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1.1 Introduction

For many industrial production processes, safety and production restrictions
are often strong reasons for not allowing identification experiments in open-
loop. In such situations, experimental data can only be obtained under closed-
loop conditions. The main difficulty in closed-loop identification is due to the
correlation between the disturbances and the control signal, induced by the
loop. Several alternatives are available to cope with this problem, broadly
classified into three main approaches: direct, indirect and joint input/output
[9, 14]. Some particular versions of these methods have been developed more
recently in the area of control-relevant identification as e.g. the two-stage,
the coprime factor and the dual-Youla methods. An overview of these recent
developments can be found in [2] and [19].
When considering methods that can be used to identify models of systems
operating in closed-loop, instrumental variable (IV) techniques are rather at-
tractive because they are normally simple or iterative modifications of the
linear regression algorithm. For instance, when dealing with highly complex
processes that are high dimensional in terms of inputs and outputs, it can be
attractive to rely on methods, such as these, that do not require non-convex
optimization algorithms. In addition to this computationally attractive prop-
erty, IV methods also have the potential advantage that they can yield con-
sistent and asymptotically unbiased estimates of the plant model parameters
if the noise does not have rational spectral density or the noise model is mis-
specified; or even if the control system is non-linear and/or time-varying.
For closed-loop identification, a basic IV estimator was first suggested assum-
ing knowledge of the controller [20]; and the topic was later discussed in more
detail in [15]. More recently a so-called ‘tailor-made’ IV algorithm has been
suggested [6], where the closed-loop plant is parameterized using (open-loop)
plant parameters. The class of algorithms denoted by BELS (bias eliminated
least squares), e.g. [27], is also directed towards the use of only simple linear
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regression-like algorithms. Recently, it has been shown that these algorithms
are, in fact, particular forms of IV estimation [6, 16].
When comparing the various available IV algorithms that all lead to consistent
plant estimates, it is important to ask how the algorithm can be made statis-
tically efficient: i.e. how is it possible to achieve the smallest variance of the
parameter estimates. Concerning extended IV methods, an optimal variance
result has been developed in the open-loop identification case, showing con-
sequences for the choice of weights, filters, and instruments [9,14,17]. Similar
enhancements of the basic IV approach are also the basis of the optimal refined
instrumental variable (RIV) method [8, 21, 26] which is designed specifically
for the Box-Jenkins transfer function model in discrete (RIV) or continuous
(RIVC) time. For the closed-loop case, a statistical analysis has been pro-
vided [13,15]; and this analysis has been used to compare several closed-loop
identification methods [1]. More recently, some attention has been given to a
characterization of the properties of the several (extended) IV methods [7].
All of the above methods, except RIVC, focus on the identification of discrete-
time (DT) models. Recently, however, there has been renewed interest in
the relevance of continuous-time (CT) model identification methods: see e.g.
papers at the 15th IFAC World Congress in 2002, such as [23], which compares
RIVC with another optimal approach; and [11], [12], where the advantages
of direct CT approaches are illustrated by extensive simulation examples.
Unfortunately, however, closed-loop model CT identification is still an issue
that has not so far received adequate attention. Indeed, there are only a
few recent publications that deal with closed-loop CT identification: amongst
these, a bias eliminated least squares method [3], some basic instrumental
variable methods [5], and a two-step algorithm using the RIVC algorithm [24],
appear to be the most successful (see also ?? in the present book).
This chapter aims at filling this gap: it describes and evaluates statistically
more efficient IV methods for the closed-loop identification of ‘hybrid’ CT
transfer function models from discrete-time, sampled data (based, in part, on
the analysis of the optimal open-loop approach in Chapter ?? of this book).
Here, the model of the basic dynamic system is estimated in continuous-
time, differential equation form, while the associated additive noise model
is estimated as a discrete-time process. Several IV and IV-related methods
are presented and they are unified in an extended IV framework. Then, the
minimum variance closed-loop IV estimation approach is introduced, with
the consequences of this formulation on the several design variables. Since
such an optimal statistical approach requires the concurrent estimation of
a model for the noise process, several bootstrap methods are proposed for
accomplishing this. A comparison between these different proposed methods
is made with the help of simulation examples, showing that more statistically
efficient estimation can be achieved by an appropriate choice of the design
parameters.
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1.2 Problem Formulation
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Fig. 1.1. Closed-loop configuration

Consider a stable, linear, SISO, closed-loop system of the form shown in Figure
1.1. The data generating system is assumed to be given by the relations

S :

{
y(t) = Go(s)u(t) +Ho(s)eo(t)
u(t) = r(t)− Cc(s)y(t)

(1.1)

The process is denoted by Go(s) = Bo(s)/Ao(s) and the controller by
Cc(s) where s is the differential operator (s = d/dt). u(t) describes the
process input signal, y(t) the process output signal. For ease of notation we
introduce an external signal r(t) = r1(t) + Cc(s)r2(t). Moreover, it is also
assumed that the CT signals u(t) and y(t) are uniformly sampled at Ts. A
coloured disturbance is assumed to affect the closed-loop: bearing in mind
the spectral factorisation theorem, this noise term, ξo(t) = Ho(s)eo(t), is
modelled as linearly filtered white noise. The external signal r(t) is assumed
to be uncorrelated with the noise disturbance ξo(t).

The CT model identification problem is to find estimates of Go(s) from finite
sequences {r(tk)}Nk=1, {u(tk)}Nk=1, {y(tk)}Nk=1 of, respectively, the external sig-
nal, the process input and output DT data. The model is then described by
the following hybrid equation,

M : y(tk) = G(s,θ)u(tk) +H(q−1,θ)e(tk), (1.2)

where q−i is the backward shift operator, i.e. q−iy(tk) = y(tk−i); e(tk) is a
discrete-time white noise, with zero mean and variance σ2

e . The conventional
notation w(tk) is used here to denote the sampled value of w(t) at time-instant
tk.
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The hybrid form (1.2) of the continuous-time transfer function model is con-
sidered here for two reasons. First, the approach is simple and straightforward:
the theoretical and practical problems associated with the estimation of purely
stochastic, continuous-time noise models are avoided by formulating the prob-
lem in this manner. Second, one of the main functions of the noise estimation
is to improve the statistical efficiency of the parameter estimation by intro-
ducing appropriately defined prefilters into the estimation procedure. And, as
we shall see in this chapter, this can be achieved adequately by assuming that
the additive coloured noise ξ(tk) has rational spectral density, so that it can
be represented in the form of a discrete-time, autoregressive moving average
(ARMA) model (see below).
With the above assumptions, the parameterized CT hybrid process model
takes the form,

G : G(s,ρ) =
B(s,ρ)
A(s,ρ)

=
b0s

nb + b1s
nb−1 + · · ·+ bnb

sna + a1sna−1 + · · ·+ ana
(1.3)

where nb, na denote the degrees of the process numerator and denominator
polynomials, respectively, with the pair (A,B) assumed to be coprime. The
process model parameters are stacked columnwise in the parameter vector

ρ = [a1 · · · ana b0 · · · bnb ]T ∈ Rna+nb+1. (1.4)

The numerator and denominator orders nb and na are to be identified from
the data and the parameterized DT noise model is assumed to be in the form
of the following discrete-time ARMA process,

ξ(tk) = H(q−1,η)e(tk) (1.5a)

H : H(q−1,η) =
C(q−1,η)
D(q−1,η)

=
1 + c1q

−1 + · · ·+ cncq
−nc

1 + d1q−1 + · · ·+ dndq
−nd

(1.5b)

e(tk) ∼ N (0, σ2
e) (1.5c)

where the associated noise model parameters are stacked columnwise in the
parameter vector,

η =
[
d1 · · · dnd c1 · · · cnc

]T ∈ Rnc+nd , (1.6)

where, as shown, e(tk) is a zero-mean, normally distributed, discrete-time
white noise sequence.
The model structure M (1.2) is chosen so that the process and noise models
do not have common factors; these models can therefore be parameterized
independently. More formally, there exists the following decomposition of the
parameter vector θ for the whole hybrid model,

θ =
(
ρ
η

)
. (1.7)
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Additionally, the controller Cc(s) is given by

Cc(s) =
Q(s)
P (s)

=
q0s

nq + q1s
nq−1 + · · ·+ qnq

snp + p1snp−1 + · · ·+ pnp
, (1.8)

with the pair (P,Q) assumed to be coprime. Of course, in this hybrid context,
the continuous-time controller could be replaced by a DT alternative if this
is required (see e.g. [24] where the continuous-time process is estimated
within a DT, non-minimal state-space control loop [18]). In the following,
the closed-loop system is assumed to be asymptotically stable and r(t) is an
external signal that is persistently exciting of sufficient high order.

With these notations, the closed-loop system can be described as
y(tk) =

Go(s)
1 + Cc(s)Go(s)

r(tk) +
1

1 + Cc(s)Go(s)
ξo(tk)

u(tk) =
1

1 + Cc(s)Go(s)
r(tk)− Cc(s)

1 + Cc(s)Go(s)
ξo(tk)

(1.9)

In the following instrumental variable algorithms, use is made of the noise-free
input/output signals deduced from (1.9) and denoted from hereon as

x(tk) =
Go(s)

1 + Cc(s)Go(s)
r(tk)

ν(tk) =
1

1 + Cc(s)Go(s)
r(tk)

(1.10)

Now consider the relationship between the process input and output signals
in (1.1),

y(t) = Go(s)u(t) +Ho(s)eo(t) (1.11)

This latter can also be written in the vector form at time-instant t = tk

y(na)(tk) = ϕT (tk)ρo + vo(tk) (1.12)

where ρo denotes the true process parameter vector,

ϕT (tk)=[−y(na−1)(tk) · · · − y(tk) u(nb)(tk) · · ·u(tk)] (1.13)

w(i)(tk) denotes the ith time-derivative of the CT signal w(t) at time-instant
tk and

vo(tk) = Ao(s)Ho(s)eo(tk). (1.14)

Note that the noise-free signals x(tk) and ν(tk) in (1.10) are not available
from measurements, therefore the several closed-loop methods presented in
this chapter use of this noisy regressor ϕ(tk).
There are two main time-domain approaches to estimate a CT model in this
form. The first, indirect approach, is to estimate an initial DT model from
the sampled data and then convert this into a CT model. The second, direct
approach, that we consider in the present chapter, is to identify a CT model
directly from the DT data.
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1.3 Basic Instrumental Variable Estimators

The process model parameters ρ can be estimated using a basic instrumental
variable (IV) estimator. By assuming that the time-derivatives of the input,
output and external signals are available (see Section 1.5.2), the CT version
of the basic IV estimate of ρ is given by

ρ̂iv = sol

{
1
N

N∑
k=1

ζ(tk)[y(na)(tk)−ϕT (tk)ρ] = 0

}
(1.15)

where N denotes the number of data and ζ(tk) is a vector of instrumental
variables.

There is a considerable amount of freedom in the choice of the instruments. A
first solution is to adapt the closed-loop IV method developed for DT models
in [15] to the CT model identification case. This method is referred to as
CLIVC and was first presented in [5]. It involves using the external signal
time-derivatives as instruments. The so-called basic IV estimate for closed-
loop CT models is then given by

ρ̂clivc =

[
N∑
k=1

ζ(tk)ϕT (tk)

]−1 N∑
k=1

ζ(tk)y(na)(tk) (1.16)

with ζT (tk) =
[
r(na+nb)(tk) · · · r(tk)

]
∈ Rna+nb+1 (1.17)

In contrast with the basic IV for DT model identification which uses a dif-
ference equation model, the CT version makes use of an instrument built up
from the time-derivatives of the external signals.

1.3.1 Consistency Properties

By inserting (1.12) into (1.15), the following equation is obtained

ρ̂iv = ρo +

[
N∑
k=1

ζ(tk)ϕT (tk)

]−1 [ N∑
k=1

ζ(tk)vo(tk)

]
(1.18)

where ϕT (tk) and vo(tk) are given by (1.13) and (1.14) respectively. It can be
deduced from (1.18) that ρ̂iv is a consistent estimate of ρ if4{

Ē[ζ(tk)ϕT (tk)] is nonsingular
Ē[ζ(tk)vo(tk)] = 0

(1.19)

Several IV variants can be obtained by different choices of the instruments
ζ(tk) in (1.15), respecting the conditions given by (1.19).
4 The notation Ē[.] = limN→∞

1
N

PN
k=1 E[.] is adopted from the prediction error

framework of [9].
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1.3.2 Accuracy Analysis

The asymptotic distribution of the parameter estimate ρ̂iv in (1.15) has been
investigated extensively in the open-loop DT context (e.g. [9, 13, 14]). More
recently, this work also has been extended to the closed-loop DT model iden-
tification framework [7]. By considering (1.15), these previous results can be
applied to the case of the CT hybrid model given by (1.2). As a result, under
the assumptions formulated in Section 1.2 and Go ∈ G, ρ̂iv is asymptotically
Gaussian distributed

√
N(ρ̂iv − ρ∗)

dist→ N (0,Piv) (1.20)

where ρ∗ represents the limit of ρ̂iv when N →∞ and where the covariance
matrix is given by

Piv = σ2
eo

[
Ēζ(tk)ϕT (tk)

]−1
[
Ēζ̃(tk)ζ̃

T
(tk)

] [(
Ēζ(tk)ϕT (tk)

)−1
]T

(1.21)

with ζ̃(tk) = Ho(s)Ao(s)ζ(tk) and σ2
eo denotes the intensity of {eo(tk)}.

1.4 Extended Instrumental Variable Estimators

There are various ways of considering IV estimation from an optimal stand-
point. One such approach is to consider an extended IV solution (see Introduc-
tion section). In CT model identification, if the time-derivatives signals are as-
sumed to be known, the extended IV estimate of ρ is obtained by pre-filtering
the input/output data appearing in (1.15) and by generalizing the basic IV
estimates ρ̂iv using an augmented instrument ζ(tk) ∈ Rnζ (nζ ≥ na +nb + 1)
so that an over-determined system of equations is obtained in the form,

ρ̂xiv = arg min
ρ

∥∥∥∥∥
[
N∑
k=1

f(s)ζ(tk)f(s)ϕT (tk)

]
ρ

−

[
N∑
k=1

f(s)ζ(tk)f(s)y(na)(tk)

]∥∥∥∥∥
2

W

(1.22)

where f(s) is a stable pre-filter, and ‖x‖2W = xTWx, withW a positive definite
weighting matrix. This extended IV gives a parameter estimator that requires
more computations than the basic IV. However, the enlargement of the IV
vector can be used for improving the accuracy of the parameter estimates [14].
Note that, when f(s) = 1 and nζ = na+nb+1 (W = I), the basic IV estimate
(1.15) is obtained.
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1.4.1 Consistency Properties

The consistency conditions are easily obtained by generalizing (1.19) to the
estimator (1.22){

Ē[f(s)ζ(tk)f(s)ϕT (tk)] is full column rank
Ē[f(s)ζ(tk)f(s)vo(tk)] = 0

(1.23)

1.4.2 Accuracy Analysis

The asymptotic distribution of parameter vector (1.22) is obtained by fol-
lowing the same reasoning as in Section 1.3.2. Therefore, by considering the
results given in Section 1.2, under the assumption that Go ∈ G, ρ̂xiv is asymp-
totically Gaussian distributed,

√
N(ρ̂xiv − ρ∗)

dist→ N (0,Pxiv) (1.24)

where the covariance matrix is given by

Pxiv = σ2
eof

[
RTWR

]−1
RTW

[
Ēζ̃(tk)ζ̃

T
(tk)

]
WR

[
RTWR

]−1

with

ζ̃(tk) = f(s)Ho(s)Ao(s)ζ(tk) and R = Ēf(s)ζ(tk)f(s)ϕ̊T (tk)

where ϕ̊(tk) is the noise-free part of the regressor ϕ(tk) (1.13), built up from
the noise-free input/ouput signals ν(tk) and x(tk) (1.10) as

ϕ̊T (tk)=[−x(na−1)(tk) · · · − x(tk) ν(nb)(tk) · · · ν(tk)] (1.25)

Note that the noise-free part of the regressor is partly defined by the noise-free
output variable x(tk) in (1.10) and its derivatives. It is well-known in open-
loop estimation that an estimate of this variable, generated as the output of an
‘auxiliary model’, is normally used as the prime source of instrumental variable
for the output variable. In the closed-loop context, however, the measured
regression vector also contains the filtered process input and its derivatives,
it is clear, therefore, that a suitable estimate of the noise-free process input
ν(tk) will also be required for accurate IV estimation.

1.5 Optimal Instrumental Variable Estimators

1.5.1 Main Results

The choice of the instruments ζ(t), the number of IV components nζ , the
weighting matrix W and the prefilter f(s) may have a considerable effect on
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the covariance matrix Pxiv. In the open-loop DT situation, the lower bound
of Pxiv for any unbiased identification method is given by the Cramér-Rao
lower bound [9], [13]. Optimal choices of the above mentioned design variables
exist so that Pxiv reaches the Cramér-Rao lower bound. These results cannot
be applied to the closed-loop IV case because of the correlation between the
process input signal u(tk) and the noise. In this regard, it has been shown
in [15] that, for a model given by (1.12), there exists a minimum value of the
covariance matrix Pxiv as a function of the design variables ζ(tk), f(s) and
W , under the restriction that ζ(tk) is a function of the external signal r(tk)
only. Although these results have been obtained for the case of DT models,
a similar analysis applies in the CT case and the covariance matrix can be
optimized with respect to the design variables. The optimal covariance matrix
(different from the Cramér-Rao lower bound) for a data generating closed-loop
system given by (1.2) where u(tk) and y(tk) are correlated by noise, is then

Pxiv ≥ Popt
xiv and

Popt
xiv = σ2

eofopt

{̄
E
[
[Ao(s)Ho(s)]

−1
ϕ̊T (tk)

]T [
[Ao(s)Ho(s)]

−1
ϕ̊T (tk)

]}−1

(1.26)

Popt
xiv is then obtained by taking,

ζ(tk) = fopt(s)ϕ̊(tk),

fopt(s) = [Ao(s)Ho(s)]−1,

nζ = na + nb + 1,
W = I.

(1.27)

Therefore, the only difference between open-loop and closed-loop cases is that
in the latter, the input process signal is correlated with the noise, so that the
instruments must be correlated with the noise-free part of u(t) but uncorre-
lated with the noisy part of u(t) (due to the feedback loop).
Moreover, when defined in this manner, it would appear that the optimal IV
estimator can only be obtained if, first, the true noise (and process) model is
exactly known and secondly the noise-free part of the regressor is available.
However, this is a probabilistic estimation problem and therefore the statis-
tically optimal estimates can be obtained if these TF model polynomials are
replaced by their optimal estimates. Moreover, practically useful sub-optimal
solutions can be obtained by utilizing good, if not optimal, estimates. This is
discussed in the next sub-sections.

1.5.2 Implementation Issues

Handling of the Unmeasurable Time-derivative Signals

In comparison with the DT counterpart, direct CT model identification raises
several technical issues. The first is related to implementation. Unlike the



10 Marion Gilson, Hugues Garnier, Peter C. Young and Paul Van den Hof

difference equation model, the differential equation model is not a linear com-
bination of the sampled process input and output signals but contains time-
derivatives signals. The theoretical study presented in the previous section
assumes that these time-derivatives signals are available, and therefore, the
parameter estimation procedure can be directly applied on them. However,
these input, output and external time-derivatives signals are not available as
measurement data in most practical cases. A standard approach used in CT
model identification is to introduce a low-pass stable filter fc(s), i.e. define

yfc(tk) = fc(s)y(tk), ufc(tk) = fc(s)u(tk) (1.28)

where the subscript fc is used to denote the prefiltered forms of the associated
variables. The filtered time-derivatives can then be obtained by sending both
input/output signals to a bench of filters of the form fc(s)si

y
(i)
fc

(tk) = fc(s)siy(tk), i ≤ na (1.29)

u
(i)
fc

(tk) = fc(s)siu(tk), i ≤ nb (1.30)

The motivation is that the filtered signals ufc(t) and yfc(t) satisfy

yfc(tk) = Go(s)ufc(tk) + fc(s)Ho(s)eo(tk) (1.31)

i.e. the process transfer function is not changed but the noise transfer function
is modified by the introduction of the filter. Equation (1.31) can be rewritten
under the following linear regression form

y
(na)
fc

(tk) = ϕTfc(tk)ρo + vofc(tk) (1.32)

with

ϕTfc(tk) = [−y(na−1)
fc

(tk) · · · − yfc(tk) u(nb)
fc

(tk) · · · ufc(tk)] (1.33)

vofc(tk) = fc(s)vo(tk) (1.34)

Various types of CT filters have been devised to deal with the need to recon-
struct the time-derivatives [4] and the CONtinuous-Time System IDentifica-
tion (CONTSID) toolbox has been developed on the basis of these methods
(see Chapter ?? in the present book). Four usual filters that have been used
in simple IV methods are as follows [4]

fc1(s) =
(

β

s+ λ

)na
fc2(s) =

(
β

s+ λ

)na+1

(1.35a)

fc3(s) =
(

1
s

)na
fc4(s) =

(
1− e−lTss

s

)na
(1.35b)

where fc1(s) and fc2(s) represent the filters used in the case of the minimal
order multiple filter (also referred to as state-variable filter) method and gen-
eralized Poisson moment functional approach respectively; fc3(s) denotes the
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usual multiple integral operation while fc4(s) is referred to as the linear inte-
gral filter. Note however that this list is not exhaustive. Moreover, it is clearly
possible to select the prefilter fc(s) in order to achieve some form of optimal
IV estimation and this is considered later in Section 1.5.
For simplicity, it has been assumed above that the differential equation model
(1.2) is initially at rest. However, note that, in the general case, the initial
condition terms do not vanish in (1.32). Whether they require estimation
or they can be neglected depends upon the selected signal pre-filtering method.

Noise Modelling and Hybrid Filtering

The choice of the instruments and prefilter in the IV method affects the
asymptotic variance, while consistency properties are generically secured
by the IV implementation. It has been found that minor deviations from
the optimal estimates of the polynomials required for the implementation
of the auxiliary model and prefilters will normally only cause second-order
effects in the resulting accuracy. Therefore, a reasonable IV estimator
can be obtained if consistent, but not necessarily efficient estimates of
the polynomials are utilized (see [9] for a discussion in the DT case). In
addition, the computational procedures can be kept simple and tractable if
linear regression estimates are used in the preliminary stages of the estimation.

Several bootstrap IV methods have been proposed, in an attempt to approx-
imate the optimal IV method (see e.g. [9, 13, 21] for the open-loop situation
and [7] for the closed-loop one). As explained in Section 1.5, the difference
between open-loop and closed-loop cases lies in the input process signal
which is correlated with the noise in the latter. Therefore, the instrumental
variable vector must include IVs associated with the input as well as the
output signal, and these must be correlated with the noise-free part of u(t)
but uncorrelated with the noise on u(t) arising from the feedback loop.

Following the discussion in Section 1.2, CT models are estimated to represent
the transfer between the external signal and the output, as well as for the
transfer between the external signal and the input. And according to the
hybrid model (1.2) we are using here, DT models are used to estimate the
noise contribution.
From (1.27) and Section 1.5.2, the IV filter involves a filter f(s) required
for handling the time-derivatives along with the CT process TF denominator
polynomial and noise model contributions. As a result, the IV estimation will
require hybrid filtering operations involving:

• a CT filter f(s) = fc(s) needed to compute the time-derivatives (see (1.28)
and also Chapter ?? in the present book).
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• a DT filtering operation needed to approximate the inverse of the CT
process TF denominator polynomial and noise model contributions (see
(1.27)), denoted from hereon as fd(q−1,η).

To realize the optimal choices for the instruments, two alternatives are devel-
oped in the following sections: the first relies on multi-step algorithms while
the second is based on iterative (adaptive) solutions. As we will see, the form
of the CT and DT filters will differ according to the assumed true CT system
model structures.

1.5.3 Multi-step Approximate Implementations of the Optimal IV
Estimate

Two-step CLIVC2 algorithm

The two-step IV algorithm, denoted as CLIVC2, is based on the following CT
ARX model {

Ao(s)y(tk) = Bo(s)u(tk) + eo(tk)
with u(tk) = r(tk)− Cc(s)y(tk)

(1.36)

or its filtered version{
yfc(tk) = Bo(s)

Ao(s)ufc(tk) + fc(s) 1
Ao(s)e(tk)

with ufc(tk) = rfc(tk)− Cc(s)yfc(tk)
(1.37)

where we see that the noise model is constrained to include the process TF
denominator polynomial Ao(s).
In this particular case, the approximate optimal filter fclivc2 is composed of:

• the CT filter fc(s), which is chosen amongst the several options given in
(1.35a)-(1.35b),

• the DT filter fd(q−1) = 1 since the noise model of the assumed CT ARX
data generating system is Ho(s) = 1/Ao(s).

Since the CT filter fc(s) is chosen amongst several non-optimal filters, the
resulting CLIVC2 algorithm is an approximate implementation of the optimal
IV solution presented Section 1.5.1.

The outline of the CLIVC2 algorithm is then the following

1. Choose a CT pre-filter fc(s) to compute y(i)
fc

(tk), u(i)
fc

(tk) and r(i)
fc

(tk), for
i ≤ na.
Write the filtered CT ARX model structure as a linear regression

y
(na)
fc

(tk) = ϕTfc(tk)ρ (1.38)

and obtain an estimate ρ̂1 of ρ by the least squares method.
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2. Use this estimate ρ̂1 along with the process model, as defined by,

G(s, ρ̂1) =
B(s, ρ̂1)
A(s, ρ̂1)

,

to generate the instruments ζfc(tk, ρ̂1) using the following closed-loop
auxiliary models

x̂fc(tk, ρ̂1) =
G(s, ρ̂1)

1 + Cc(s)G(s, ρ̂1)
rfc(tk) (1.39)

ν̂fc(tk, ρ̂1) =
1

1 + Cc(s)G(s, ρ̂1)
rfc(tk) (1.40)

ζfc(tk, ρ̂1) = [−x̂(na−1)
fc

(tk, ρ̂1) · · · − x̂fc(tk, ρ̂1)

ν̂
(nb)
fc

(tk, ρ̂1) · · · ν̂fc(tk, ρ̂1)]T (1.41)

ζfc(tk, ρ̂1) represents an estimate of the noise-free part of the regressor
ϕfc(tk) and according to the notations used in Chapter ??, it will be de-
noted from hereon as ζfc(tk, ρ̂1) = ϕ̂fc(tk, ρ̂1).
Using the instrument ϕ̂fc(tk, ρ̂1) and the prefilter fd(q−1,η) = 1, deter-
mine the IV estimate in (1.38) as

ρ̂clivc2 =

[
N∑
k=1

ϕ̂fclivc2(tk, ρ̂1)ϕTfclivc2(tk)

]−1[ N∑
k=1

ϕ̂fclivc2(tk, ρ̂1)y(na)
fclivc2

(tk)

]
,

(1.42)
where fclivc2(s) = fc(s) here.

Remark 1.1. In contrast to the discrete-time case, a high-order least squares
estimator should not be used in the first step of the continuous-time system
identification procedure because of the numerical errors induced by the sim-
ulation method required for the generation of the filtered variables in (1.33)
and (1.41).

Four-step CLIVC4 algorithm

Although the process parameter estimates from the CLIVC2 algorithm are
consistent, it is worthwhile considering improved noise model estimation in
order to construct an estimator with a smaller variance (closer to the optimal
solution). One improvement is to assume the following CT ARARX model
structure {

Ao(s)y(tk) = Bo(s)u(tk) + 1
Do(s)eo(tk)

with u(tk) = r(tk)− Cc(s)y(tk)
(1.43)

or its filtered version
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Bo(s)
Ao(s)

ufc(tk) + fc(s)
1

Ao(s)Do(s)
eo(tk)

with ufc(tk) = rfc(tk)− Cc(s)yfc(tk)
(1.44)

where we see that the noise model is also constrained to include the TF
denominator polynomial Ao(s).
In this particular case, the approximate optimal filter fclivc4 is composed of:

• the CT filter fc(s), which is chosen amongst the several options given in
(1.35a)-(1.35b),

• the DT filter fd(q−1,η) = 1/D(q−1,η) (AR model of order to be chosen
or identified) since the noise model of the assumed CT ARARX data
generating CT system is Ho(s) = 1/Ao(s)Do(s).

As a result, the proposed CLIVC4 algorithm is then based on the following
CT hybrid ARARX model structure [7]A(s,ρ)y(tk) = B(s,ρ)u(tk) +

1
D(q−1,η)

e(tk)

with u(tk) = r(tk)− Cc(s)y(tk)
(1.45)

Note that in the above equation, we are mixing discrete and continuous-time
operators somewhat informally in order to indicate the hybrid computational
nature of the estimation problem being considered here. Thus, operations such
as,

B(s,ρ)
A(s,ρ)

u(tk)

imply that the input variable u(tk) is interpolated in some manner. This is
to allow for the intersample behaviour that is not available from the sampled
data and so has to be inferred in order to allow for the continuous-time
numerical integration of the associated differential equations. For such
integration, the discretization interval will be varied, dependent on the
numerical method employed, but it will usually be much smaller than the
sampling interval Ts (see Chapter ?? in the present book).

This proposed solution may be seen as an extension of the four-step IV
technique for open-loop DT model identification (IV4) [9] to the CT hybrid
closed-loop framework. The difference between both algorithm is that in the
CT version, a filter is needed to handle the time-derivatives problem. As
previously, since it is carried out by a CT filter fc(s) chosen amongst several
non-optimal filters, the resulting CLIVC4 algorithm is an approximate
implementation of the optimal IV solution presented in Section 1.5.1.

The outline of the CLIVC4 algorithm is as follows:

1. Choose a CT pre-filter fc(s) to compute y(i)
fc

(tk), u(i)
fc

(tk) and r(i)
fc

(tk), for
i ≤ na.
Write the filtered model structure as a linear regression
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y
(na)
fc

(tk) = ϕTfc(tk)ρ. (1.46)

Obtain an estimate ρ̂1 of ρ by the least squares method and use this to
define the corresponding CT transfer function G(s, ρ̂1).

2. Generate the instruments ζfc(tk, ρ̂1) = ϕ̂fc(tk, ρ̂1) using the closed-loop
auxiliary models as in (1.41). ϕ̂fc(tk, ρ̂1) represents an estimate of the
noise-free part of the filtered regressor ϕfc(tk). Determine the IV estimate
of ρ in (1.46) as

ρ̂2 =

[
N∑
k=1

ϕ̂fc(tk, ρ̂1)ϕTfc(tk)

]−1 [ N∑
k=1

ϕ̂fc(tk, ρ̂1)y(na)
fc

(tk)

]
(1.47)

and use this to define the corresponding CT transfer function G(s, ρ̂2).
3. Let ŵ(tk) = y

(na)
fc

(tk)− ϕTfc(tk)ρ̂2. Now, an AR model5 of order 2na can
be postulated for ŵ(tk):

fd(q−1, η̂)ŵ(tk) = e(tk)

and then fd(q−1, η̂) can be estimated using the least squares method.
4. Generate the instruments ζfc(tk, ρ̂2) = ϕ̂fc(tk, ρ̂2) as

ϕ̂fc(tk, ρ̂2) = [−x̂(na−1)
fc

(tk, ρ̂2) · · · − x̂fc(tk, ρ̂2)

ν̂
(nb)
fc

(tk, ρ̂2) · · · ν̂fc(tk, ρ̂2)]T (1.48)

where x̂fc(tk, ρ̂2) and ν̂fc(tk, ρ̂2) are the estimated noise-free output of
the closed-loop auxiliary models computed as in (1.39)-(1.40) on the basis
of G(s, ρ̂2).
Using these instruments ϕ̂fc(tk, ρ̂2) and the prefilter fd(q−1, η̂), determine
the IV estimate of ρ in (1.46) as

ρ̂clivc4 =

[
N∑
k=1

ϕ̂fclivc4(tk, ρ̂2)ϕTfclivc4(tk)

]−1[ N∑
k=1

ϕ̂fclivc4(tk, ρ̂2)y(na)
fclivc4

(tk)

]
(1.49)

where

ϕ̂fclivc4(tk, ρ̂2) = fd(q−1, η̂)ϕ̂fc(tk, ρ̂2), (1.50)

ϕfclivc4(tk) = fd(q−1, η̂)ϕfc(tk), (1.51)

and y
(na)
fclivc4

(tk) = fd(q−1, η̂)y(na)
fc

(tk). (1.52)

5 Or the AR order can be identified using a model order identification method,
such as the Akaike information criterion (AIC).
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1.5.4 Iterative Implementations of the Optimal IV Estimate

In the previous algorithms, the filter fc(s) used to compute the time-derivative
signals, is fixed a priori by the user and is not included into the design vari-
ables of the method. Furthermore, the CLIVC2 and CLIVC4 approaches rely
on a noise model that is constrained to include the process TF denominator
polynomial (see (1.43)).
An alternative approach is to consider instead, a CT Box-Jenkins (BJ) transfer
function (TF) model defined as followsy(tk) =

Bo(s)
Ao(s)

u(tk) +
Co(s)
Do(s)

eo(tk)

with u(tk) = r(tk)− Cc(s)y(tk)
(1.53)

For most practical purposes, this model is the most natural one to use since
it does not constrain the process and the noise models to have common
denominator polynomials. It also has the advantage that the maximum
likelihood estimates of the process model parameters are asymptotically
independent of the noise model parameter estimates (see Chapter ?? in this
book and [10]). The problem introduced by considering (1.53), however, is
that the model is non-linear-in-the-parameters so that simple IV estimation
cannot be directly applied.

Fortunately, this problem of nonlinear estimation can be overcome by design-
ing an iterative estimation algorithm on the basis of the procedures used in
the refined instrumental variable (RIV) algorithm [8, 21, 22, 25] and its CT
equivalent, the refined instrumental variable for continuous system (RIVC)
algorithm [26], as discussed fully in Chapter ??, suitably extended to handle
the closed-loop identification case.
Following the usual Prediction Error Minimization (PEM) approach in the
present hybrid situation (which is ML estimation because of the Gaussian
assumptions on e(tk)), a suitable error function ε(tk), at the kth sampling
instant, is given by

ε(tk) =
Do(s)
Co(s)

{
y(tk)− Bo(s)

Ao(s)
u(tk)

}
which can be written as

ε(tk) =
Do(s)
Co(s)

{
1

Ao(s)
[Ao(s)y(tk)−Bo(s)u(tk)]

}
(1.54)

where the CT prefilter Do(s)/Co(s) will be recognized as the inverse of the
continuous-time auto-regressive moving average (CARMA) noise model in
1.53.
Minimization of a least squares criterion function in ε(tk), measured at the
sampling instants, provides the basis for stochastic estimation. However, since
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the polynomial operators commute in this linear case, (1.54) can be considered
in the alternative form,

ε(tk) = Ao(s)yf (tk)−Bo(s)uf (tk) (1.55)

where yf (tk) and uf (tk) represent the sampled outputs of the complete CT
prefiltering operation

yf (tk) =
1

Ao(s)
Do(s)
Co(s)

y(tk), (1.56)

uf (tk) =
1

Ao(s)
Do(s)
Co(s)

u(tk). (1.57)

In this particular case, the optimal filter fclrivc is composed of:

• fc(s,ρ) = 1/A(s,ρ) which is used to generate the time-derivatives,
• fd(q−1,η) = D(q−1,η)/C(q−1,η) since the noise model of the assumed

CT BJ data generating system is Ho(s) = Co(s)/Do(s).

As a result, the proposed CLRIVC algorithm is then based on the following
CT hybrid Box-Jenkins model structurey(tk) =

B(s,ρ)
A(s,ρ)

u(tk) +
C(q−1,η)
D(q−1,η)

e(tk)

with u(tk) = r(tk)− Cc(s)y(tk)
(1.58)

It involves an iterative (or relaxation) algorithm in which, at each iteration,
the auxiliary model (see previously Section 1.4.2) used to generate the instru-
mental variables, as well as the associated prefilters, are updated, based on
the parameter estimates obtained at the previous iteration.

Iterative CLRIVC Algorithm

The outline of the CLRIVC algorithm is as follows:

1. Set C(q−1, η̂0) = D(q−1, η̂0) = 1. Choose an initial CT pre-filter fc(s) to
compute y(i)

fc
(tk), u(i)

fc
(tk) and r

(i)
fc

(tk), for i ≤ na.
From the linear model structure (1.55), generate an initial estimate ρ̂0 of
ρ using e.g. the CLSRIVC algorithm (see next section): the corresponding
TF is denoted by G(s, ρ̂0). Use this initial estimate to define the CT pre-
filter fc(s, ρ̂

0) = 1/A(s, ρ̂0), and set j = 1.
2. Iterative estimation.

for j = 1 : convergence
a) Generate the filtered instrumental variables ζfc(tk, ρ̂

j−1) =
ϕ̂fc(tk, ρ̂

j−1) from the estimates of the noise-free input and output
variables using the following closed-loop auxiliary models
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x̂fc(tk, ρ̂
j−1) =

G(s, ρ̂j−1)
1 + Cc(s)G(s, ρ̂j−1)

rfc(tk) (1.59)

ν̂fc(tk, ρ̂
j−1) =

1
1 + Cc(s)G(s, ρ̂j−1)

rfc(tk) (1.60)

ϕ̂fc(tk, ρ̂
j−1) =[−x̂(na−1)

fc
(tk, ρ̂

j−1) · · · − x̂fc(tk, ρ̂
j−1)

ν̂
(nb)
fc

(tk, ρ̂
j−1) · · · ν̂fc(tk, ρ̂

j−1)]T (1.61)

where the CT filter is given as

fc(s, ρ̂
j−1) =

1
A(s, ρ̂j−1)

.

Use this filter to compute y(i)
fc

(tk, ρ̂
j−1) and u

(i)
fc

(tk, ρ̂
j−1), for i ≤ na

and update the filtered regression filter

ϕfc(tk, ρ̂
j−1) =[−y(na−1)

fc
(tk, ρ̂

j−1) · · · − yfc(tk, ρ̂
j−1)

u
(nb)
fc

(tk, ρ̂
j−1) · · · ufc(tk, ρ̂

j−1)]T (1.62)

b) Obtain an optimal estimate of the noise model parameter vector ηj

based on the estimated noise sequence

ξ̂(tk) = y(tk)− x̂(tk, ρ̂
j−1) (1.63)

using a selected ARMA estimation algorithm and use this to define
the corresponding TF: H(q−1, η̂j).

c) Use the estimated noise model parameters in η̂j to define the DT filter
fd(q−1, η̂j), which takes the form

fd(q−1, η̂j) =
D(q−1, η̂j)
C(q−1, η̂j)

Then, sample the filtered derivative signals at the discrete-time
sampling interval Ts and prefilter these by the discrete-time filter
fd(q−1, η̂j).

d) Based on these prefiltered data, generate an updated estimate ρ̂j of
the process model parameter vector as

ρ̂j =

[
N∑
k=1

ϕ̂fclrivc(tk, ρ̂
j−1)ϕTfclrivc(tk, ρ̂

j−1)

]−1

[
N∑
k=1

ϕ̂fclrivc(tk, ρ̂
j−1)y(na)

fclrivc
(tk, ρ̂

j−1)

]
(1.64)

where
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ϕ̂fclrivc(tk, ρ̂
j−1) = fd(q−1, η̂j)ϕ̂fc(tk, ρ̂

j−1), (1.65)

ϕfclrivc(tk, ρ̂
j−1) = fd(q−1, η̂j)ϕfc(tk, ρ̂

j−1), (1.66)

y
(na)
fclrivc

(tk, ρ̂
j−1) = fd(q−1, η̂j)y(na)

fc
(tk, ρ̂

j−1) (1.67)

Together with the estimate η̂j of the noise model parameter estimate
from step (2b), this provides the estimate θ̂

j
of the composite param-

eter vector at the jth iteration.
3. After the convergence of the iterations is complete, compute the estimated

parametric error covariance matrix P̂ρ, associated with the converged es-
timate ρ̂ of the system model parameter vector, from the expression (see
Chapter ?? in this book),

P̂ρ = σ̂2
e

[
N∑
k=1

ϕ̂fclrivc(tk, ρ̂)ϕ̂Tfclrivc(tk, ρ̂)

]−1

(1.68)

where ϕ̂fclrivc(tk, ρ̂) is the IV vector obtained at convergence and σ̂2
e is

the estimated residual variance.

Simplified Iterative CLSRIVC Algorithm

It will be noted that the above formulation of the CLRIVC estimation problem
is considerably simplified if it is assumed in the CT BJ model structure that
the additive noise is white, i.e. Co(s) = Do(s) = 1. In this case, the assumed
model structure is a CT hybrid OE model given asy(tk) =

B(s,ρ)
A(s,ρ)

u(tk) + e(tk)

with u(tk) = r(tk)− Cc(s)y(tk)
(1.69)

The simplified CLRIVC (denoted as CLSRIVC) algorithm may be used here;
the estimation only involves the parameters in the A(s,ρ) and B(s,ρ) poly-
nomials and the optimal filter fclsrivc involves:

• the CT filter fs(s,ρ) = 1/A(s,ρ),
• the DT filter fd(q−1,η) = 1 since the noise model of the associated CT

OE data generating system is Ho(s) = 1.

Consequently, the main steps in the CLSRIVC algorithm are the same as
those in the CLRIVC algorithm, except that the noise model estimation and
subsequent discrete-time prefiltering in steps (2b) and (2c) of the iterative
procedure are no longer required and are omitted.
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Comments

1. Note that the IV vector used in (1.64) should be written as

ϕ̂fclrivc(tk, ρ̂
j−1) = ϕ̂fclrivc(tk, ρ̂

j−1, η̂j) (1.70)

because the instrumental variables are prefiltered and therefore are a func-
tion of both the system parameter estimates at the previous iteration and
the most recent noise model parameter estimates (see algorithm). For sim-
plicity, however, these additional arguments are omitted in the algorithm.

2. The fact that the ARMA noise model estimation is carried out separately
on the basis of the estimated noise signal ξ̂(tk) obtained from the IV
part of the estimation algorithm in (1.63), implies that the system and
noise model parameters are statistically independent (see Chapter ?? for
a thorough analysis).

3. The initial selection of A(s, ρ̂0) does not have to be particularly accurate
provided the prefilter fc(s, ρ̂

0) based on it does not seriously attenuate any
signals within the pass-band of the system being modelled (see Chapter
??).

4. These bootstrap algorithms (CLIVC2, CLIVC4, CLRIVC, CLSRIVC) re-
quire knowledge of the controller. However, when it is unknown, another
solution may be used to build up the instrumental vector which satisfies
the optimal conditions (1.27). Indeed, the noise-free estimation of this
instrumental vector can be achieved by using the two closed-loop trans-
fers between r(tk), u(tk) and between r(tk), y(tk) instead of the open-loop
one (between u(tk) and y(tk)). The second step consists then in identify-
ing the two closed-loop transfers Gyr(s,ρ) and Gur(s,ρ) to compute the
instruments as

x̂(tk, ρ̂) = Gyr(s, ρ̂)r(tk)
ν̂(tk, ρ̂) = Gur(s, ρ̂)r(tk) (1.71)

5. Another solution is to estimate the closed-loop TF Gur(s, ρ̂) by SRIVC
or RIVC and then this can be used to obtain an estimate of the noise-free
input for use as the input in the direct RIVC estimation of the process
TF. This solution is close to the two-step method [19]; it is not optimal
but yields good results with reasonable, albeit not minimum, variance
parameter estimates [24].

1.6 Summary

The theoretical optimal choices for the design variables of the two multi-step
and two iterative algorithms for complete CT modelling are summarized in
Table 1.1, while the CT and DT filter forms required, for implementation, in
each optimal IV version for CT hybrid modelling are given in Table 1.2.
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Table 1.1. Optimal choices for the design variables of the proposed IV methods for
complete CT modelling

Method
Assumed filtered data
generating CT system (1.72)

Model
structure

Shaping
noise model
f(s)Ho(s)

fopt(s) = fc(s)fd(s)
see (1.27)

fc(s) fd(s)

CLIVC2 yf (tk) =
Bo(s)
Ao(s)

uf (tk) +
f(s)
Ao(s)

eo(tk) CT ARX
f(s)
Ao(s)

f(s) 1

CLIVC4
yf (tk) =

Bo(s)
Ao(s)

uf (tk) +
f(s)

Ao(s)Do(s)
eo(tk)

CT
ARARX

f(s)
Ao(s)Do(s)

f(s) Do(s)

CLSRIVC yf (tk) =
Bo(s)
Ao(s)

uf (tk) + eo(tk) CT OE 1 1
Ao(s)

1

CLRIVC yf (tk) =
Bo(s)
Ao(s)

uf (tk) +
Co(s)
Do(s)

eo(tk) CT BJ
Co(s)
Do(s)

1
Ao(s)

Do(s)
Co(s)

It will be noticed that, in Table 1.1, the assumed filtered data generating CT
system is given as{

yf (tk) = Go(s)uf (tk) + f(s)Ho(s)eo(tk)
uf (tk) = rf (tk)− Cc(s)yf (tk)

(1.72)

Table 1.2. Implemented filter forms in the multi-step and iterative IV methods for
CT hybrid modelling

Method Model structure fc(s) fd(q−1)

CLIVC2 CT ARX
“

λ
s+λ

”na
1

CLIVC4 CT hybrid ARARX
“

λ
s+λ

”na
AR(2na)

CLSRIVC CT hybrid OE 1
A(s,ρ̂)

1

CLRIVC CT hybrid BJ 1
A(s,ρ̂)

ARMA(nd, nc)

1.7 Numerical Examples

The following numerical example is used to illustrate and compare the perfor-
mances of the proposed approaches. The process to be identified is described
by (1.1), where

Go(s) =
s+ 1

s2 + 0.5s+ 1
, (1.73)

Cc(s) =
10s+ 15

s
. (1.74)
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An external signal is added to r1(tk) (see Figure 1.1) and chosen to be a
pseudo-random binary signal of maximum length generated from a shift reg-
ister with 4 stages and a clock period of 500 (N = 7500 data points). The
sampling period Ts is chosen equal to 5 ms.
From the comparative studies presented recently in [4], the state-variable fil-
ter (SVF) approach can be considered as one of the simplest methods to
handle the time-derivative problem. This latter approach has been used here
with the basic (CLIVC) and multi-step estimators (CLIVC2, CLIVC4). It is
not required in the case of CLRIVC because the continuous-time part of the
optimal hybrid prefilter is used to generate the filtered derivatives.

1.7.1 Example 1: White Noise

Firstly, a Gaussian white noise disturbance (Ho(q−1) = 1) is considered in
order to illustrate the performance of the CLIVC, CLIVC2 and CLSRIVC al-
gorithms. The process model parameters are estimated on the basis of closed-
loop data sequences. A Monte Carlo simulation of 100 experiments is per-
formed for a signal-to-noise (SNR) ratio given as

SNR = 10 log
(
Px
Pe

)
= 15 dB, (1.75)

where Pe represents the average power of the zero-mean additive noise on the
system output (e.g. the variance) while Px denotes the average power of the
noise-free output fluctuations.
The Monte Carlo simulation (MCS) results are presented in Table 1.3 where
the mean and standard deviation of the estimated parameters are displayed. It
can be seen that the three IV methods deliver similar unbiased estimates of the
model parameters with reasonable standard deviations. However, as expected,
note that the basic CLIVC estimates are not as statistically efficient as the
CLIVC2 and CLSRIVC estimates, where the standard deviations are smaller
and, in the case of b0, the standard deviation is some 7 times smaller.
Furthermore, the 2-norm of the difference between the true (G(eiω,ρo)) and
estimated (G(eiω, ρ̂j)) transfer functions is also computed for each method

Norm =
1

Nexp

Nexp∑
j=1

∫
|G(eiω,ρo)−G(eiω, ρ̂j))|2dω (1.76)

where Nexp is the number of Monte Carlo simulation runs. The results are
given in Table 1.3 and confirm the previous results: the three IV methods lead
to accurate results; moreover, the bootstrap methods provide slightly better
results than the basic IV technique.

1.7.2 Example 2: Colored Noise

A second example is used to analyse the performance of the proposed methods
in the case of a colored noise, with
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Table 1.3. Mean and standard deviations of the open-loop parameter estimates for
100 Monte Carlo runs - White Noise

Method b̂0 ± σb̂0
b̂1 ± σb̂1

â1 ± σâ1 â2 ± σâ2 Norm

True value 1 1 0.5 1

CLIVC 0.995 ± 0.036 1.050 ± 0.047 0.536 ± 0.021 1.015 ± 0.030 0.936

CLIVC2 0.994 ± 0.005 1.018 ± 0.046 0.520 ± 0.021 1.012 ± 0.028 0.875

CLSRIVC 0.995 ± 0.003 0.990 ± 0.050 0.518 ± 0.020 1.013 ± 0.030 0.910

H(q−1,ηo) =
1− 0.98q−1

1− 1.9747q−1 + 0.9753q−2

The process parameters are estimated on the basis of closed-loop data
sequences described previously. A Monte Carlo simulation of 100 experiments
is performed for a SNR = 15dB. The first 100 points of the external signal
are forced to zeros in order to be free of the prefiltering initial conditions.
The external signal, input and output data are plotted in Figure 1.2. The
process model parameters are estimated by using methods CLIVC, CLIVC4,
CLRIVC. Moreover, the direct closed-loop approach (see [19]) is used as
well in this example, in order to illustrate the difficulties of identifying a
closed-loop model in a colored noise situation and to see how much bias is
introduced into the parameter estimates in this direct approach, when the
closed-loop operation is not really taken into account. The open-loop SRIVC
algorithm (see Chapter ??) is used for this purpose.

The mean and standard deviation of the 100 sets of estimated model param-
eters from the MCS analysis are given in Table 1.4. The Bode diagrams of
the 100 identified models are displayed in Figures 1.3 to 1.6. As expected,
the direct closed-loop approach using the open-loop SRIVC method clearly
leads to biased results: however, it will be noticed that, although the SRIVC
estimates are biased, the inherent pre-filtering introduced by CT estimation
allows us to obtain better results than those obtained from indirect DT estima-
tion. Furthermore, the three closed-loop IV methods provide similar unbiased
estimates of the model parameters with reasonable standard deviations. How-
ever, again as expected, the CLIVC estimates are not as statistically efficient
as the estimates produced by the multi-step CLIVC4 and iterative CLRIVC
algorithms, where the standard deviation are always smaller, thanks to the
prefiltering and associated noise model estimation. Furthermore, thanks to its
iterative structure and its prefilter updating operation, the CLRIVC algorithm
leads to better results than the CLIVC4 method. Moreover, it is interesting
to note that, from our experience, the basic CLIVC method provides better
results than the DT version (using the sampled external signal), thanks to the
inherent CT prefiltering (see [7]).



24 Marion Gilson, Hugues Garnier, Peter C. Young and Paul Van den Hof

0 5 10 15 20 25 30 35
!0.2

!0.1

0

0.1

0.2

Time (s)

O
ut

pu
t

0 5 10 15 20 25 30 35
!2

!1

0

1

2

Time (s)

In
pu

t

0 5 10 15 20 25 30 35
!1

!0.5

0

0.5

1

Time (s)

Ex
te

rn
al

 s
ig

na
l

Fig. 1.2. Closed-loop data used in Example 2 - Colored noise

Table 1.4. Mean and standard deviations of the open-loop parameter estimates for
100 Monte Carlo runs - Colored noise

Method b̂0 ± σb̂0
b̂1 ± σb̂1

â1 ± σâ1 â2 ± σâ2 Norm

True value 1 1 0.5 1

SRIVC 0.449 ± 0.050 1.254 ± 0.247 0.636 ± 0.140 1.354 ± 0.156 0.855

CLIVC 1.011 ± 0.278 0.812 ± 0.299 0.546 ± 0.099 0.963 ± 0.231 0.784

CLIVC4 0.960 ± 0.131 0.977 ± 0.240 0.563 ± 0.104 1.015 ± 0.119 0.767

CLRIVC 0.972 ± 0.112 0.973 ± 0.191 0.557 ± 0.083 1.007 ± 0.094 0.779

1.8 Conclusions

This chapter has addressed the problem of estimating the parameters of
continuous-time transfer functions models for linear dynamic systems operat-
ing in closed-loop using instrumental variable techniques. Several closed-loop
IV estimators have been described, including the development of explicit ex-
pressions for the parametric error covariance matrix. In particular, the chapter
has shown that reduced values of this covariance matrix can be achieved for
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Fig. 1.3. Bode plots of the 100 identified SRIVC models - Colored noise

a particular choice of instruments and prefilter; and both multi-step and iter-
ative solutions have been developed to determine the design parameters that
allow for such improved closed-loop IV estimation.
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