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Abstract

Lithium-ion batteries are indispensable in various applications owing to their

high specific energy and long service life. Lithium-ion battery models are used

for investigating the behavior of the battery and enabling power control in appli-

cations. The Doyle-Fuller-Newman (DFN) model is a popular electrochemistry-

based model, which characterizes the dynamics in the battery through diffusions

in solid and electrolyte, and predicts current/voltage response. However, the

DFN model contains a large number of parameters that need to be estimated

in order to obtain an accurate battery model. In this paper, a computationally

feasible noninvasive two-step estimation approach is proposed that only uses

voltage and current measurements of the battery under consideration. In the

two-step procedure, the parameters are divided into two groups. The first group

contains thermodynamic parameters, which are estimated using low-current dis-

charges, while the second group contains kinetic parameters, which are esti-

mated using a well-designed highly-dynamic pulse (dis-)charge current. A pa-

rameter sensitivity analysis is done to find a subset of parameters that can be

reliably estimated using current and voltage measurements only. Experimen-

tal data are collected for 12 Ah Nickel Cobalt Aluminum pouch Lithium-ion

cell. The voltage predictions of the identified model are compared with sev-

eral experimental data sets to validate the model. A Root-Mean-Square-Error

(RMSE) between model predictions and experimental data smaller than 16 mV
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is achieved.

Keywords: Lithium-ion battery, DFN model, thermodynamic, kinetic,

sensitivity analysis, parameter estimation

1. Introduction

Lithium-ion (Li-ion) batteries are known to have a high energy density and

a long service life. They have been successfully used in the automotive industry,

which enables the production of low-emission hybrid vehicles and zero-emission

full electric vehicles [1, 2]. To facilitate the analysis, design and control of the

batteries, models of Li-ion batteries are required. For instance, these models are

used in typical functionalities of the Battery Management System (BMS), such

as State-of-Charge (SoC) estimation, capacity fade estimation and real-time

control [3, 4, 5, 6, 7]. An accurate model plays a pivotal role in investigation

and proper control of the battery.

Among the available battery models, the Equivalent Circuit Model (ECM)

and the Doyle-Fuller-Newman (DFN) model are popular ones. The ECM de-

scribes the input/output behavior of batteries through an electrical circuit con-

sisting of a voltage source, a series resistance and a parallel connection of a

resistor and capacitor, see, e.g., [8], while the DFN model is an electrochemistry-

based model, which characterizes the dynamics in Li-ion battery based on con-

centrations and potentials [9, 10]. Several papers report methods for estimating

the parameters of the ECM of Li-ion batteries, see, e.g., [11, 12, 13, 14, 15],

papers presenting methods for estimation the parameters of the DFN model

seem to be scarce.

Although some parameters of the DFN model (e.g., layer thicknesses and

diffusion coefficients) can be determined with direct experiments, it is still com-

plicated and challenging to carry out these measurements. Moreover, since the

number of parameters is large and the estimation procedure is computation-

ally complex, it is hard to estimate all parameters in the full DFN model. For

this reason, parameter estimation has been mostly applied to simplified DFN

2
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models, such as the single particle model [16] [17, 18, 19, 20]. Most of these

works relies on Gauss-Newton method for nonlinear optimization to perform

parameter estimation [17, 20], while some have used a homotopy optimization

method [18, 19]. Though parameter estimation by a Genetic algorithm had

been successfully used to estimate parameters in [21], only a few results are

available on parameter estimation of the full DFN model. In a number of

sources [11, 12, 13, 14, 15, 17, 18, 19, 20], various parameters are estimated but

the parameters choice remains unexplained.

In this paper, the parameter estimation of the full DFN model is considered

to obtain a high-fidelity battery model. A computationally feasible two-step

estimation approach is developed that uses only voltage and current measure-

ments. In the proposed two-step procedure, the original set of parameters is split

into two: thermodynamic parameters and kinetic parameters, which are esti-

mated separately. The thermodynamic parameters are related to the capacity,

which are estimated using low-current discharges, while the kinetic parameters

are estimated using highly-dynamic pulse (dis-)charge current. A parameter

sensitivity analysis based on QR factorization [22] is applied to find a subset of

parameters that can be reliably estimated, which leads to a simplified estimation

procedure. Additionally, an experimental input current profile is designed for es-

timation and all data are collected from 12 Ah Nickel Cobalt Aluminum (NCA)

Li-ion batteries. Giving the designed current input to the model and measur-

ing the experimental voltage of the battery, the DFN model is parameterized

through the estimation of the sensitive parameters using nonlinear least-square

optimization [23, 24]. The estimated model is validated by comparing the pre-

dictions of model to the measurements on different data sets so as to ensure the

model is reliable.

The remainder of this paper is organized as follows. In Section 2, the DFN

model is outlined and a numerical computation procedure for implementing the

DFN model is given. Two groups of parameters: thermodynamic and kinetic,

accompanied with their expected ranges and nominal values will be presented

in Section 3. Estimation of the thermodynamic parameters by determining the

3
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equilibrium voltage and the capacity of the battery will be done in Section

4. Section 5 deals with identifying the most sensitive subset in the group of

kinetic parameters using QR factorization and those parameters are estimated

using nonlinear least-square optimization. Finally, the model is validated using

different experimental data sets (constant discharge and hybrid cycle) in Section

6 and conclusions will be drawn in Section 7.

2. Model description and implementation

In this paper, the DFN model is considered, see, e.g., [9, 10]. This model is

derived according to the electrochemical description of the (dis-)charging process

in a Li-ion battery, which determines the dynamics of ionic concentrations and

potentials in the battery. In this section, the fundamental governing equations

and the implementation of the DFN model will be given.

2.1. Fundamentals of DFN model

Fig. 1 schematically outlines a Li-ion cell, showing its three main regions:

the negative composite electrode, the separator and the positive composite elec-

trode. Composite electrodes contain two phases: a liquid phase, which is elec-

trolyte and a solid phase which contains active material particles. The elec-

trolyte is a lithium salt dissolved in an organic solvent and can be considered as

a binary system. Electrolyte fills a liquid phase in electrodes and separator. The

main storage reaction at the cathode side of the Li-ion battery flows according

to

LixMeO2

ch
GGGGGGBFGGGGGG

dis
Lix−∆xMeO2 + ∆xLi+ + ∆xe−, (1)

where Me represents transition metal, in line with cathode composition (e.g.

Me = Co for traditional chemistry, or Me = NiaCobAl1−a−b for NCA cells).

Note that for proper (reversible) operation of Li-ion batteries, not all lithium

can be withdrawn from the cathode, i.e. x ≥ xmin, for value xmin close to 0.5.

The electrochemical reaction at anode side is given by

LiyC6 + ∆yLi+ + ∆ye−
ch

GGGGGGBFGGGGGG

dis
Liy+∆yC6. (2)

4
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Figure 1: Schematic one-dimensional representation of a Li-ion battery.

During discharging, lithium deintercalates from the anode, enters the liquid

phase and moves to the cathode through the separator. The reverse process

occurs during charging. In the liquid phase, the Li-ions movement is caused

by a combination of diffusion and migration across the electrolyte. Therefore,

the ionic concentrations and potentials in both electrodes and electrolyte change

during the operation of the battery. The DFN model characterizes these dynam-

ics in the Li-ion battery by using the porous electrode theory and the concen-

trated solution theory [25]. Within the DFN model, the intertemporal response

of a cell (in terms of voltage and current) can be predicted from a fundamental

characterization of the physical phenomena involved in the process. In particu-

lar, thermodynamics (the equilibrium potentials of the electrodes), kinetics (the

rate of the charge transfer reactions) and mass/charge transport (the movement

of ions through solid and liquid media) are considered.

2.2. Governing equations

The DFN model is a pseudo 2-dimensional model and consists of a set of

coupled partial differential equations, ordinary differential equations and alge-

braic equations. The model describes the transport of Li-ions is determined by

diffusion in solid phase and in the liquid phase and charge conservation in both

electrodes described by Ohm’s law. A brief summary of the model’s governing

equations is given below.

5
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• The concentration of Li-ions in solid phase Cs,k(x, r, t) in the negative

(k = n) and the positive electrode (k = p) electrode depends on the

particle position x ∈ [0, δ−] for positive electrode and x ∈ [L − δ+, L] for

negative electrode, where δ− and δ+ are the thickness of negative and

positive electrode, respectively, and the radial position within a particle

r ∈ [0, Rs], where Rs is the radius of particles, and time t ∈ R+. The ionic

concentration inside a single spherical active material particle is described

by Fick’s law of diffusion, i.e.,

∂Cs,k
∂t

=
Ds,k

r2

∂

∂r
(r2 ∂Cs,k

∂r
), (3a)

with boundary conditions

∂Cs,k
∂r

∣∣∣∣
r=0

= 0, −Ds,k
∂Cs,k
∂r

∣∣∣∣
r=Rs

=
jLi,k

as,kF
, (3b)

where k ∈ {n, p}, represents negative or positive electrode. In this expres-

sion, Ds,k are the diffusion coefficients in solid phase, jLi,k is the volume-

specific rate of the electrochemical reaction, which will be defined below,

F is Faraday’s constant (96487 C·mol−1) and the specific interfacial active

surface area as,k = 3εs,k/Rs, in which εs,k is the volume fraction of active

particles in both electrodes.

• The concentration of Li-ions in the liquid phase Ce(x, t), where x ∈ [0, L],

is governed by Fick’s law of linear diffusion combined with an intercalation

current density term jLi, transferring ions between the solution and the

solid, i.e.,

εe
∂Ce
∂t

=
∂

∂x
(Deff

e

∂Ce
∂x

) +
1− t+
F

jLi, (4a)

with zero-flux boundary conditions at the current collectors

∂Ce
∂x

∣∣∣∣
x=0

=
∂Ce
∂x

∣∣∣∣
x=L

= 0. (4b)

In these expressions, εe is electrolyte phase volume fraction (porosity) and

t+ is the transference number of Li ions, Deff
e denotes the effective diffusion

coefficient in the electrolyte phase, which is calculated from a reference

6
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coefficient using the Bruggeman relation, i.e., Deff
e = Deε

p
e, where p is

Bruggeman porosity exponent, given by p = 1.5.

• The potentials in the solid phase φs,k(x, t) is given by

∂

∂x
(σeff
k

∂φs,k
∂x

) = jLi,k, (5a)

with boundary conditions

−σeff
n

∂φs,n
∂x

∣∣∣∣
x=0

=
Iapp

A
,
∂φs,n
∂x

∣∣∣∣
x=δ−

= 0, (5b)

∂φs,p
∂x

∣∣∣∣
x=L−δ+

= 0,−σeff
p

∂φs,p
∂x

∣∣∣∣
x=L

=
Iapp

A
. (5c)

where k ∈ {n, p}, denotes the negative or positive electrode. In this expres-

sion, σeff
k = σkεs,k denotes the effective electrical conductivity, in which

σk represents the electrical conductivity in solid active material, A is the

electrode plate area and Iapp(t) is the applied current, as an input of the

model.

• The potential in the electrolyte phase φe(x, t) is described by

∂

∂x
(κeff ∂φe

∂x
+ κeff

D

∂ lnCe
∂x

) = −jLi, (6a)

with boundary conditions

∂φe
∂x

∣∣∣∣
x=0

=
∂φe
∂x

∣∣∣∣
x=L

= 0. (6b)

In above equations, κeff = κεpe denotes effective ionic conductivity, with

κ = 15.8Ceexp(0.85(1000Ce)
1.4). Moreover, the effective diffusional con-

ductivity κeff
D is derived from concentrated solution theory and given by

κeff
D =

2RTκeff

F
(t+ − 1)(1 +

∂ ln f±
∂ lnCe

), (7)

where R is the universal gas constant (8.3143 J·mol−1K−1), T is the ab-

solute temperature and f± is the activity coefficient, which is assumed to

be constant in the present work, leading to the simplified expression

κeff
D =

2RTκeff

F
(t+ − 1). (8)

7
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The four governing equations (3)-(6) are coupled with the volume-specific

rate of reaction jLi,k, which satisfies Butler-Volmer electrochemical kinetic ex-

pression

jLi,k = as,ki0,k
(
exp(αkF

RT ηk)− exp( (αk−1)F
RT ηk)

)
, (9)

where αk is charge transfer coefficient for k-th electrode. In this expression, i0,k

is the exchange current density given by

i0,k = k0C
αk
e (Cmax

s,k − Csurf
s,k )αk(Csurf

s,k )1−αk , (10)

where k0 is a kinetic rate constant, Cmax
s,k denotes the maximum concentration

in the solid phase and Csurf
s,k (x, t) = Cs,k(Rs, x, t) is the concentration at the

particle surface. Moreover, ηk represents the overpotential at both electrodes,

which is related to the potentials in two phases and the equilibrium potential

as

ηk = φs,k − φe − Uk, (11)

where Uk, k ∈ {p, n}, is the equilibrium potential in electrodes, which is always

evaluated as a predefined function of the solid phase concentration at the particle

surface Cs,k(x,Rs, t), written as

Up = Up(x), Un = Un(y), (12)

where x(x, t) = Cs,p(x,Rs, t)/C
max
s,p and y(x, t) = Cs,n(x,Rs, t)/C

max
s,n are the

normalized concentrations at the surface of the positive and negative electrodes

accordingly. Finally, the terminal voltage is calculated by the difference between

the solid phase potential at the two current collectors, minus an Ohmic drop

due to contact resistance, given by

V (t) = φs(L, t)− φs(0, t)− Rf

A Iapp(t), (13)

where Rf denotes the contact resistance.

2.3. Model implementation

In order to obtain the predicted output of the DFN model for proper parame-

ter estimation, a reliable numerical implementation of the model is needed. The

8
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implementation method used in this paper is based on a numerical procedure

proposed by [26]. The main idea for implementing the DFN model can be sum-

marized into the following three steps. The first step is a spatial discretization of

(3)-(6), by approximating the ∂
∂x term in these equations using a finite-volume

or finite-difference method, leading to a set of nonlinear Differential Algebraic

Equations (DAE) of the form:
dC
dt = f(C, φ,P)

0 = g(C, φ, Iapp,P),

(14)

where C denotes the spatially discretized concentrations, φ denotes the spatially

discretized potentials, Iapp is the applied current and P is the vector of all the

model parameters. The functions f and g are nonlinear functions resulting from

the spatially discretized modelling equations.

The second step in the numerical implementation is a backward Euler dis-

cretization over time, leading to:C(tn+1) = C(tn) + (tn+1−tn)f(C(tn+1), φ(tn+1),P)

0 = g(C(tn+1), φ(tn+1), Iapp(tn+1),P),

(15)

which is a set of purely algebraic equations. Eqn. (15) is finally solved using an

iterative numerical procedure based on Gauss-Newton’s method, which repre-

sents the third step. After obtaining the solution of the dependent variables of

the model (Cs, Ce, φs, φe), the cell terminal voltage V (t), as the output of the

DFN model can be calculated by (13). More details on the model implementa-

tion can be found in [26].

3. Parameters grouping and ranging

The DFN model contains a large number of parameters related to design, size

and electrochemistry of the battery. Various physical parameters have different

influence on the behavior of the battery and they can be divided into two groups:

thermodynamic parameters and kinetics parameters. In this section, the two

9
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Table 1: Thermodynamic and kinetic parameters with ranges and nominal values

Thermodynamic parameters

m Parameter Dimension Description Nominal value Range Scaling

1 δ− µm Negative electrode thickness 50

2 δ+ µm Positive electrode thickness 36.4

3 εs,n Active article volume fraction in negative electrode 0.58

4 εs,p Active article volume fraction in positive electrode 0.5

5 Cmax
s,n mol·m−3 Maximum solid phase concentration in negative electrode 16.1·103

6 Cmax
s,p mol·m−3 Maximum solid phase concentration in positive electrode 23.9·103

7 y0% Stoichiometry at 0% state of charge in negative electrode 0.126

8 x0% Stoichiometry at 0% state of charge in positive electrode 0.936

9 y100% Stoichiometry at 100% state of charge in negative electrode 0.676

10 x100% Stoichiometry at 100% state of charge in positive electrode 0.442

11 A m2 Electrode plate area 1.84

Kinetic parameters

1 εe,n Electrolyte volume fraction in negative electrode 0.21 [0, 0.42] (17a)

2 εe,sep Electrolyte volume fraction in separator 0.5 [0, 1] (17a)

3 εe,p Electrolyte volume fraction in positive electrode 0.25 [0, 0.48] (17b)

4 De m2·s−1 Li-ion diffusion coefficient in electrolyte 2.6 · 10−11 [2.6 · 10−12, 2.6 · 10−10] (17b)

5 Ds,n m2·s−1 Li-ion diffusion coefficient in negative electrode 2 · 10−14 [2 · 10−18, 2 · 10−10] (17b)

6 Ds,p m2·s−1 Li-ion diffusion coefficient in positive electrode 3.7 · 10−16 [1.7 · 10−20, 8 · 10−12] (17b)

7 t+ Transference number 0.35 [0.3, 0.4] (17a)

8 Rs µm Radius of electrode material particle 1 [0.1, 10] (17b)

9 αn Charge transfer coefficients in negative electrode 0.5 [0.3, 0.7] (17a)

10 αp Charge transfer coefficients in positive electrode 0.5 [0.3, 0.7] (17a)

11 k0,n A·m5/2·mol−3/2 Kinetic constant in negative electrode 1.38 · 10−5.5 [1.38 · 10−7, 1.38 · 10−4] (17b)

12 k0,p A·m5/2·mol−3/2 Kinetic constant in positive electrode 0.64 · 10−5.5 [0.64 · 10−7, 0.64 · 10−4] (17b)

13 σn S·m−1 Electrical conductivity in negative electrode 1000 [10, 105] (17b)

14 σp S·m−1 Electrical conductivity in positive electrode 0.003 [3 · 10−7, 30] (17b)

15 Ce,0 mol·m−3 Initial electrolyte concentration 1.2 · 103 [103, 1.5 · 103] (17b)

16 Rf Ω·m2 Contact resistance 2 · 10−3 [2 · 10−4, 2 · 10−2] (17b)

groups of parameters will be described, and the ranges and nominal values of

the parameters will be given.

3.1. Thermodynamic parameters

The thermodynamic parameters describe the system in equilibrium, when

all concentration profiles and potentials are stable over the time and all net

reaction currents are zero. For a battery, this means that the thermodynamic

parameters are related to the equilibrium voltage and the battery’s maximum

capacity, since both of them are obtained when the applied current is zero.

While the equilbrium potential is given by nonlinear equation that depends on

the normalised concentrations, see (12), the reversible maximum capacities of

10
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the negative and positive electrodes are given by

Qn = A δ− εs,n C
max
s,n (y100% − y0%)F, (16a)

Qp = A δ+ εs,p C
max
s,p (x0% − x100%)F, (16b)

where x100%, y100%, x0% and y0% are stoichiometry at 100% and 0% SOC re-

spectively, in both electrodes. According to these equations, the thermodynamic

parameters are estimated and listed in Table 1.

Generally, batteries are manufactured with the similar geometry and compo-

sition, while different capacities are obtained through altering the plate area A

of batteries. Therefore, the values of the remaining thermodynamic parameters

presented in Table 1 are adopted from [27]. The only parameter that is not

directly taken from [27] is plate area A. The real capacity of the battery used in

the present work can be determined by specific estimation procedure, based on

voltage extrapolation towards zero current, which will be described in Section 4.

The value for plate area A is estimated by the proportional relationship between

the capacity reported in [27] and that measured in the present work.

3.2. Kinetic parameters

The kinetic parameters are determined by the rate of charge transfer re-

actions and the speed of charge/mass transport by migration and diffusion.

Furthermore, the voltage drop, caused by current flow in the current collectors

is included in kinetic parameters. A summary of the kinetic parameters in the

DFN model is given in the Table 1.

The range of every kinetic parameter presented in Table 1 is obtained by

gathering different values for every parameter from the literature [9, 10, 17, 18,

19, 20, 28, 27, 29, 30, 31, 32, 33, 34], and setting the minimum and maximum

value as the boundary of each kinetic parameter. Within the range, every

parameter can be expressed on a linear or a logarithmic scale, i.e.,

pi = βpi + (1− β)pi, (17a)

or

log pi = β log pi + (1− β) log pi, (17b)
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where β ∈ [0, 1], pi ∈ p denotes every kinetic parameter, pi and pi represent

minimum and maximum value of the parameter, respectively. For the parame-

ters whose range is in the same order of magnitude, (17a) is used, while (17b) is

used to express the parameters whose range differ in orders of magnitude. This

is shown in the last column in Table 1. The nominal values for each parameter

are calculated by substituting β = 0.5 into either (17a) or (17b).

4. Thermodynamic modelling

The output voltage of a Li-ion battery depends strongly on the equilibrium

potentials of cathode and anode, which, in turn, depend on temperature and

amount of lithium stored in each electrode. Therefore, the equilibrium potential

functions of the cell have to be estimated in accordance with measured data.

As discussed in Section 3, the thermodynamic parameters are related to the

equilibrium potentials of the battery. Hence, the equilibrium potential func-

tions for both electrodes will be determined based on the estimated values of

thermodynamic parameters.

The methodology proposed in this paper for determining the equilibrium po-

tentials for both electrodes is as follows. First, an equilibrium voltage (EMF) of

the complete battery is estimated, which also yields the maximal capacity of the

battery. The method to estimate the EMF is described in [35]. Subsequently, the

thermodynamic parameter A is estimated using the available maximal capacity.

Finally, the function describing the negative electrode potential Un is derived

from [27] and the function describing the positive potential Up is determined on

the basis of total EMF and the thermodynamic parameters.

4.1. EMF (equilibrium voltage) and capacity of the cell

To estimate the equilibrium voltage, or EMF voltage, the battery is dis-

charged several times at a constant current at different C-rates, where dis-

charging is terminated at 2.7 V. The following C-rates has been employed for

discharging: 0.1, 0.2, 0.3, 0.5, 0.75, 1.00 and 1.25 C-rate. The results of these

12
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Table 2: Estimated coefficients in positive and negative electrode potential functions

γk,0 γk,1 γk,2 γk,3 γk,4 γk,5 γk,6 γk,7 γk,8 γk,9

Up (k = p) −2.49 · 103 14.56 −1.86 · 102 8.14 · 102 −2.56 · 103 4.63 · 103 −4.51 · 103 1.90 · 103 2.49 · 103 -0.052

Un (k = n) −8.63 · 10−4 0 8.00 -12.58 5.07 2.18 · 10−5 0.019 15 -5.19 -2.43

measurements are used to determine the EMF based on the voltage extrapola-

tion towards zero current [35, 36]. Fig. 2 shows the measured discharge curves as

functions of the amount of extracted charge Qout (solid colored lines), together

with the extrapolated equilibrium voltage curve (dashed black line).

The capacity of the battery is the maximal extracted charge Qmax
out . From the

extrapolated EMF curve in Fig. 2, it can be seen that the capacity Qmax
out = 12.7

Ah. Thus, the plate area A is calculated as 1.84 m2 according to the proportional

relationship Qmax
out /Q1 = A/A1, where Q1 and A1 are the capacity and plate area

of battery used in [27].

4.2. Positive electrode equilibrium potential function

As mentioned above, the function describing the equilibrium potential of the

negative electrode Un is take from [27], while the function describing the equi-

librium potential of the positive electrode Up is computed using the equilibrium

voltage Ubat. Namely, it holds that

Ubat = Up − Un, (18)

where Ubat is the equilibrium voltage. The rationale behind this approach is

based on the fact that the potential of the negative electrode contributes much

less to total battery voltage than the potential of the positive electrode (see also

Fig. 3). Moreover, much of the variation in equilibrium potentials of various

cells types is due to differences in cathode chemistries, while there is much

less variation in composition of graphite anodes, which makes their equilibrium

potential almost standard. By that reason, an equilibrium voltage of anode Un

is taken from [27].

After the total battery EMF Ubat has been estimated by extrapolation to-

wards zero current, and the negative electrode equilibrium potential is assumed

13
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Figure 2: Set of discharge curves (0.1, 0.2, 0.3, 0.5, 0.75, 1.00) together with estimated Ubat

and fitting result according to (19b).

to be given by (see [27])

Un(y) =

5∑
i=0

γn,iy
i−2
2 + γn,6 exp(γn,7y) + γn,8 exp(γn,9y), (19a)

the positive electrode equilibrium potential Up can be computed using (18),

which is then captured by the following expression:

Up(x) =

7∑
i=0

γp,i
( x−x0%

x100%−x0%

)i
+ γp,8 exp(γp,9

( x−x0%

x100%−x0%

)10
), (19b)

where γk,i, i ∈ {1, . . . , 9}, k ∈ {n, p}, are coefficients parameterizing these

functions. Coefficients γp,i are estimated by fitting the experimental data, while

γi in Un are obtained from [27]. All coefficients are listed in Table 2.

The dashed red line in Fig. 2 is the fitted result of total equilibrium (EMF)

voltage, and Fig. 3 displays the resulting equilibrium potentials in the negative

and positive electrodes, as functions of SoC. The dashed red line in Fig. 3 is the

total EMF.
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Figure 3: Equilibrium potentials in the negative electrode (solid blue line), and positive

electrode (solid red line) and total EMF (dashed red line).

5. Kinetics modelling

After determining the thermodynamic parameters, the kinetic parameters

have to be estimated. Identifying a large number of kinetic parameters from

measurements leads to the question: which model properties can be estimated

reliably from the available measurement data? To answer this question, the

sensitivity of the battery voltage with respect to changes in the parameters can

be investigated. If only some of the parameters are sensitive, then it is possible

to reduce the complexity of the parameter estimation procedure and avoid large

uncertainties in estimates, because only the sensitive parameters can be reliably

estimated. Since the parameter sensitivity of the battery voltage depends on

the choice of the current drawn from the battery, this current input design is

an imperative premise of the followed sensitivity analysis and estimation.

5.1. Input design

An essential preparation for the sensitivity analysis and the parameter es-

timation is the design of a suitable input. The objective of input design is to

15
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Figure 4: (a) designed input of the model, (b) magnitude of diagonal entries in matrix R.

generate informative data while experimentation effort is reduced. As the input

of the model, the cell current has to excite the battery at various C-rates in

order to cover different charging or discharging conditions. The design of input

current is based on the following considerations:

• Both charging and discharging: The output voltage may reveal different

dynamics when charging and discharging the battery since the response

of the DFN model might not be symmetric.

• Different C-rates: The voltage response of the DFN model might depend

nonlinearly on magnitude of the exciting current.

• Relaxation: In order to capture the voltage relaxation behavior of the cell,

the (dis-)charging periods should be followed by zero current periods.

The input current designed according to the conditions above is shown in

Fig. 4a. The excitation signal is composed of several periods, and different

constant currents are applied in each period. The designed input Iapp(t) includes

charge and discharge pulses at 1C-rate and 0.5 C-rate, each pulse is followed

by relaxation phase. The duration of each pulse and relaxation phase is 5 min,

which is enough to capture the dynamics of the battery when current flows and

during relaxation period.
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5.2. Sensitivity analysis

The idea of estimating only a subset of the parameter set in the DFN model

has been proposed before in [18, 20, 33, 34]. In particular, all the aforemen-

tioned papers propose to estimate some of the parameters, see Table 3, while

keeping the others at some nominal value. It can be observed from Table 3

that no consensus exist on which parameter should be estimated. Moreover, a

systematic approach for selecting which parameters can be reliably estimated

does not seem to be present in these papers. In this paper, such a systematic

approach is developed in the form of a parameter sensitivity analysis. The pa-

rameter sensitivity analysis determines how sensitive is the output of the model

with respect to variation in values of parameters. Since the output of the DFN

model depends nonlinearly on the parameters, this is a local analysis. Besides

presenting a formal mathematical model, the method is illustrated numerically.

5.2.1. Parameter ranking by QR factorization

In this paper, the sensitive analysis is done using a QR factorization with

column permutation [22] of a to-be-defined sensitivity matrix. To define this

sensitivity matrix, let us write the predicted voltage output of the DFN model

using the following nonlinear function:

V̂ = h(Iapp,p; C0,φ0), (20)

where V̂ = [V̂ (t1), V̂ (t2), · · · , V̂ (tN )]T, is a prediction of output voltage mea-

surements of the battery stacked over time, and h(Iapp,p; C0,φ0) represents

the solution to the DFN governing equations (15),

Table 3: Estimated parameters from various sources

Literature Estimated Parameters

[18] εe,sep, t+, σn, Ce,0

[20] Ds,p, k0,n, k0,p, x100%, x0%, y100%, y0%

[34] Cmax
s,n , Cmax

s,p , Ds,n, Ds,p, as,n, as,p, k0

[33] Ds,n, Ds,p, De, k0,n, k0,p.
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where Iapp = [Iapp(t1), Iapp(t2), · · · , Iapp(tN )]T, is the input current stacked over

time. Finally, p = [p1, p2, · · · , pm]T ∈ P is the parameter vector which contains

all kinetic parameters and C0,φ0 are the initial state vectors of concentrations

and potentials.

Making a first-order Taylor expansion of the output of the model V̂ around

its nominal parameters p̂ leads to

V̂(p) = V̂(p̂) + ∂V̂
∂p

∣∣∣
p̂

(p− p̂), (21)

where the sensitivity matrix S = ∂V̂
∂p

∣∣
p̂

for the model output V̂ with respect to

the kinetic parameters p is given by the N by m matrix

S(p, t) =


s1(p, t1) s2(p, t1) · · · sm(p, t1)

s1(p, t2) s2(p, t2) · · · sm(p, t2)
...

...
. . .

...

s1(p, tN ) s2(p, tN ) · · · sm(p, tN )

 , (22)

where N is a number of measurements, which is equal to the length of designed

input, and m = 16, is the number of kinetic parameters. sj(p, ti) = ∂V̂ (ti)
∂pj

denotes the sensitivity of output V (ti) to parameter pj , approximated using a

finite-difference method. The output V̂ is obtained by supplying the designed

input Iapp(ti) (cf. Fig. 4) to the model, while being at 50 % SoC and given

certain nominal parameter value p̂ = [p̂1, p̂2, · · · , p̂m] (obtained by substituting

β = 0.5 in (17a) or (17b)).

Each column of sensitivity matrix S expresses the output sensitivity to every

kinetic parameter. The norm of each column indicates the size of sensitivity

while the linear dependence between two columns indicates the degree of similar

effect on the output if changing these parameters. To allow comparing different

parameters that have different orders of magnitude, the sensitivity matrix is

normalized by multiplying with Γ0:

S(p, t)nrm = S(p, t)Γ0, (23)

where Γ0 =diag(p̂1, p̂2, · · · , p̂m) represents the diagonal matrix of nominal pa-

rameter values.
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A QR factorization with column pivoting is a method that determines an

orthogonal matrix Q, an upper triangular matrix R, with a decreasing magni-

tude of diagonal entries |r11| ≥ |r22| ≥ · · · ≥ |rmm|, and a permutation matrix

Π, so that

SnrmΠ = QR. (24)

The permutation matrix Π determines a new order of columns for matrix Snrm

so that the most sensitive parameters appear in the first entries of the parameter

vector p. The new ordering of parameters from most sensitive to least sensitive

can be computed using [
1 2 · · · m

]
Π, (25)

where [1 2 · · · m] is the initial order of parameters. A detailed explanation of

sensitivity analysis based on the QR decomposition is given in [37] and some

examples employing this method are given in [22, 38].

When applying the QR factorization to the sensitivity matrix obtained by

applying the current input Iapp (cf. Fig. 4a) at 50% SOC, the order of param-

eters ranking from the most sensitive to the least is given by[
1 2 · · · 16

]
Π =

[
8 14 4 6 16 · · ·

]
. (26)

To assess how many parameter are sufficiently sensitive, the diagonal entries in

R are considered, which are shown in Fig. 4b. From this figure, it can be seen

that the first five values are much larger than the others. This means that five

parameters are sufficiently sensitive. The extremely small values correspond to

the directions in the parameter space in which varying the parameters has very

limited influence on the output, leading to an unreliable parameter estimation,

and these parameters will be kept at their nominal values. Hence, only the

parameters corresponding to the first five indices will be estimated, which are

[8, 14, 4, 6, 16]. By looking up the number in the kinetic parameters in Table 1,

this corresponds to the parameters ps = [Rs, σp, De, Ds,p, Rf ]T, which are listed

in Table 4, ranking from the most sensitive parameter to the least sensitive one.

It should be noted that the conclusions presented here are based on the current
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Table 4: Parameters ranking in the DFN model using QR

Selected Parameters

Rank Parameter Description

1 Rs Radius of electrode material particle

2 σp Solid phase electrical conductivity in positive electrode

3 De Li-ion diffusion coefficient in electrolyte

4 Ds,p Li-ion diffusion coefficient in positive electrode

5 Rf Contact resistance

input Iapp given in Fig. 4a at 50% SOC. However, the analysis has been done at

20% (an almost empty battery) and 80% SOC (an almost full battery), and for

other current inputs, and the conclusions on the sensitive parameters remained

the same.

5.2.2. Numerical illustration

To illustrate that the method based on the QR factorization indeed properly

captures the sufficiently sensitive parameters, a numerical illustration is given.

To illustrate the sensitivity of the parameters, a perturbation is given to every

nominal kinetic parameter to see whether these changes influences the model

output.

Consider the battery at 50% SOC, apply Iapp(t) as given in Fig. 4a to the

model and substitute β = 0.4 in (17a) or (17b) to increase each parameter by

the same extent based on its nominal value. The model output is compared with

that derived by using nominal values p̂. The same is done for decreasing the

parameters by replacing β = 0.6. It turns out that Rs, σp, De, Ds,p and Rf are

sensitive parameters since the variation in model output V̂(t) is obvious when

changing these parameters, which is reflected in the first five plots in Fig. 5.

However, for the transference number t+, which is the first non-identifiable

parameter (ranking sixth in sensitivity), the output of the model is non-sensitive

to the deviation of t+ from its nominal value, as the last plot in Fig. 5 shows.
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Figure 5: Comparison of model output by changing parameters. Blue lines are β = 0.5, red

lines are β = 0.4 and green lines are β = 0.6.

5.3. Parameter estimation

After selecting parameters which can be properly estimated using the dy-

namic current input of Fig. 4a, the kinetic parameters are now estimated by

minimizing the sum of the squared error between experimental voltage and pre-

dicted one, i.e.

p̂s := arg min
ps

N∑
i=1

(Vexp(ti)− V̂ (ps, ti))
2 (27)

where Vexp(ti) denotes the measurement of voltage, V̂ (ps, ti) is the predicted

output voltage and ps is a vector of identifiable parameters.

In this paper, a nonlinear least-squares regression technique called the Levenberg-

Marquardt method [24] is used to solve (27) and to obtain parameter estimates.

The Levenberg-Marquardt algorithm is implemented in Matlab by the function

nonlsq and it actually consists of a combination of two minimization methods:

the gradient descent method and the Gauss-Newton method [24]. The update

rule is given by

p̂s,`+1 = p̂s,` + (JT
` J` + λ`I)−1JT

` f`, (28)
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Table 5: Estimated values of first five most sensitive parameters using Levenberg-Marquardt

method

Parameter Dimension Initial value Optimized value

Rs µm 1 0.834

σp S·m−1 3 · 10−3 2 · 10−3

De m2·s−1 2.6 · 10−11 1.66 · 10−11

Ds,p m2·s−1 3.7 · 10−16 8.38 · 10−16

Rf Ω·m2 2 · 10−3 2.4 · 10−3

where ` ∈ N is the iteration index, λ` > 0 is a well-chosen damping fac-

tor, f` = Vexp − V̂(p̂s,`), Vexp = [Vexp(t1), · · · , Vexp(tN )]T and V̂(p̂s,`) =

[V̂ (p̂s,`, t1), · · · , V̂ (p̂s,`, tN )]T. The matrix J` is a Jacobian matrix of the partial

derivatives of the output voltage V̂(ps,`) with respect to all the parameters ps,

and is evaluated in local parameter p̂s,` at each iteration, i.e., J` = ∂V̂(ps)
∂ps

∣∣
p̂s,`

.

Since different information will be obtained when starting (dis-)charging a

nearly empty or a full battery, the experimental data Vexp are collected by

giving the designed input Iapp(t) (Fig. 4a) to the battery at both 20% and

80% SoC. The initial sensitive parameter vector p̂s,0 is chosen as the nominal

values, as given by Table 1, and the final identifiable parameter estimates p̂s

are obtained via an iterative procedure using (28) until it has converged and

provides a solution to (27). The obtained parameter estimates are given in Table

5. The predicted and experimental voltages at different initial SoC (80% and

20%) after the parameter estimation procedure are shown Fig. 6b,c. The solid

blue and red lines represent the measured voltage and output of the identified

model, respectively. It can be observed that the optimized parameter estimates

lead to a model prediction that agrees quite well with the measured voltages at

both SoC.
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Figure 6: a) designed input current profile; battery measurement (blue) and battery model

predictions (red) at: b) 80% SoC, estimation phase; c) 20% SoC, estimation phase; d) 50%

SoC, validation phase.

6. Validation

In this section, the model with the optimised values of the parameters will be

validated on different data sets. Constant currents and pulsed current profiles

will be used in the model validation.

6.1. Static discharge experiments

The constant discharge reveals how the battery performs in the whole process

from the full to the empty. Substitute the estimated parameters into the model

and give the constant currents 12A, 6A and 1.2A, as inputs to the model, to

discharge the battery at 1C-rate, 0.5C-rate and 0.1C-rate respectively. Fig. 7
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Figure 7: Battery measurements (symbols) versus battery model predictions (lines) during

validation phase, under constant discharge current.

presents the comparison of the model predictions to the experimental data when

discharging the battery in various C-rates. The solid colored lines represent

measured data and the symbols stand for the predicted voltage of the model.

It can be seen that the model output is in good agreement with the measured

data in the static discharges.

6.2. Pulses experiments

Besides the constant currents, the validation is also done on pulsed (dis-

)charge inputs to assure that the estimated model is durable to capture the

dynamics of battery. In Section 5, the experimental data sets at 20% and 80%

SoC are utilized for estimation, so it is sensible to validate on the measured

voltage at 50% SoC (the middle of the entire range of SoC). The input profile is

the same as that used in parameter estimation, but the initial SoC has changed

to 50%. Fig. 6d shows the simulation result compared to the measured data

when starting at 50% SoC. Additionally, another input with shorter pulses and

longer relaxation periods is used for validation. The input is characterized by
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Table 6: RMSE between predictions and various experimental data sets

Input [A] RMSE [mV]

Fig. 6b 5.6

Fig. 6c 15.5

Fig. 6d 7.2

Fig. 8b 5.9

several pulses last 2 min, each is followed by 10 min relaxation period. Fig. 8

displays the validation result on this input profile.

From Fig. 6d and Fig. 8, it can be observed that the prediction of voltage

for the identified model agrees with the experimental ones well. The Root Mean

Square Error (RMSE) between the predictions and various experimental data

sets is calculated and reported in Table 6. The error at 80% SoC is the smallest,

RMSE is 5.6 mV, while RMSE at 20% SoC is the largest, 15.5 mV. Regardless

of what initial SoC the battery start at and what durations of the pulses and

relaxation periods are in the input, RMSE values are small, which indicates the

identified battery model is in good agreement with real behavior of the battery

in pulses (dis-)charge.

7. Conclusions

The Doyle-Fuller-Newman (DFN) model is one of the most popular models

in describing the behavior of the Li-ion battery, and contains a large number of

parameters. It is important to estimate parameters in the DFN model to obtain

an accurate model for simulation or solving control-oriented problems. In this

paper, a computationally feasible two-step estimation approach is developed in

which the original set of parameters is split into two. The first set contains

thermodynamically determined parameters, which have been estimated on the

set of static discharge curves by extrapolating towards zero current. The second

set contains kinetic parameters, which have been estimated using a designed

highly-dynamic pulse (dis-)charge current. A sensitivity analysis based on QR
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Figure 8: a) validation input current profile, b) battery voltage measurements (blue) and

battery model predictions (red) under validation input current profile at 50% SoC.

factorization with column pivoting has been done to find out the most sensitive

kinetic parameters. Estimating only the sufficiently sensitive parameters leads

to a more reliable estimation result.

The sufficiently sensitive parameters have been estimated through minimiz-

ing the sum of square error between experimental data and predicted voltage

using the Levenberg-Marquardt method, which was selected for the parameter

estimation due to its fast convergence. The result was illustrated by compar-

ing the model outputs with the battery measurements, and a quite well fit was

achieved. Finally, the estimated model has been validated on several specifically

designed validation data sets. Validation results reveal an error in output volt-

age of less than 16 mV RMSE of magnitude. Therefore, a good performance of

the identified model in predicting the experiment results is demonstrated.
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