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Abstract: This paper presents identifiability conditions for identifying the complete dynamics
of diffusively coupled linear networks. These conditions are derived by exploiting the uniqueness
of the nonmonic polynomial network description, given the locations of the actuators and
sensors. The analysis is performed under a more relaxed instrumentation setup than the typical
restriction to a full set of sensors (full measurement) or a full set of actuators (full excitation).
This leads to more general identifiability conditions, including more flexible instrumentation
requirements.
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1. INTRODUCTION

In recent years, large-scale interconnected systems are
receiving increasingly more attention. Diffusively coupled
linear networks model interconnected systems with sym-
metric cause-effect relationships in the links. Examples are
physical linear networks, which can describe many pro-
cesses from different domains, such as electrical circuits,
mechanical systems, and chemical and biological processes.

In literature there are several methods available for iden-
tifying the complete dynamics of diffusively coupled net-
works from data. For example, black-box state-space mod-
els can be estimated from which the model parameters can
be derived using eigenvalue decompositions (Friswell et al.,
1999; Luş et al., 2003). De Angelis et al. (2002) concluded
that the model parameters of a 2nd order model can
be extracted from an (identified) state-space model if all
nodes contain either a sensor or an actuator with at least
one colocated sensor–actuator pair. Mukhopadhyay et al.
(2014) made the same observation and further analyzed
instrumentation conditions and identifiability issues for
shear-type systems. These methods are restricted to 2nd
order models and typically do not consider disturbances.
They also do not have any guarantees on the statistical
accuracy of the estimates and lack a consistency analysis.

Van Waarde et al. (2018) considered undirected state-
space models, which can be seen as first order diffusively
coupled linear networks with the states as nodes. Their
identifiability analysis based on Markov parameters re-
sulted in a specific subset of nodes that is required to
have a colocated sensor-actuator pair. For higher order dif-
fusively coupled linear networks, the Markov parameters
become more complex, which hinders the analysis.
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Diffusively coupled networks can also be modeled as di-
rected dynamic networks with specific structural prop-
erties (Kivits and Van den Hof, 2019). These networks
can be modeled as interconnections of transfer function
modules (Gonçalves and Warnick, 2008; Van den Hof et al.,
2013), for which an identification framework has been
developed by Van den Hof et al. (2013). In this framework,
identifiability of the complete dynamics or a subset of the
dynamics is analyzed under partial instrumentation condi-
tions (Bazanella et al., 2019; Cheng et al., 2022; Shi et al.,
2023). However, the specific network model structure is
generally lost, resulting in conservative conditions.

Hannan and Deistler (2012) analyzed the identifiability of
polynomial models. These models have the typical assump-
tion of monicity and therefore do not fit the diffusively
coupled linear network model, where monicity does not
hold.

In this paper, we follow the modeling approach of Kivits
and Van den Hof (2023), who discuss the identification of
the full diffusively coupled network dynamics in the case
of full measurement, including detailed identifiability and
consistency results. The objective of this paper is to derive
conditions for identifiability of the full diffusively coupled
network dynamics in the case that only some nodes are
excited and only some node signals are measured. We
do this by reviewing the identifiability results for the full
measurement case, which are based on non-monic matrix
fraction descriptions (MFDs) (Kivits and Van den Hof,
2022, 2023), combine it with the dual situation of the full
excitation case, and then formulate the conditions for the
generalized case, involving MFDs with three polynomials.

The networks that will be considered are defined in Sec-
tion 2. Section 3 defines identifiability. Section 4 recaps
the identifiability conditions for full measurement and Sec-
tion 5 describes the dual conditions for full excitation. Sec-
tion 6 presents the main result: identifiability conditions
for partial instrumentation. Finally, section 7 concludes
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the paper. For simplicity, we restrict to representations in
the discrete-time domain.

We consider the following notation throughout the pa-
per. A polynomial matrix A(q−1) consists of matrices
A` and (j, k)th polynomial elements ajk(q−1) such that
A(q−1) =

∑na

`=0A`q
−` and ajk(q−1) =

∑na

`=0 ajk,`q
−`.

Hence, the (j, k)th element of the matrix A` is denoted
by ajk,`. Let ACZ(q−1), AC•(q

−1), and A•Z(q−1) indicate
all ajk(q−1), ajm(q−1), and amk(q−1) with j ∈ C and
k ∈ Z, respectively. Let det(A) and adj(A) denote the
determinant and adjugate of A(q−1), respectively.

2. DIFFUSIVELY COUPLED NETWORK

2.1 Diffusive couplings

Diffusive couplings describe an interaction that depends on
the difference between the signals of interest (or nodes).
The nodes can also have diffusive couplings with a zero
node (or ground node). In line with Kivits and Van den
Hof (2023), the behavior of each node signal wj(t) can be
described by
nx∑
`=0

xjj,`w
(`)
j (t) +

∑
k∈Nj

ny∑
`=0

yjk,`
[
w

(`)
j (t)− w(`)

k (t)
]

= uj(t),

(1)
with nx and ny the order of the dynamics in the network;
with Nj the set of indices of all neighbor nodes of wj(t);
with real-valued coefficients xjj,` ≥ 0 and yjk,` = ykj,` ≥ 0;

where w(`)(t) is the `th derivative of wj(t); and where uj(t)
is the external signal entering the jth node. Combining the
expressions (1) in a matrix equation gives

X(p)w(t) + Y (p)w(t) = u(t), (2)

with differential operator p, i.e. p`w(t) = w(`)(t); with di-
agonal polynomial matrixX(p), with xjj(p) =

∑nx

`=0 xjj,`p
`,

containing the components intrinsically related to the
nodes (e.g. in the couplings with the zero node); with
Laplacian 1 polynomial matrix Y (p), with yjk(p) =
−
∑ny

`=0 yjk,`p
` if k ∈ Nj and yjk(p) = 0 if k 6∈ {Nj , j},

containing the components in the diffusive couplings be-
tween the nodes.

Examples of diffusively coupled networks are physical net-
works, such as electrical circuits, which are character-
ized by their symmetric components that imply diffusive
couplings. For example, a resistor describes the relation
between the current and the difference in electric po-
tential on each side of the resistor. A physical network
typically exhibits second order dynamics between all node
signals. Generalizing to include higher order dynamics is
particularly useful for describing a selection of (measured)
node signals by removing the other (unmeasured) node
signals through a Gaussian elimination procedure (called
immersion or Kron reduction (Dankers et al., 2016; Dörfler
and Bullo, 2013)).

To exploit the network identification results that have
been developed for discrete-time systems, a backward

1 A Laplacian matrix is a symmetric matrix with nonpositive off-
diagonal elements and with nonnegative diagonal elements that are
equal to the negative sum of all other elements in the same row (or
column) (Mesbahi and Egerstedt, 2010).

difference method (describing a bijective mapping) is used
to approximate (2) bythe equivalent form

X̄(q−1)w(t) + Ȳ (q−1)w(t) = u(t), (3)

with delay operator q−1, i.e. q−1w(t) = w(t− 1), and with
X̄(q−1) and Ȳ (q−1) having the same structural properties
as X(p) and Y (p), respectively. In the sequel, we will
use A(q−1) = X̄(q−1) + Ȳ (q−1), from which X̄(q−1) and
Ȳ (q−1) can uniquely be recovered due to their structure.

2.2 Network model

As explained in Section 2.1, diffusively coupled networks
exhibit a symmetric interaction between nodes. We define
these networks in line with Kivits and Van den Hof (2023).

Definition 1. A diffusively coupled linear network model
consists of L internal node signals wj(t), j = 1, . . . , L;
K ≤ L known excitation signals rj(t), j = 1, . . . ,K; L
unknown disturbance signals vj(t), j = 1, . . . , L; and c ≤ L
measured signals yj(t), j = 1, . . . , c and is defined as

A(q−1)w(t) = B(q−1)r(t)+v(t), y(t) = C(q−1)w(t), (4)

with w(t), r(t), v(t), and y(t) vectorized versions of wj(t),
rj(t), vj(t), and yj(t), respectively; with v(t) modeled as
filtered white noise, i.e. v(t) = F (q)e(t) with e(t) a vector-
valued white noise process; and with

(1) A(q−1) =
∑na

k=0Akq
−k ∈ RL×L[q−1], with A−1(q−1)

stable; rank(A0) = L; and ajk(q−1)=akj(q
−1) ∀k, j.

(2) B(q−1) =
[
B̃>(q−1) 0

]>∈ RL×K [q−1], with B̃(q−1) ∈
RK×K [q−1]; and b̃jk(q−1) = 0, ∀j, j 6= k.

(3) C(q−1) =
[
0 C̄(q−1)

]
∈ Rc×L[q−1], with C̄(q−1) ∈

Rc×c[q−1]; rank(C̄0) = c; and c̄jk(q−1) = 0, ∀j, j 6= k.
(4) F (q) ∈ RL×L(q), monic, stable, and stably invertible.
(5) Λ � 0 the covariance matrix of the noise e(t).

Assumption 2. It is assumed that the network (4) is:

(1) Connected: Every pair of nodes yields a path 2 .
(2) Well-posed: A−1(q−1) exists and is proper.

The polynomial matrices A(q−1), B(q−1), and C(q−1)
are nonmonic. Stability of the network is induced by
stability of A−1(q−1). The diffusive character of the model
is represented by the symmetry of A(q−1). The polynomial
ajk(q−1) characterizes the dynamics in the link between
node signals wj(t) and wk(t). Due to the diagonal structure
in B(q−1) and C(q−1), the first K nodes are excited and
that the last c node signals are measured. Often, B(q−1)
and C(q−1) are chosen to be binary, implying that each
excitation signal directly enters the network at a distinct
node and that each measured signal is directly extracted
from distinct internal node signals. If F (q) is polynomial
or even stronger if F (q) = I, the network (4) leads to an
ARMAX-like or ARX-like 3 model structure, respectively.

The input-output mapping of (4) is given by

y(t) = Tyr(q)r(t) + v̄(t), v̄(t) = Tye(q)e(t), (5)

2 The network is connected if its Laplacian matrix (i.e. the degree
matrix minus the adjacency matrix) has a positive second smallest
eigenvalue (Fiedler, 1973).
3 The structure is formally only an ARMAX (autoregressive-moving
average with exogenous variables) or ARX (autoregressive with
exogenous variables) structure if the A(q−1) polynomial is monic
(Hannan and Deistler, 2012).
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with

Tyr(q) = C(q−1)A−1(q−1)B(q−1), (6)

Tye(q) = C(q−1)A−1(q−1)F (q), (7)

Φv̄(ω) = Tye(e
iω)ΛT ∗ye(e

iω), (8)

with (·)∗ the complex conjugate transpose. A standard
open-loop identification of (5) can typically lead to con-
sistent estimation of Tyr(q) and Φv̄(ω). Observe that for
binary B(q−1) and C(q−1), (6) leads to a subset of rows
and columns of A−1(q−1) that constitute Tyr(q).

3. IDENTIFIABILITY

Identifiability concerns the ability to distinguish between
different models in a network model set, given the locations
of the external signals in the network. Therefore, identi-
fiability can be analyzed by exploiting the uniqueness of
network models.

Definition 3. Network models M1 =
(
A1(q−1), B1(q−1),

C1(q−1), F1(q),Λ1

)
andM2 =

(
A2(q−1), B2(q−1), C2(q−1),

F2(q),Λ2

)
are equivalent if

Tyr,1(q) = Tyr,2(q) and Φv̄,1(ω) = Φv̄,2(ω). (9)

This concept of equivalent network models implies that
two network models can model the same measured data
(y, r), because both models will have the same transfer
function Tyr(q) and power spectrum Φv̄(ω). Exploiting the
spectral factorization of Φv̄(ω) (8) leads to an equivalent
network model with a simplified noise model. This result
is analogous to Shi et al. (2023, Theorem 1).

Proposition 4. Any network model

M =
(
A(q−1), B(q−1), C(q−1), F (q),Λ

)
(10)

admits an equivalent network model

M̃ ,
(
A(q−1), B(q−1), C(q−1),

[
0 F̃ ∗(q)

]∗
, Λ̃
)
, (11)

where F̃ (q) ∈ Rc×c(q) is monic, stable, and stably invert-

ible and Λ̃ ∈ Rc×c � 0.

Proof. Omit the arguments q, q−1, ω, and eiω for no-
tational simplicity. The behavior of the measured signals
y(t) is described in an immersed network model, which is
obtained by eliminating the unmeasured signals (through
immersion or Kron reduction (Dankers et al., 2016; Dörfler
and Bullo, 2013)). Partition the internal signals as w(t) =[
w>Z (t) w>C (t)

]>
, such that y(t) = C̄wC(t). Partition A, B,

and F accordingly and define

Ā , dZZ
(
ACC −ACZA−1

ZZAZC
)
,

B̄ , dZZ
(
BC• −ACZA−1

ZZBZ•
)
,

F̄ , dZZ
(
FC• −ACZA−1

ZZFZ•
)
,

dZZ ,
det(AZZ)

gcd (det(AZZ), adj(AZZ))
,

so that Ā and B̄ are polynomial (Kivits and Van den Hof,
2022). The immersed network model is now given by

ĀwC(t) = B̄r(t) + F̄ e(t), y(t) = C̄wC(t),

which has input-output mapping

y(t) = C̄Ā−1B̄r(t) + C̄Ā−1F̄ e(t).

Together with (5), (7), and (8) this gives

Φv̄ = CA−1FΛF ∗A−∗C∗ = C̄Ā−1F̄ΛF̄ ∗Ā−∗C̄∗,

where C = C̄ [0 I] and Ā−1 = d−1
ZZ [0 I]A−1 [0 I]

>
, i.e.

C̄Ā−1 = d−1
ZZCA

−1

[
0
I

]
.

Further, F̄ΛF̄ ∗ can be refactorized as dZZ F̃ Λ̃F̃ ∗d∗ZZ
(Gevers et al., 2019), where F̃ and Λ̃ satisfy the properties
of this proposition. This leads to

Φv̄ = CA−1

[
0

F̃

]
Λ̃
[
0 F̃ ∗

]
A−∗C∗.

Hence, the input-output mapping

y(t) = CA−1Br(t) + CA−1

[
0

F̃

]
ẽ(t),

where noise signal ẽ(t) has covariance matrix Λ̃, leads to
the same Tyr and Φv̄ as in (6) and (8), respectively. 2

As Tyr(q) and Φv̄(ω) only reflect the properties of the
measured nodes, there is a freedom in transforming the
unmeasured internal signals and in modeling the distur-
bances affecting the measured signals. In M̃ , all unmea-
sured node signals are disturbance-free. Hence, there are
multiple models M (with different noise processes) that

admit the same equivalent model M̃ . As M̃ admits a sim-
pler noise model, it is more attractive for the identifiability
analysis.

Before defining the model set corresponding to the models
M̃ , let us take a deeper look at the power spectrum Φv̄(ω).

As Tyẽ(q) = C(q−1)A−1(q−1)
[
0 F̃ ∗(q)

]∗
is not monic, the

spectral factorization of Φv̄(ω) into Tyẽ(e
iω) and Λ̃ is not

unique. However, the spectral factorization of Φv̄(ω) can

be made unique by properly scaling Tyẽ(e
iω) and Λ̃.

Proposition 5. The power spectrum Φv̄(ω) admits a unique

spectral factorization into Tyĕ(e
iω) and Λ̆, where Tyĕ(q) =

C̄(q−1)Ā−1(q−1)F̆ (q) is monic, with F̆ (q) = F̃ (q)Ā0C̄
−1
0 ,

and Λ̆ = C̄0Ā
−1
0 Λ̃Ā−1

0 C̄>0 � 0.

Proof. Redefine the noise model v̄(t) = F̃ (q)ẽ(t) as v̄(t) =

F̆ (q)ĕ(t) with F̆ (q) = F̃ (q)Ā0C̄
−1
0 and with Λ̆ � 0 the

covariance of ĕ(t). Then Φv̄(ω) = Tyĕ(e
iω)Λ̆T ∗yĕ(e

iω), which

admits a unique spectral factorization into Tyĕ(e
iω) and Λ̆

as Tyĕ(q) is monic, stable, and stably invertible and Λ̆ � 0
(Youla, 1961). 2

Now, let us define the model set of the models (11).

Definition 6. The network model set M̃ is defined as a set
of parametrized functions as

M̃ := {M̃(θ), θ ∈ Θ ⊂ Rd}, (12)

with d ∈ N and with all particular models

M̃(θ) :=
(
A(q−1, θ), B(q−1, θ), C(q−1, θ),[

0 F̃ ∗(q, θ)
]∗
, Λ̃(θ)

)
(13)

satisfying the properties in Definition 1 and Assumption 2,
where Property 4 of Definition 1 is replaced by

(4) F̃ (q) ∈ Rc×c(q), monic, stable and stably invertible.

Here, θ contains all the unknown coefficients that appear in
the entries of the model matrices A(q−1), B(q−1), C(q−1),

F̃ (q), and Λ̃.
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Since the network models that will be considered and the
corresponding network model set have been defined, we
can now continue with the identifiability analysis. Let us
adopt the concept of network identifiability from Weerts
et al. (2018).

Definition 7. The network model set M̃ is globally net-
work identifiable from data z(t) := {y(t), r(t)} if the

parametrized model M̃(θ) can uniquely be recovered
from Tyr(q, θ) and Φv̄(ω, θ), that is if for all models

M̃(θ1), M̃(θ2) ∈ M̃
Tyr(q, θ1) = Tyr(q, θ2)

Φv̄(ω, θ1) = Φv̄(ω, θ2)

}
=⇒ M̃(θ1) = M̃(θ2). (14)

Using the result of Proposition 5 on the power spectral
factorization of Φv̄(ω), we have the following identifiability
result.

Proposition 8. For a network model set M̃, implication
(14) can equivalently be formulated as

Tyr(q, θ1) = Tyr(q, θ2)

Tyĕ(q, θ1) = Tyĕ(q, θ2)

Λ̆(θ1) = Λ̆(θ2)

 =⇒ M̃(θ1) = M̃(θ2). (15)

Proof. From Proposition 5, Tyĕ(q) and Λ̆ are uniquely
determined by Φv̄(ω) and therefore, Φv̄(ω, θ) in (14) can

be replaced by Tyĕ(q, θ) and Λ̆(θ). 2

4. FULL MEASUREMENT

Consider a network as defined in Definition 1, where all
node signals are directly measured. This is the most com-
mon instrumentation setting for identification in dynamic
networks. Let us recap the corresponding identifiability
conditions of Kivits and Van den Hof (2022, 2023).

Assumption 9. Assume C(q−1) = I.

Observe that in this case F̃ = F and thus M̃ = M .
The identifiability analysis is based on the uniqueness of
the network model. Therefore, we present a result on the
left MFD (LMFD), before formulating the identifiability
conditions for our particular network models.

Lemma 10. Consider a network model set M̃ satisfying
Assumption 9. Given the LMFD A(q−1)−1B(q−1), A(q−1)

and B(q−1) are unique within M̃ up to a scalar factor if
the following conditions are satisfied:

(1) A(q−1) and B(q−1) are left coprime in M̃.
(2) There exists a permutation matrix Pb such that

within M̃, [A0 A1 · · · Ana
B0 B1 · · · Bnb ]Pb =

[Db Rb] with Db square, diagonal, full rank.

Proof. According to Kailath (1980), the LMFD of any
two polynomial and left coprime matrices is unique up to
a premultiplication with a unimodular matrix. To satisfy
Condition 2, the unimodular matrix is restricted to be
diagonal. As A(q−1) is symmetric, this diagonal matrix
is further restricted to have equal elements. 2

In general polynomial models, like ARMAX (Deistler,
1983), A(q−1) is monic, i.e. A0 = I. Then the LMFD
A(q−1)−1B(q−1) is unique, as the conditions of Lemma 10
are satisfied and scaling with a scalar factor is not possible

anymore. Hence, both Condition 2 in Lemma 10 and the
scaling factor freedom are a result of the fact that A(q−1)
is not necessarily monic.

Now the conditions for global network identifiability can
be formulated.

Proposition 11. A network model set M̃ satisfying As-
sumption 9 is globally network identifiable from z(t) if the
following conditions are satisfied:

(1) A(q−1) and B(q−1) are left coprime in M̃.
(2) There exists a permutation matrix Pb such that

within M̃, [A0 A1 · · · Ana
B0 B1 · · · Bnb ]Pb =

[Db Rb] with Db square, diagonal, full rank.
(3) At least one excitation signal rj(t), j = 1, . . . ,K, is

present: K ≥ 1.
(4) There is at least one constraint on the parameters of

A(q−1, θa) and B(q−1, θc) of the form Γθab = γ 6= 0,

with Γ full row rank and with θab :=
[
θ>a θ>b

]>
.

Proof. Condition 3 implies that Tyr(q, θ) is nonzero.
According to Lemma 10, Condition 1 and 2 imply that
A(q−1, θ) and B(q−1, θ) are unique up to a scalar factor

α. According to Proposition 5, Tyĕ(q, θ) and Λ̆(θ) are
uniquely recovered from Φv̄(ω, θ). Together with the fact
that A(q−1, θ) is unique up to a scalar factor α, Tyĕ(q, θ)

gives a unique F̃ (q, θ), and Λ̆(θ) gives Λ̃(θ) up to a scalar
factor α2. Finally, Condition 4 implies that α is unique. 2

5. FULL EXCITATION

Consider a network as defined in Definition 1, where now
all node signals are directly excited. This is the dual instru-
mentation setting compared to the full measurement setup
in Section 4. In this section, we present the identifiability
conditions for networks with full excitation.

Assumption 12. Assume B(q−1) = I.

Again, the identifiability analysis is based on the unique-
ness of the network model. Here, we present a result on the
right MFD (RMFD), before formulating the identifiability
conditions for our particular network models.

Lemma 13. Consider a network model set M̃ satisfying
Assumptions 12. Given the RMFD C(q−1, )A(q−1, )−1,

C(q−1) and A(q−1) are unique within M̃ up to a scalar
factor if the following conditions are satisfied:

(1) A(q−1) and C(q−1) are right coprime in M̃.
(2) There exists a permutation matrix Pc such that

within M̃, [A0 A1 · · · Ana
C0 C1 · · · Cnc ]Pc =

[Dc Rc] with Dc square, diagonal, full rank.

Proof. According to Kailath (1980), the RMFD of any
two polynomial and right coprime matrices is unique up to
a postmultiplication with a unimodular matrix. To satisfy
Condition 2, the unimodular matrix is restricted to be
diagonal. As A(q−1) is symmetric, this diagonal matrix
is further restricted to have equal elements. 2

Similar to Section 4, a monic A(q−1) implies that the
RMFD C(q−1)A(q−1)−1 is unique, as the conditions of
Lemma 13 are satisfied and scaling with a scalar factor is
not possible anymore. Hence, again Condition 2 in Lemma
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13 and the scaling factor freedom are a result of the fact
that A(q−1) is not necessarily monic.

Now the conditions for global network identifiability can
be formulated.

Proposition 14. A network model set M̃ satisfying As-
sumption 12 is globally network identifiable from z(t) if
the following conditions are satisfied:

(1) A(q−1) and C(q−1) are right coprime in M̃.
(2) There exists a permutation matrix Pc such that

within M̃, [A0 A1 · · · Ana
C0 C1 · · · Cnc ]Pc =

[Dc Rc] with Dc square, diagonal, full rank.
(3) At least one measured signal yj(t), j = 1, . . . , c, is

present: c ≥ 1.
(4) There is at least one constraint on the parameters of

A(q−1, θa) and C(q−1, θc) of the form Γθac = γ 6= 0,

with Γ full row rank and with θac :=
[
θ>a θ>c

]>
.

Proof. The proof is fully dual to the proof of Proposi-
tion 11. 2

6. PARTIAL INSTRUMENTATION

6.1 Network model analysis

This section contains the main results, which are the
identifiability conditions for networks with partial instru-
mentation. Consider a network as defined in Definition 1,
where now all node signals are either measured or excited
and at least one node signal is both measured and excited:

Assumption 15. Assume K + c ≥ L+ 1.

As before, the analysis is based on the uniqueness of the
network model. We present a result on the MFD, before
formulating the identifiability conditions for our particular
network models.

Lemma 16. For a network model set M̃ satisfying As-
sumptions 15, the MFD C(q−1)A(q−1)−1B(q−1, ), gives

unique C(q−1), A(q−1), and B(q−1) within M̃ if the fol-
lowing conditions are satisfied:

(1) A(q−1) and B(q−1) are left coprime in M̃.

(2) A(q−1) and C(q−1) are right coprime in M̃.
(3) There exists a permutation matrix Pb such that

within M̃, [A0 A1 · · · Ana
B0 B1 · · · Bnb ]Pb =

[Db Rb] with Db square, diagonal, full rank.
(4) There exists a permutation matrix Pc such that

within M̃, [A0 A1 · · · Ana C0 C1 · · · Cnc ]Pc =
[Dc Rc] with Dc square, diagonal, full rank.

(5) For each k = 1, 2, . . . , L, there is a nonzero linear
equality constraint on the parameters related to node
wk(t), i.e. on a`k(q−1, θ), bkk(q−1, θ), or ckk(q−1, θ).
These L constraints are on L different polynomials.

(6) There is at least one extra constraint on the param-
eters of A(q−1, θa), B(q−1, θb), and C(q−1, θc) of the
form Γθabc = γ 6= 0, with Γ full row rank and with

θabc :=
[
θ>a θ>b θ>c

]>
.

Proof. According to Kailath (1980), any MFD satisfying
Conditions 1 and 2 is unique up to multiplication with uni-
modular matrices, i.e. C(q−1, θ1)A−1(q−1, θ1)B(q−1, θ1) =
C(q−1, θ2)A−1(q−1, θ2)B(q−1, θ2) for all θ1, θ2 ∈ Θ,

with C(q−1, θ2) , C(q−1, θ1)Z(q−1), A(q−1, θ2) ,
R(q−1)A(q−1, θ1)Z(q−1), B(q−1, θ2) , R(q−1)B(q−1, θ1),
and with unimodular matrices R(q−1) and Z(q−1). Condi-
tions 3 and 4, respectively, imply that R(q−1) and Z(q−1)
are diagonal (and thus static). To satisfy Assumption 2
in A(q−1, θ2) = RA(q−1, θ1)Z, r−1

11 z11 = r−1
22 z22 = . . . =

r−1
LLzLL. Condition 5 fixes rkk or zkk, k = 1, 2, . . . , L.

Finally, Condition 6 fixes the ratios r−1
kk zkk, resulting in

R = I and Z = I. 2

Condition 5 and 6 of Lemma 16 can for example be
satisfied by binary B(q−1) and C(q−1), implying that
nodes are directly excited and measured, respectively.
Condition 6 of Lemma 16 is similar to Condition 4 of
Proposition 11 and 14.

Now the main results of this paper are formulated, which
are the conditions for global network identifiability for
diffusively coupled networks with partial instrumentation.

Theorem 17. A network model set M̃ satisfying Assump-
tion 15 is globally network identifiable from z(t) if the
conditions in Lemma 16 are satisfied.

Proof. Assumption 15 implies that K ≥ 1 and c ≥ 1
and thus Tyr(q, θ) is nonzero. Lemma 16 implies that
A(q−1, θ), B(q−1, θ), and C(q−1, θ) are uniquely found
from Tyr(q, θ). According to Proposition 5, Tyĕ(q, θ) and

Λ̆(θ) are uniquely recovered from Φv̄(ω, θ). Together with
the fact that A(q−1, θ) and C(q−1, θ) are unique, Tyĕ(q, θ)

gives a unique F̃ (q, θ), and Λ̆(θ) gives a unique Λ̃(θ). 2

A(q−1, θ), B(q−1, θ), and C(q−1, θ) are uniquely deter-
mined from Tyr(q, θ), where the required constraints can
be imposed on actuators and sensors locations only.
Φv̄(ω, θ) is used to determine F̃ (q, θ) and Λ̃(θ). Extracting
information from Φv̄(ω, θ) on A(q−1, θ) and C(q−1, θ) is
limited by the non-monicity of these polynomials. In the
special case of a known C(q−1) and a polynomial F (q, θ),
Tyĕ(q

−1, θ) can lead to A(q−1, θ) under L additional con-
straints on the network dynamics A(q−1, θ).

6.2 Transfer function analysis

The role of the partial instrumentation condition in As-
sumption 15, can also be understood from analyzing Tyr(q)
in (6), which shows that the input dynamics in B(q−1)
and the output dynamics in C(q−1) have an equivalent
influence on Tyr(q). For simplicity, we restrict to binary B
and C in this section. An equivalent analysis is presented
by De Angelis et al. (2002) for identifying disturbance-free
second-order models from first-order state-space models.

For full instrumentation, B = I and C = I. Then
Tyr(q−1) = A−1(q−1) and A(q−1) can directly be obtained
from Tyr(q−1). For full measurement, C = I and at
least one excitation signal is required, e.g. at wi(t). Then
Tyr(q−1) = (A−1)•i(q

−1), i.e. the ith column of A−1(q−1).
Due to symmetry, the ith row of A−1(q−1) is also known.
For full excitation, B = I and at least one measured signal
is required, e.g. wi(t). Then Tyr(q−1) = (A−1)i•(q

−1),
i.e. the ith row of A−1(q−1). Due to symmetry, the
ith column of A−1(q−1) is also known. It might seem
surprising that knowing only the ith row and column of
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A−1(q−1) is sufficient for uniquely determining A(q−1),
but this is due to the symmetry and the other conditions in
Proposition 11 and 14. Observe the equivalent influence of
excitations and measurements on identifiability of A(q−1).

Partial instrumentation requires at least one node signal to
be both excited and measured, e.g. wi(t). ThenK+c = L+

1, B = [IK 0]
>

, and C = [0 Ic], with Ij the identity
matrix of size j × j. Then Tyr(q−1) = [A−1]CK(q−1), i.e.

all [a−1]jk(q−1), with j ∈ C , {j | L + 1 − c ≤ j ≤ L}
and k ∈ K , {j | 1 ≤ j ≤ K}. Due to symmetry, all
[a−1]kj(q

−1), with j ∈ C and k ∈ K are also known. As C∩
K = {i}, the complete ith row and ith column of A−1(q−1)
are known, which is sufficient for uniquely determining
A(q−1). In other words, it is possible to transform the
partial instrumentation case (satisfying Assumption 15)
to the full measurement or full excitation case if at least
one node signal is both excited and measured.

7. CONCLUSION

Identifiability conditions for identifying the complete dy-
namics of diffusively coupled linear networks have been for-
mulated. Analyzing the uniqueness of the network descrip-
tion lead to more flexible instrumentation requirements
than requiring to measure all node signals or to excite
all node signals. For identifiability it is sufficient to either
measure or excite each node signal and to both measure
and excite (at least) one node signal.

REFERENCES

Bazanella, A.S., Gevers, M., and Hendrickx, J.M. (2019).
Network identification with partial excitation and mea-
surement. In Proceedings of the 58th IEEE Conference
on Decision and Control (CDC), 5500–5506.

Cheng, X., Shi, S., Lestas, I., and Van den Hof, P.M.J.
(2022). Identifiability in dynamic acyclic networks with
partial excitations and measurements. Submitted for
publication in IEEE Transactions on Automatic Con-
trol. www.publications.pvandenhof.nl/Paperfiles/
Cheng&etal_TAC2022_subm.pdf.

Dankers, A.G., Van den Hof, P.M.J., Bombois, X., and
Heuberger, P.S.C. (2016). Identification of dynamic
models in complex networks with prediction error meth-
ods: Predictor input selection. IEEE Transactions on
Automatic Control, 61(4), 937–952.
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