (A-gap condition) or 
(b) Ir(C,C)lloo,%(G, CA)+ Ir(~,C)lloo&,(C, CA) < 1 (v- 
gap condition) 1. 

These sufficient conditions for stability lead to the following 
formulation in terms of stabilizing sets of controllers. 

1The considered condition is not the least conservative v-gap condi- 
tion available in the literature. [18] Here the specific aim is to explicitly 
parametrize the set of controllers around a nominal controller C. 
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Proposition 6 Given a nominal model Gx and a nominal 
controller C such that H(Gx,C) C IRH~. The set ~A(SA,G) 
defined as 

~A(6A,G) "-- {GAI ~)A(Gx, GA) <_ 8A,G) 

is stabilized by all controllers contained in the set C A (~C) 
defined as 

CA(SA,C) "-- {CA[ 8A(Cx,CA) < 8A,C} 

if and only if 8a,c _< 1 -- 8A,G. 

Proposition 7 Given a nominal model Gx and a nominal 
controller C such that H(Gx,C) E RH~,. The set 9v(Sv,G) 
defined as 

~v(Sv,G) "-- {GA[ 8v(Gx, GA) _< By,G} 

is stabilized by all controllers contained in the set Cv(Sc) 
defined as 

~(a~,c) . -  {cA[ a~(Cx,CA) < a~,c} 

if and only if Sv,c < I I r ( G x , C ) l L =  ~ - ~ , G .  

Based on these robust stability results one can now con- 
sider the same problem as is considered in the formulation 
of Theorem 1, leading to maximum sized controller sets: 

Theorem 2 Given a nominal model Gx and a nominal con- 
troller C such that H(Gx, C) C IRH~. Consider any plant 
GA E IRH~, and determine the minimal values of ~[G, ~A 
and ~)v such that GA E ~y(~[G), GA E ~8(~A,G) and GA E 
~8(~v,G). Then the sets of controllers that result from 
Propositions 2, 4 and 7, i.e. 

Cy -- Cy (q/G 1 ) 

CA -- CA(~A,C), ~A,C - -  1 - ~A,G 

e~ - e~(8~,c), gv,c-IIT(G,C)II2 a-g~,G 

relate to each other according to 

e~ c_ ea C_ ey 

C 8 C Cv C Cy . 

For a formal proof of this, see the extended paper [8]. 

8 Concluding remarks 

We have used the double Youla parametrization for pur- 
pose of specifying the maximum allowable tuning range 
for a new controller to deviate from the present controller 
while retaining robust stability. It is demonstrated that the 
result obtained when using this uncertainty structure is less 
conservative than when using the gap metric. An example 
has been provided to support these results. The results im- 
ply that model uncertainty characterized in terms of a dual 
Youla-parametrization not only is advantageous from a per- 
formance point of view, but also for the situation where at- 
tention is restricted to robust stability aspects. Related re- 
sults are provided for stability conditions in terms of the 
A-gap and v-gap. 
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This expression is simplified by multiplication from the left 

with ~ - 1 [  --~)x ff]x ] '  using the fact that ~)xNx -- ~xE)x, 

leading to 

 xl{[ Q-l, b~ Oaj 
(12) 

where A is as defined in (2). 

Multiplication of (11) from the left with A-1 [ ~c / ) c ]  

yields 

, D~ /)A ]QG} " (13) 

9 Appendix: Sketch of Proof 

The proof of theorem 1 consists of showing that there exist 
sets ~Y(YG) and ey(?c), as defined in proposition 2, which 
embed, respectively, the sets ~5(8G) and Ca(So) of theorem 
1 and which satisfy the stability condition of proposition 2, 
i.e ~/G" ~/c < 1. 

Lemma 1 Given a nominal plant G x -  NxDx 1 and con- 
troller C - NeD cl such that H(Gx, C) C IRHoo. Then ev- 
ery plant GA stabilized by C and every controller CA stabi- 
lized by Gx can be expressed in a (dual) Youla factorization 
([17]), i.e. 

GA -- (~[x + Dcf~R) (Dx - ~[cAR) -1 and 

Ca -- (fifc -t- JDx[XC) (Dc - fifxAc)-1, and 

llX ll. < 11~-111oo ~(G, GA) (1 -{{A -111oo ~(G, GA) -1 
<__ IlA-1lloo~(C, CA)(1-(]lZX-1lloo~(C, CA>)) -' .  

Lemma 1 follows from exploiting the freedom in coprime 
factorizations with respect to a unimodular premultiplica- 
tion. Each GA can be written in a Youla factorization and in 
terms of a coprime factorization related to the directed gap 
8(GA, G) of (6), 

Applying the singular value relation [ 12] 

g(A - B) >_ cy(A) - O(B) 

to (13) and using the fact that ~(Q-l(oo)) - 1 cy(Q(~o) 
CO, results in 

~ (Q-I ( o ) > ) ~  (1 - lid-1 [oo~(a, GA) -1 

{[Q-ll[oo < (1-[[A-IIloo~(G, GA) -1. 

for all 

Vc0 

(14) 

The bounds of lemma 1 then follow easily from (12) and 

that [ - ~ x  ~x ] is co-inner. The (1 4) upon noting ap- 

pearance of the gap itself in lemma 1 follows from a similar 
derivation for the other directed gap 8(G, GA) and the fact 
that the gap is the maximum of both. 
With lemma 1 the following proposition is easily seen to 
hold. 

Proposition 8 The sets ~y(~IG) and ~r(%)  as defined in 
(2), with 

~ - ~ {l~-lll~ (1 - 86 [lA-'{loo)-I 

q/C -- ~C []X-ll{o~ (1 - 8c [[a-ll]oo)-I 

DA Q o -  Dx_~c[XR Q. 
(10) 

embed the sets ~(~)a) and e~(~)c), respectively. Moreover, 
they satisfy proposition 2, i.e. YG " qlc < 1. 

Here QG denotes the minimizing argument of definition (6) 
of the directed gap. QG is unique and unimodular (i.e. 
QG, QG 1 E RHoo) implying the left hand side of (10) to rep- 
resent a coprime factorization indeed [15]. The unimodular 
matrix Q accomplishes the equality and is uniquely defined 
due to the normalizations of the coprime factors. From (10) 
we can write: 

[~  1 1 DA J QGQ- 
I 

--[)c 

[ ~   xl+[ -~c 1 ,~R 
[ xl 1 

/)x - /)x Q- (11) 

- 1  

The last inequality follows from the fact that every GA C 
~ ( S a )  and CA E e~(gc) satisfies the gap condition (7), i.e 
[] T (G, C) oo 8c < 1 - I] T (G, C) oo 6a. Using the fact that 
IIT(G,C)L~ = ]IX-1 {l~- [{A-1 {l~ we have, 

?c < (1-8a {lA-1{[oo> (~G {l~-ll]oo> -1 , 

from which proposition 8 follows readily. 
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