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Abstract 

A bias-correction method for closed-loop identification, in- 
troduced in the literature as the bias-eliminated least squares 
(BELS) method [ 1], is shown to be equivalent to a basic in- 
strumental variable estimator applied to a predictor for the 
closed-loop system. This predictor is a function of the plant 
parameters and the known controller. Corresponding to the 
related method using a least squares criterion, the method 
is referred to as the tailor-made IV method for closed-loop 
identification. The indicated equivalence greatly facilitates 
the understanding and the analysis of the BELS method. 

Keywords: System identification; closed-loop identifica- 
tion; prediction error methods; instrumental variables. 

1 Introduction 

Least squares methods based on the bias-correction prin- 
ciple aim at providing unbiased plant parameter estimates, 
while using linear-in-the-parameters model structures, see 
e.g. [2] and [3]. They retain all merits of the LS method 
and make it possible to cope with the bias problem in the 
identification of systems subject to colored disturbances. 
Recently these kind of methods have also been developed 
for identification under closed-loop conditions [1, 4]. The 
proposed method, called the bias-eliminated least-squares 
(BELS) method, is able to estimate unbiased plant param- 
eters in indirect closed-loop system identification. In [5] it 
has been shown, based on the work of [6], that the bias- 
eliminated least-squares estimator proposed in [3] for open- 
loop system identification is identical to a basic instrumental 
variable estimator. For the closed-loop identification case, 
the BELS method is analyzed in [7], where a relation is 
claimed with a particular (and rather complex) frequency 
weighted IV method, applied to the input and output mea- 
surement data, gathered under closed-loop conditions. In [ 1] 
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the BELS estimate is analyzed for the situation where the 
order of the controller is not smaller than the order of the 
open-loop plant. In [4] the method is generalized to avoid 
this restriction. 
In this paper, it will be shown that, whatever the controller 
order may be, the closed-loop BELS method is equivalent to 
a so-called tailor-made instrumental variable method, where 
the predictor for the closed-loop system is used to generate 
the prediction error and the external reference signals are 
used as instrumental variables. This connects to the (least 
squares) tailor-made identification method for closed-loop 
identification that was recently introduced in the literature, 
[8, 9]. This equivalence greatly facilitates the understanding 
and analysis of the B ELS method. 

2 Preliminaries 

r2 

U 
Go 

Figure 1: Closed-loop configuration. 

Consider a linear SISO closed-loop system shown in figure 
1. The process is denoted with Go(z) and the controller with 
C(z); u(t) is the process input signal, y(t) the process output 
signal and v(t) describes the disturbances acting on the loop. 
The external signals rl (t), r2(t) are assumed to be uncorre- 
lated with the noise disturbance v(t). For ease of notation 
we also introduce the signal r(t) = rl (t)+ C(q)r2(t). With 
this notation the closed-loop system can be described as 

Go 1 
• - ~ r ( t )  + ~ v ( t ) .  (1) 

S y(t) 1 + CGo 1 + CGo 

4



A parametrized process model is considered 

B(q -1 0)_ 
q" G(q, O ) -  A(q_l'-O), -- 

b t q -  1 + . . .  + bnq-n 

1 + alq -1 + . . .  + anq -n 
(2) 

and the process model parameters are stacked columnwise 
in the parameter vector 

O-- [a l  ... an bl "" b n J r E N  2n. (3) 

The real plant Go is considered to satisfy G o ( q ) -  
Bo(q-1) /Ao(q-1) ,  while in these expressions q-1 is the de- 
lay operator, and the numerator and denominator degree is 
no. The m-th order controller C is assumed to be known and 
specified by 

Q(q-1)  _ qo+qlq-1 +...+qmq-m (4) 
C(q) -- p (q-1)  -- 1 + p lq  -1 + . . .  + pmq -m 

with the pair (P, Q) assumed to be coprime. The closed-loop 
transfer function (1) can be rewritten in polynomial fraction 
form 

BcOl 1 
y(t) - -d-g- r ( t )  + -d-6-~ (t) 

Act ~l cZ 
(5) 

with { ( t ) -  AoPv(t). The polynomials B°t and Ac°t will 
generically have orders no + m. 

For parametrizing the closed-loop transfer function Go/(1 + 
CGo) the following model structure is used 

Bct(q -1, O) -- [51q -1 + . . .  + ~rBq -rB (6) 

Ad(q  -1, O) -- 1 + o~tq -1 + . . .  + ~n+mq -(n+m) (7) 

and the closed-loop parameters are collected in the parame- 
ter vector 

o - [ o ?  V ]  

= . . .  . . .  13r ,] I~ ~+"+rS. (8) 

For r8 > (no + m) the closed-loop model structure will be 
flexible enough to exactly represent the reference to output 
transfer function in the closed-loop system (5). 

The bias-eliminated least squares method that is considered 
in this paper attempts to estimate the process parameters by 
an indirect closed-loop identification. This means that the 
closed-loop transfer function (5) is identified, after which 
process parameters (3) are determined. 

The relation between (open-loop) process parameters and 
closed-loop parameters is determined by the linear equa- 
tion 1 

O -- M0 + p (9) 

tNote that in [1, 4] the corresponding equation is written as O = M0 - p; 
the difference in sign is due to the fact that in the mentioned references de- 
nominator parameters appear with a negative sign in the parameter vectors. 
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where 9 is a known vector and M is a known full-column 
rank matrix, given by 

P--  (pl 

(o" M - -  Pc e (10) 

" ' '  Pm 0 "'" O) T E ]~(n+rn+rB ) (11)  

Pc, Qc E I~ (n+m)xn are Sylvester matrices expanded by 

[1 Pl "'" Pm]rand[qo  ql "'" qm]rrespectively, 
e.g. 

PC - -  

-1  

P l  

° 

Pm 

0 

0 

° ° °  0 - 

° ° •  • •e  0 

• "• 1 

• P l  

• .. 0 pm. 

Pc E ][~rB xn is also a Sylvester matrix defined by 

(12) 

3 Bias-el iminated least-squares method 

The bias-eliminated least-squares method (BELS) for 
closed-loop identification as discussed in [ 1, 4] is designed 
to provide an unbiased estimate for the process model 
G(q, 0), while pertaining to simple algorithmic schemes as 
the linear regression type of estimates. Accurate noise mod- 
eling (i.e. finding an noise-shaping filter that models the 
disturbance signal v) is not considered part of the problem. 
The method comprises the following main steps: 

• Estimate an ARX model for the closed-loop system 
(5) on the basis of data r and y; this estimate is denoted 
by •Is. 

• This estimate generally will be biased due to the fact 
that {(t) in (5) will not be white noise; however the 
bias on Bct(q -1 , ~31s)/Acl(q -1, ~ls) c a n  be estimated 
and subtracted from the closed-loop estimate; 

• The corrected closed-loop parameter is converted to 
an equivalent open-loop process parameter by solving 
for (9) in a least squares sense. 

In short 

CLdata ----+ (Ors ---+ ~)corr ~ Obels 
ARX Comput at ion LS 
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A R X  est imate  

An ARX estimate for the closed-loop system is obtained 
through 

Ors (N) -- RO0 (N) -  1 ROy (N) 

where 

~p(t) -- [ - y ( t -  1) 

1 N 
Roo(N) -- ~ ~ (p(t)(p T (t) (14) 

t=l  

^ 1 N 
Roy(N)- N E (p(t)y(t) (15) 

t=l  

. . . .  y ( t - n - m )  r ( t - 1 ) . . ,  r ( t - r s ) ]  z. 

Bias correct ion 

The bias correction principle is based on the following rea- 
soning. If the ARX model structure is rich enough to capture 
all dynamics of the closed-loop system (i.e. if the system is 
in the model set), then 

~31s(N) -- ®o+ R~(N)Ro~(N)  (16) 

where ®o is the coefficient vector of the real closed-loop 
plant, a n d / ~ ( N )  -- ~ EN=l ~p(t)~(t). Then, under minor 
regularity conditions on the data, the least squares estimate 
~3ts(N) is known to converge for N --+ oo with probability 1 
to 

, --[ 
®ts -- Oo + RooRo~ 

with Roo -- E~p(t)~p T (t) and Ro~ -- P~(p(t)~(t), where the no- 

tation E [ . ] -  limN-+= ~ N-1 let=0 E[.] is adopted from the pre- 
diction error framework of [10]. As the noise disturbance 

is assumed to be uncorrelated with the reference signal r, 
the bias in the asymptotic estimate is given by 

• - R y e .  

with Ry~ - - / ? { [ - y ( t  - 1) . . . .  y ( t -  n)] r • {(t)}. Based on 
this expression, an estimate for A is obtained by considering 

X(U)  

The unknown/~y{(N) in this relation can be obtained by the 
following reasoning. 

As matrix M in (9) has full column rank, there exists a full 
column rank matrix H E ~,(n+m+rB)x(m+rB-n) that satisfies 
H T M -- 0. Multiplying equation (16) by H T and using equa- 
tion (9) for ®0, it follows that 

T^-I [lnm I H T H R00 (N) ~ /~y~ (N) -- (~)ls (N) - P). (17) 

This is a set of m + rB -- n equations with n + m unknowns in 
/~y~ (N), requiring rB >_ 2n to have at least as many equations 
as unknowns. There are two situations to be distinguished 
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• m > n (see [ 1]). rB is chosen according to rB -- n + m, 
and equation (17) is an overdetermined set of equa- 
tions that is solved in least squares sense, leading to 

H T [~),~(N)- P] (18) 

with (.)+ denoting the matrix pseudo-inverse. 

• m < n (see [4]). By choosing rB = m + n the number 
of equations in (17) is not sufficient to uniquely deter- 
mine z~. In [4] this is solved by applying a dynamic 
prefilter to the reference signal such that effectively 
a system with higher numerator degree is estimated. 
This is equivalent to simply choosing r8 = 2n, thus 
obtaining the situation that (17) is uniquely solvable 
for ky~ (N). An estimate A(N) can then be constructed 
according to 

H r Iota(N) - P]. (19) 

Combining both situations it appears that r8 can be set to 
r8 = max(2n, n + m). The bias elimination can now be per- 
formed by constructing the corrected closed-loop parameter 
vector 

~)corr(N) -- ~Is(N) - A(N). (20) 

Finally the plant parameter estimate 0bets is obtained by 
solving (9) in a least squares sense 

Obels(g)- (MTM)-IMT(~corr(N)--D). (21)  

It has been shown in [ 1] and [4] that this resulting parameter 
estimate is asymptotically unbiased. 

4 Tai lor-made IV identif ication 

4.1 Main  result 
In the first step of the BELS method the closed-loop system 
is estimated with a general ARX (black-box) model struc- 
ture. However as we know that the closed-loop system has 
a particular structure (1) with a known controller C, this 
structure can also be imposed on the parametrization of the 
closed-loop. 

When defining 

Bd(q -1 , O) -- B(q -1, O)P(q -1) (22) 

Ad(q  -1 , O) -- A(q -1, O)P(q -1 )+B(q - l  , 0)Q(q-1) (23) 

a parametrization of the closed-loop system has been ob- 
tained, in terms of the process parameters 0. In the literature 
this is known as a tailor-made parametrization, and has been 



applied before in prediction error identification with least 
squares criteria, see e.g. [8] and [9]. 

Next the main result is formulated. 

Proposition 1 Consider a data generating system accord- 
ing to (1), such that the closed-loop system is asymptotically 
stable, and consider the BELS estimate Obels(N) given by 
(21), with re = max(2n, n + m), and r persistently exciting 
of  sufficiently high order. 

Define the weighted tailor-made IV estimate Oi,,,F (N) as the 
solution to the set of  2n equations 

1 N 
1~ ~ e(t, Oiv,F)Tl(t ) - -  0 (24) 

t = l  

e(t, O) -- Ad(q  -1 , O)y(t) - Bd(q -1, O)r(t) (25) 

rl(t) := F(pr(t), F E I~ 2nxr8 (26) 

with (pr(t) - J r ( t -  1) ... r ( t - r s ) ]  T E Nr8 (27) 

with 

Then 

F -- I2n in the situation rn <_ n, and 

F T "T " "T -1 -- M R~r~(R~r~R~r~) in the situation m > n. 

Obels (N)  -- Oiv, F (N) .  

Proof. A full proof can be found in [ 11]. 

Remarks'. 

• If the order of the process model exceeds the con- 
troller order (n >_ m), the parameter estimate is a sim- 
ple tailor-made IV estimate, where the closed-loop 
prediction error is made orthogonal to delayed ver- 
sions of the external reference signal. Related esti- 
mation algorithms based on a least squares criterion 
~t 82( t, 0) have been considered in [8] and [9]. The in- 
dicated equivalence greatly facilitates the understand- 
ing and analysis of the BELS-estimator. Moreover, it 
also allows the analysis of the estimator under condi- 
tions where the real process is not considered to be 
present in the model set. Note that in the formulation 
of the main result it is not assumed that Go has order 
n .  

• In the situation m < n, it is suggested by [4] to in- 
troduce an auxiliary filter operating on the reference 
signals in order to increase the number of numerator 
parameters to identify. Here it is shown, as was also 
indicated by [7], that this dynamic prefilter is superflu- 
ous. The problem can be handled by simply choosing 
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r8 - 2n, i.e. by deliberately enlarging the number of 
numerator parameters to estimate. 

• When in > n, the estimator is obtained by using a lin- 
ear combination of delayed samples of the reference 
signal, to act as an instruments in the IV estimator. 

• In this paper we have dealt with strictly proper plant 
models, having at least one time-delay (bo -- 0). The 
situation of proper plant models in the BELS esti- 
mate is completely similar with appropriate adapta- 
tion of matrix and vector dimensions, provided that 
in the closed loop there is at least one time-delay, i.e. 
boqo - 0. The tailor-made IV method does not require 
the presence of such a loop delay. 

• A relation with other works can be found in [ 11]. 

4.2 Interpretat ion of matr ix  F 
In order to interpret the role of matrix F, let us analyse 
e(t, Obets), the equation error of the BELS estimator. As 
the connection between IV and BELS estimators has been 
stated, the equation error can be written as 

E(l,Oiv, F)  - -y( t )  --(pT(t)(MOiv, F -["p). (28) 

This equation can be simplified by analyzing the constitut- 
ing expressions. At first, it can be noticed that the controller 
denominator P(q- t )  can be used as a prefilter for the output 
y(t). Then, with 

y(t) = P(q-1)y(t)  (29) 

it follows that 
y(t) - y(t) - (pT (t)D (30) 

The second expression (pT (t)M can be rephrased by consid- 
ering the plant description 

y(t) - V T (t)0o + Ao(q -1)v(t),  

with 

V ( t )  - -  [ - y ( t -  1) . . . .  y(t - n) 

, ( t - 1 )  . . .  , ( t - n ) ]  r e 

In a filtered version this reads" 

y(t) - gt T (t)0o + p(q-1)Ao(q-1)v(t)  

where g t ( t ) " -  P(q-1)V(t  ). Similarly, 

y(t) - (pT (t)(MOo + 9) + P(q-1)Zo(q-1)v(t)  

(31) 

leading to 

y(t) - qo T (t)MOo + p(q-1)Ao(q-1 )v(t) 

which combined with (31) shows that 

(t)  - ( t ) M .  



Using this expression in (28) leads to 

e(t, Oil, F) -- y(t) -- ~ r  (t)Oi,,,F. (32) 

For a further interpretation two cases have to be considered, 
according to the orders of the controller and the system. 

Case m < n. 

If the controller order is smaller than or equal to the system 
order, it has been stated that F is equal to the identity matrix 
and the tailor-made IV estimate satisfies 

/~q)rE - -  0.  (33) 

By substituting (32) in (33), this yields 

R(~rY - -  R ~ r ~ O i v ,  F - -  O. (34) 

If the signal r(t) is persistently exciting, of sufficient order, 
the squared matrix R~v E N2nx2n is invertible and thus the 
IV estimate is given by 

Oiv " -  1 " - -  R ~ r ~ R q ~ r y .  (35) 

Case m > n. 

In the case where the controller order is greater than the 
system order, the vector ~0r is made up of (n + m) com- 
ponents (see the proposition). It follows that the matrix 
gcpr~ E ~ ( n W m ) x 2 n  is not invertible. Thus, the matrix F is 
added in order to make it invertible, i.e. to make/~cpr~, regu- 
lar. In this case, F is equal to Mr[C~r~(R~r~~)  -~ and the 
tailor-made IV estimate satisfies 

RF(prE - -  O. (36) 

By substituting (32) in (36), it follows 

gFcpry  - -  gFq)r~tOiv,  F - -  O. (37) 

If r(t) is persistently exciting of sufficient order, the matrix 
kF(prf~i E I[~ 2rt×2rt is invertible and the IV estimate can be writ- 
ten as 

Oiv " -  1 " - -  RFcp~fgRF(pry .  (38) 

The matrix RF(pr'ql can be regarded as the product of two ma- 
trices F and R(pr~" F E ]~2nx(n+m) and e(pr~ E ]~(n+m)×2n 
have both rank 2n. Thus, the product F/~r  q, or equivalently 
RFq0~V, is squared (dimensions 2n x 2n) and has rank 2n. 

5 Simulation example 

Consider the process and controller given in [4] and de- 
scribed by the following transfer functions: 

B(q-Z_______~) _ q -I  + 0.5q-2 
G(q-1) - A(q -1) -- 1 - 1.85q -1 +0.525q -2'  (39) 

Q(q-1) 0.35 - 0.28q -1 
C ( q - 1 ) -  p(q-1) = l _ 0 . 8 q _ l  . (40) 
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The closed-loop system is then described by: 

Bd(q-1)  _ q - 1 -  0.3q-2_  0.4q-3 (41) 

Act(q -1) -- 1 - 2.3q -1 + 1 .9q-2 -  0.56q -3 (42) 

y(t) - y,t(t) + yn(t) (43) 
a(q -1 )p (q  -1) 

= B d ( q - 1 ) r ( t ) +  l) e(t), (44) 
Act(q -1) A d ( q -  

with e(t) and r(t) white noises uncorrelated. Note that the 
process is unstable and the closed-loop transfer function is 
overparametrised by a common factor 1 - 0 . 8 q  -~. Process 
parameters are estimated on the basis of closed-loop data 
sequences of length N -  1000. Monte Carlo simulations 
of 200 experiments have been performed for two different 
signal to noise ratios: 

SNR -- 10log ( c2a '~ - 10 30 dB (45) \ , , 

where (y denotes the standard deviation. The process param- 
eters obtained by the tailor instrumental variable (tailorIV) 
are calculated, and for illustration purposes they are com- 
pared with estimates obtained by the optimal instrumental 
variable (IV4) method [ 10]. The results are given in tables 1 
and 2. The standard deviations (std) are also presented. 

bl b2 al a2 
Oo 1 0.5 -1.85 0.525 

tailorlV 1.000 0.500 - 1.850 0.525 
std 0.019 0.026 0.025 0.036 

IV4 0.989 0.502 -1.851 0.526 
std 0.046 0.024 0.029 0.014 

Table 1: Plant parameter estimates for SNR - 30dB 

bl b2 al a2 
00 1 0.5 -1.85 0.525 

tailorlV 1.006 0.480 -1.864 0.553 
std 0.193 0.233 0.209 0.329 
IV4 0.065 0.543 -1.559 0.409 
std 0.562 0.360 0.761 0.133 

Table 2- Plant parameter estimates for SNR -- lOdB 

Figure 2 represents the Bode diagrams of the 200 models 
identified by the two previous methods and for two signal to 
noise ratios (10 and 30 dB). 

Whereas the tailor-made IV method leads to asymptotically 
unbiased results, the IV4 estimates are biased due to the fact 
that the plant input signal is corrupted by noise (and so is 
the simulated output signal which is used as a basis for the 
instruments). This situation becomes more apparent under 
high noise disturbances. The tailorIV method gives good re- 
suits in both low-noise and high-noise situations, although 
in the latter situation the variance error becomes dominant. 
Figures 2(c) and 2(d) show that for the tailorIV method the 
variance error is dominating in the low-frequency range, 
while for the IV4 method the variance error is more sub- 
stantial in the high-frequency region. 
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Figure 2: Bode diagrams of the process (black) and of the estimates (grey), SNR -- 30, 10 dB 
6 Conclusions 

It has been shown that a bias-eliminated least-squares 
(BELS) estimator for closed-loop identification is equivalent 
to an instrumental variable estimator, where the predictor 
considered reflects the closed-loop system, and where ex- 
ternal reference signals act as instrumental variables. This 
requires a tailor-made parametrization of the closed-loop 
system, as has been used in the literature before in a least 
squares setting. The relation between BELS and IV greatly 
facilitates the understanding and analysis of the former 
method. 
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