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Abstract coefficients. Examples of such expansions are the well-
known Laguerre and two-parameter Kautz basis construc-
Given an expansion of a dynamical system in terms of a gen- tions [10, 8, 18, 19]. Further generalizations were proposed
eralized orthonormal (Hambo) basis, the problem of realiz- in [4, 6, 11]. Their general form is given by
ing a state-space model of minimal McMillan degree such
that its firstN expansion coefficients match the given ones f(2) = Vv 1-8? kl_[ 1-¢§z 3)
|

is addressed and solved. For the solution use is made of z— & z—&;

the properties of the Hambo operator transform theory. The

resulting realization algorithms can be applied in an exact where {§;} is a collection of poles to be chosen by the

and approximative sense and can also be applied to solve auser. The origin of these constructions lies in the work of

related interpolation problem. Takenaka and Malmquist in the 1920s [20]. The functions
constitute a complete orthonormal setHa provided that
Ske1 (1—|&]|) = ». Typically the rate of convergence of

1 Introduction the series expansion (2) is higher when the pre-chosen poles

&; are closer to the poles of the underlying system. This pa-

The idea of decomposing a system in terms of basis func- per considers the basis constructiqn that_ was proposed in

tions is widely applied in system theory and related prob- (6] @lso denoted as the Hambo basis, which in terms of (3)

lems such as system approximation and identification. It 'S equivalentto afinite pole selectigdi}, i = 1,..,np which
is for instance common to represent a stable discrete-time 'S repeated periodically, i.€x+n, = &, Vk.

systemG(2) in the form of its Laurent expansion as The problem considered is as follows: given a partial ex-

ol pansion{&}k=1...n, find a minimal state-space realization
G2 = kzlgkz ; 1 (A,B,C,D) of a systemG(z) of smallest order such that
- G(2) = yp_1 ¢k fk(2) andey = €, k=1,---N. Thisis a gen-
where the function§z ¥} form an orthonormal basis forthe  eralization of the classical minimal partial realization prob-
space of strictly-proper, stable transfer functions, denoted as lem that was solved in [7, 16]. This problem has been ad-
H>. The associated expansion coefficiagsalso known as dressed for the Laguerre case and the Hambo basis case with
the Markov parameters, play an important role in systems full information (N — o) in [12, 13, 15]. In order to deal
theory, realization theory, system approximation and iden- with finite N a different approach has to be followed. It will
tification. In this context systems are often represented in be shown that a solution for this case can be constructed by
terms of a finite set of Markov parameters, which is known exploiting the Hambo transform theory (see [17, 5, 1]).
as FIR (finite impulse response) modeling. The presented results will be limited to scalar transfer func-
tions. The generalization to multivariable systems presents
Generalized orthonormal basis constructions have been pro- o great difficulties. Throughout this paper it will be as-

posed that offer the flexibility to tune them so as to perform - symed that all state-space realizations and expansion coef-
better than FIR models in particular situations. These are ficients are real-valued.

expansions of the general form The outline of the paper is as follows. First some prelimi-
o naries about the Hambo basis and Hambo transform theory
G2 = a«f(), ) are recalled in section 2. In section 3 the Hankel operator

=
Il

1 framework is presented in which the realization problem is

where the function$(z) represent general orthonormalba-  solved for the case where one has knowledge of the full ex-
sis functions whilegg € R are the corresponding expansion  pansion and for the case where the McMillan degree of the
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system is known. In section 4 this approach is combined
with results from Hambo basis theory to derive the main re-
sults. In section 5 application of the results in the context of
system identification is discussed and illustrated.

For the proofs of all results see [2, 3]. We will use the fol-
lowing notational conventions:

L™ Hilbert space of complex matrix functions of dimen-
sionp x mthat are square integrable on the unit circle.
The superscript is suppressegiE m= 1.

Subspace ot )*™ of functions analytic outside the

unit disc, and zero at infinity.

pxm
H2

RH
<X5Y>M

Subspace ofational transfer functions oHs.
Matrix “inner” product betweerX € L5** andY ¢
. 1 /m i
L1 defined agX, Y)y = / X (€)Y (€©)*deo.
—TT

T on
For p= m= 1 the subscripM will be suppressed.

Hy

pxm
Hz,o

The orthogonal complement bk in Ls.

The space of discrete-time, stableroper transfer
functions of output/input dimensigmx m.

pxm

20 -

The space of square summable vector sequences, of
vector dimensiom, whereJ denotes the index set.
The superscript will be omitted ifn= 1.

pxm
RH

Q)

Subspace ofational transfer functions of

i-th canonical Euclidean basis (column) vector.

2 Preliminaries

2.1 Orthogonal basis functions—Hambo basis

One way to construct the Hambo basis functions [5] is by
considering a finite set of polgg;}i—1,..n, that are stable,
i.e.|&i| < 1, generating an all-pass transfer function

(1-&7

(z—&)

Go(2) = |n_bl

having a balanced realizatidAy, Bp,Cp, Dy) that satisfies
Ay, Bp

&)

It follows that the input-to-states transfer functions3pf

Ay Bp
C, Dy

(4)

0@ =6 (zZ1-Ap) By, i=1,.,m,

form an orthonormal set. An orthogonal basislftris cre-
ated by introducing

@k =062, k=1,

For convenience we also denotg:= [@1x Gk - (pnb,k]T,
leading toVy(2) = (zI — A,) By, and vector functions

.00,

Vk(2) = Va(2)Gp(2)* 1. (5)
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Since the functiong@ k }i—1,..n,;k=1,-. form an orthonor-
mal basis, any elemef of H, can be written as

o Ny

G(2 = k;i;h,k(ﬂ,k(z)a with lix = (G,@ ).  (6)

with | i the expansion coefficients. Similarly we can write

6@ =3 L@ ™)
k=1

with LI =] |1,k |2,k |nb7k] = <G,Vk>M.

The functionGy(2) also generates a basis fdy (and thus
for the entireL, space), by repeatedly multiplyind (2)
with Gp(2) ™! = Gp(1/2), as is shown e.g. in [14]. We will
denote the basis functions i in vector form by
Uk(1/2) = 1(2Gp(1/2 = Va2 Gp(2) 4D, (8)
for k € Np. In the sequel we merely discuss systembiin

It is important however that most of the results can be trans-
lated toH, by a simple mirror operation.

2.2 Signal and operator transforms

By the isomorphic property of thetransform there exist
equivalent time-domain representationspof that form an
orthonormal basis of the signal spa€N). They are writ-
ten as@ k(t), or Vi(t), where the index € N denotes time.
The Hambo signal transform [5] of a signain /2(N) is
then defined by

i X(ATK, with X (k) = (Vi X
k=1

andA a complex indeterminate. This signal transform gives
rise to a transform operation on a dynamical system, as for-
mulated next.

Proposition 1 Suppose that & ¢>(N), G € RHo and let
y(2) = G(2)u(2). Definell andY as the Hambo signal trans-
forms of u respectively y. Then,

Y(m =3 M U(j), 9)
j=1
with the Markov parameters pMgiven by
M= (Vi(2Go(@Va(2G(2) (10)

b X Ny

The resulting dynamical syste@ne RH,"

)

determined by
G\ =S MK (11)
2

is referred to as the Hambo operator transform of G.



This proposition shows that théambo operator transform
of the scalar systen® is a causal, linear time-invariant
Np X Ny system. An important property of this transform
is thatG(\) andG(z) have the same McMillan degree.

In [2, 3] algorithms are given for directly computing a mini-
mal state-space realization@fA) on the basis of a minimal
state-space realization G(z) and vice versa.

Remark 2 Itis important to note that the image of Rplis

only a subspace of ngg”b, i.e. the latter space contains
systems that are not a Hambo transform.

One can expand ang(z) € RH in terms of the Hambo
basis functions as in (7). We now recall from [15, 1] the
connection between the coefficient sequeficg and the
sequence of Markov parametdidy} of the Hambo opera-
tor transformG(\). The relation will prove to be essential
for the solution of the generalized realization problems.

Proposition 3 Let G H; have an expansion as {6).
(a) the Markov parameters pbf the Hambo operator trans-
form G(A) satisfy

Np
lei,k+1PiT+|i,inTa k>1,
_ )i

n
Zh,lPiT
i=

(b) 2G(Z)(A) = g M A% with
k=1

My (12)

k=0.

Ny
M = LBy | + Z{LI+1%}iHT +{LeAo}iQl, k>1
i=

13)
where {-}; denotes the i-th element of the corresponding
vector. The matrices;Rnd Q are obtained as the unique
solutions to the following Sylvester equations.

APA! +Boel Al =P,
AlQA +Cle = Q.

(14)
(15)

——

The expression farG(z) (A) will turn out to be useful when
constructing the realization algorithm in the sequel. The
main implication of part (a) of proposition 3 is that the
Markov parameters o6(\) can be derived directly from
the expansion coefficients. More precise¥j solely de-
pends on the coefficient vectokg andLy,1. In the next
section this fact is used to solve the realization problem.

3 Realization

The solution to the classical minimal realization problem
[7], is based on the representation of a system in Hankel op-
erator form, reflecting the mapping from past input signals

3675

U € £3(—o0,0] to future output signaly € ¢2[1,0). This
operator is represented by an infinite Hankel makttithat
operates on the infinite vectausandy, as in:

u(0)
u(—1)

y(1) g1 O

y=[Y@| =% o =Hu (16)

The Ho-Kalman realization algorithm employs the property
that any full-rank decomposition ¢f
H=TrA (17)

corresponds to a minimal realizati¢A,B,C). TheB and

C matrices of this realization are obtained by extracting the

first column ofA and the first row of, while the A matrix

is obtained by solving the equation
H™ =TAA. (18)

HereH* is the Hankel matrix that is obtained by removing

the first column oH and can be viewed as the Hankel ma-

trix associated with the systent(z). This algorithm yields

an exact realization provided that an underlying finite di-
mensional system exists.

In our situation the problem is to find this system not on
the basis of{g«}, but by starting with{Lx}. Thereto we
formulate the Hankel operator of the system (16) in terms
of a matrix representation that considers the signals to be
decomposed in terms of the generalized basis functions. We
then define the vectorg and {i containing the expansion
coefficient sequences according to

e T
19)
Since the coefficients satisf(k) = (Vi,y)yy andU(—k) =
(Uk, uy,, one can express the vectgrandii as

§=[YOT Y@T --],andi=[UOT U-1)T

Vj_ uO
y=|V2|y=Tiy, andli= |Y1|u=Tou,  (20)

wherevy andu are given by
vk= (1) k(2 -], andug=[Uk(0) Uk(=1) --].
(21)

The matricesT'; and T, consist of inverse-transforms of
the orthonormal basis functiokfg(z) andUk(z). Hence they
are unitary (orthogonal) matrice¥] T1 =T} T2 =1. From
equations (16) and (20) it then follows that one can write
§=T1HT 20 =H. (22)
The matrixH is the Hankel operator representation asso-

ciated with expansions of signals in terms of Hambo basis
functions. See [2, 3] for the exact formulasiof andT».



Proposition 4 With y and U as defined in equatio(i9) it
holds thaty = H{ with H given by

A= (M2 Ms , (23)

where M are the Markov parameters of the Hambo opera-
tor transform of Gz) as defined by equatigii0).

It follows that H coincides with the block Hankel matrix
associated with the systeG(}), the Hambo operator trans-
form of G(z). This matrix can thus be constructed from the
expansion coefficients, using the result of proposition 3.

The construction of a minimal realization according to (17)
and (18) requires a full rank decompositiontdfand the
availability of H.

A full rank decomposition oH is obtained by any full rank
decomposition off = I"A, because from (22) it follows that
H =T] -AT, is a full rank decomposition. The shifted
Hankel matrixH“ is obtained by observing that it is the
Hankel matrix related to the shifted syste®(z), satisfy-
ingH* = T]H Ty, whereH - is the Hankel matrix related

to z&z). The Markov parameters of this latter system are
specified by proposition 3(b), and B~ can be constructed.
With these ingredients it is straightforward to formulate a
realization algorithm [15, 2, 3].

Unfortunately this algorithm has limited practical value as
it requires knowledge of the expansion coefficient&afp

to infinity. The situation of a given finite expansion is con-
sidered next.

For the classical basis, it is well-known that when a finite se-
quence{gk}k—1..-N IS given, the Ho-Kalman algorithm can
be applied to a finite submatrkty, n, of the full matrixH
(with N1 + N2 = N), leading to an exact realization of the
underlying system iN is sufficiently large.

We first treat the (intermediate) problem that a finite num-
ber of expansion coefficienfd y }k—1,..n is given of a sys-
tem G € RH, with known McMillan degreen. In the next
section the situation with unknown McMillan degree will be
considered.

Given a finite number of coefficienfd  }x—1,..n Of @ sys-
tem G € RH,, this information can be translated to a finite
number of Markov parametefdy }x—o,..n—1 Of G accord-
ing to (12). IfN is sufficiently large, allowing the construc-
tion of a finite matrixH Ng,N, With Np +Np = N — 1 that has
the same rank all, a standard Ho-Kalman algorithm (in
the transform domain) can be applied to arrive at a minimal
realization(A, B,C,D) of G. Applying the inverse Hambo
transform [2, 3] then yields a minimal realization®f

We recall from [1, 2] an important property of the expansion
coefficients of a syster®(z), that will be essential for the
solution of the partial realization problem, when no knowl-
edge about the McMillan degree is available.
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Proposition 5 Given a system @) € RHp, let (A, B,C,D)

be a minimal state space realization of the Hambo trans-
form G(A). Then there exists a matrix X such that the ex-
pansion coefficient§Ly} of G satisfy

Ly = CA X, (24)

4 Minimal partial realization

This section provides an algorithm that solves the minimal
partial realization problem as formulated in the introduc-
tion. In [16] it was shown that a unique solution (mod-
ulo similarity transformation) to the classical minimal par-
tial realization problem is obtained through application of
the Ho-Kalman algorithm, provided that a certain rank con-
dition is satisfied by the sequence of Markov parameters
{Ok}k=1,..N-

A similar result can be derived for the generalized case.
Given the coefficient&y for k= 1,..,N one can calculate
the Markov parametendly for k =0,..,N — 1 as described

in section 2. This might suggest that the problem can be
solved as in the previous section under the condition that
the sequencéMy }k—1,. N—1 satisfies the realizability condi-
tion given in [16]. This condition is however not sufficient
to guarantee that the resulting realizatidqB, , Mo) con-
stitutes a valid Hambo transform (see also Remark 2). We
require a realizability criterion that is specifically tuned to
our problem.

The key to find this condition is provided by Proposition 5,
which shows that for a syste® e RH, the sequenceld i }
and{My} are realized by state-space realizations that share
the state transition matri&. This leads us consider the se-
guence of concatenated matrices

Kk:[Mk|Lk|Lk+1], k=1,.,.N-1 (25)

Parametelty, 1 is included in view of the fact thaty is
obtained on the basis af andLy;.

The following lemma provides the conditions under which
the minimal partial realization problem can be solved.

Lemma 6 Let{Ly}k-1,.n be anarbitrary sequence ofx

1 vectors and let Mand K for k =1,..N — 1 be derived
from Ly via relations(12) and (25). Then there exists a
unigue minimal realization (modulo similarity transforma-
tion) (A, B,C) with McMillan degree n, and an r 1 vector

B such that

(@) My = CA1B fork=1,..,N — 1, and L, = CAK1B for
k=1,.N,

(b) the infinite sequencdsMy Ly ] :=CAK1[ B B ]
satisfy relation(12)for all k € N,

if and only if there exist positive/\N, such that N+ N, =
N—1and

rankHn, n, = rankHy,+1.n, = rankHn, np+1 =1, (26)

Whereﬂm- is the Hankel matrix built from the matricé&y }
with block-dimensions: j.



Condition (26) is in fact equal to the condition given by
[16] applied to the sequend}. Note that it can only

be checked foN > 2. On the basis of lemma 6 we can
formulate the following proposition that also provides an
algorithm to solve the minimal partial realization problem.

Proposition 7 Let {Lx}k—1,.n be an arbitrary sequence
of ny x 1 vectors, then there exists a minimal realization
(A,B,C) of McMillan degree n, such thgili}k—1. N are
the first N expansion coefficients ofZs= C[zl — A] 1B, if

1. there exist positive f\N, such that N+ N, =N -1
and condition(26) of lemma 6 holds,

2. the minimal realization(A,[ B % X3 ],C,D),
resulting from application of the Ho-Kalman algo-
rithm to the sequencKy }k=1,. N—1, IS Stable.

Furthermore, the matrices .,8,C are derived by appli-
cation of the inverse Hambo transform to the realization
(A,B,C,D).

Remark 8 The requirement tha is stable assures that the
Ho-Kalman algorithm yields a valid Hambo transform of
a stable system. However it is straightforward to extend
the algorithm of proposition 7 to the case whéehas no
poles on the unit circle. I6 has unstable poles, it has to be
separated in a stable and unstable part. The unstable part
is transformed by mirroring it to a stable function and after
transformation, mirroring the transform back to an unstable
function. Hence the only case which is actually not covered
by this algorithm is whe# has poles on the unit circle.

Remark 9 (Interpolation) It is well known that approx-
imating a transfer function &) in terms of a finite set
of rational basis functions interpolates to(& and/or its
derivatives in the pointd/¢;, with & the poles of the
basis functions [20]. It is not surprising that there ex-

L L I L L L L L L
5 10 15 20 25 30 35 40 45 50

Figure 1: Impulse response of the example system.

value truncation. This can be applied similarly to the gen-
eralized situation. Here an example is given in which this
method is compared with the classical approximate realiza-
tion method. Besides in an identification context, the ap-
proximate realization procedure can also be applied as a
model reduction method.

In comparison with the classical case, approximate realiza-
tion in the generalized case has one additional difficulty, due
to the fact that not every system RH,%™ is the Hambo
transform of a system iH,. Although the inverse transform
can be applied to any systemmHg%X"b, the resulting sys-
tem in Hx will not have a one-to-one correspondence with
the original. In the exact realization setting, this problem
does not arise. The full implications of this phenomenon
are not fully understood yet and will be the subject of fur-
ther research.

As example we compare the application of the generalized
approximate realization method with the method of [9]. We
consider a 6-th order SISO transfer functi®(z), given by

—0.5642° + 43.92* — 21.672° — 1.047% — 95,72+ 75.2

-3
10 28— 3.355 4 4.847 — 4.4473 + 3.1122— 1.482+ 0.318

Fig. 1 shows the impulse responseGifz), revealing that

ists a one-to-one correspondence between the coefficient the system incorporates a mix of fast and slow dynamics. 10

vector sequencgly}ik—1..n and the interpolation data

{%(1/Ei)}k=1,,,“. Explicit expressions for this relation
are given in [2, 3]. One can hence solve the following in-

terpolation problem, using the algorithm of proposition 7.

Problem 10 Given the interpolation conditions

d“1G
F(l/ai) =Cik CikeC

fori=1,..,npand k=1,..,N (N > 2), with & # 0 distinct
points, inside the unit disc, find the RHansfer function of
least possible degree that interpolates these points.

5 Approximate realization

The classical partial realization algorithm can be applied
as a system identification method [21, 9], building a Han-
kel matrix with (possibly noise corrupted) expansion co-
efficients and by applying rank reduction through singular
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simulations are carried out in which the response of the sys-
temG(z) to a Gaussian white noise input with unit standard
deviation is determined. An independent Gaussian noise
disturbance with standard deviatio!®8 is added to the out-
put. This amounts to a signal to noise ratio (in terms of RMS
values) of about 17 dB. The length of the input and output
data signals is taken to be 1000 samples. For each of the 10
data sets two basis function models of the form

N
G2 =y LiVi(@), (27)

K=1
are estimated using the least-squares method described in
[17]. The first model is a 40-th order FIR model. Hence
in this caseVk(z) = z X andN = 40. The second model
uses a generalized basis that is generated by a second order
all-pass function with poles.B and 09. For this model 20
coefficient vectors are estimated. Hence the number of esti-
mated coefficients is equal for both models. We now apply
the approximate realization method using the estimated ex-
pansion coefficients of both models, for all 10 simulations.



150 2[;0 3(‘)0 4(;0 5(‘)0 680 7(‘)0 8[;0 9(‘)0 1000

Figure 2: Step response plots of the example system (solid) and
the models obtained in 10 simulations with approxi-
mate realization using the standard basis (dash-dotted)

and the generalized basis (dashed).

In either case a 6-th order model is computed, through trun-
cation of the SVD of the finite Hankel matrix. In figure 2
step response plots of the resulting models are shown. It is
seen that approximate realization using the standard basis,
results in a model that only fits the first samples of the re-
sponse well. This is a known drawback of this method. Em-
ploying the generalized basis, with poles @nd 09 results

in models that better capture the transient behavior. Appar-
ently, a sensible choice of basis can considerably improve
the performance of the Kung algorithm [9].

6 Conclusions

In this paper an algorithm is derived that solves the minimal
partial realization problem for expansions in terms of gener-
alized orthonormal basis functions, generated according to
the Hambo basis construction. The realization problem is
solved by linking it to the classical realization problem for-
mulated in the Hambo operator transform domain. The re-
sulting algorithm can also be used in an approximate sense,
e.g. for the purpose of model reduction or in a system iden-
tification setting.
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