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Abstract: Linear dynamic networks are typically described in either a state-space form or a
module representation. The question is addressed under which conditions these representations
are equivalent and can be transformed into one another. Hidden states and especially shared
hidden states have a central position in this analysis. A consequence for identification is that
MIMO parameterised modules may be necessary in order to appropriately take care of shared
hidden states. Further, the construction of sub-networks in a linear dynamic network resulting
in a module representation is illustrated. The module dynamic network allows to zoom in/out
on/of the network to include/exclude more detailed structural information. Zooming in and out
is respectively described by realisation and multi-path immersion.
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1. INTRODUCTION

Linear dynamic networks are interconnections of linear
dynamic systems. The attention for dynamic networks
is growing, because in current day’s technology, systems
are increasing in complexity and size and an increasing
number of systems is being interconnected. The interest in
identification, control and reduction of dynamic networks
is spreading over a diversity of scientific fields such as social
science, finance, computer science, bio-informatics, biology
and engineering. As a result, a variety of representations
of dynamic networks is developed and the question arises
how these representations are related to each other.

In one part of the literature, state-space forms are used
as a basis of dynamic network descriptions. State-space
forms are typically related to first principles modelling
and can be very much appealing in this sense. State-space
descriptions can be depicted in several ways. Often only
the structure of the network is drawn in a directed or
undirected graph, where the nodes are the states of the
system, see e.g. Materassi and Salapaka (2015) and their
references.

Sometimes, the edges of the graph are weighted with
the corresponding elements of the system matrices, as in
Chang et al. (2014), which gives some insight in the rela-
tions between the inputs, states and outputs. The weights
can also be dynamic transfer functions, which closely re-
lates to the dynamical structure function described by
Gonçalves et al. (2007) and the module representation of
Van den Hof et al. (2013).
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A dynamic network formulation in an identification con-
text has been introduced in Van den Hof et al. (2013).
Dynamic networks are considered in a node and link struc-
ture, including noise disturbances, excitation signals and
sensor noises, see Dankers et al. (2015). The network is
based on scalar transfer function links (modules) between
node signals.

Some different representations of dynamic networks are
presented in Yeung et al. (2010), Yeung et al. (2011),
Chetty and Warnick (2015) and Warnick (2015). They
characterise the structure of dynamic networks on differ-
ent levels. The emphasis is on the difference between the
dynamical structure function and the module representa-
tion, while the relation to state-space forms is given less
attention.

In terms of identification in dynamic networks, the follow-
ing problems have been addressed so far: the identifica-
tion of a single module: e.g. Van den Hof et al. (2013),
Materassi and Salapaka (2015), Dankers et al. (2016); the
identification of all modules: e.g. Risuleo et al. (2017); the
identification of the structure or topology: e.g. Materassi
and Innocenti (2010); and the identifiability of the net-
work: e.g. Weerts et al. (2018).

The main question in this paper is: can a state-space
form always be converted into a module representation
without losing any information and vice versa? To answer
this question, algorithms are developed to transform one
network representation into the other. The focus is on
discrete time systems, although the results are applicable
to continuous time systems as well.

The paper is organised as follows. Section 2 defines the
module dynamic network and the state-space dynamic
network. The relations between these two representations
are described in Section 3. Section 4 extends to more
general networks. Section 5 describes the division of a net-
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work into sub-networks. Section 6 contains the discussion
and Section 7 presents the conclusion. The proofs of the
lemmas and propositions are included in a report version
of the paper: Kivits and Van den Hof (2018).

2. REPRESENTATIONS OF DYNAMIC NETWORKS

2.1 Module dynamic networks

A module representation of dynamic networks as consid-
ered in this paper is based on Van den Hof et al. (2013). A
dynamic network is the interconnection of L nodes wj(t),
j = 1, . . . , L, and K known external excitation signals
rk(t), k = 1, . . . ,K. Each node signal is equal to

wj(t) =

L∑
i=1

Gji(q)wi(t) +

K∑
k=1

Rjk(q)rk(t), (1)

where Gji(q) and Rjk(q) are proper rational transfer
functions with q−1 the delay operator meaning q−1wj(t) =
wj(t− 1). As a further generalisation of the setup in Van
den Hof et al. (2013), the signals wj(t) and rk(t) can be
vector-valued in which case the related transfer functions
become matrices of appropriate dimensions; additionally
self-loops are allowed, i.e. Gii(q) is not necessarily 0.

Typically, node signals are affected by unknown distur-
bance signals. In this paper, unknown inputs act similar
to known inputs and therefore disturbances are initially
omitted for simplicity and considered in Section 4.

The expressions for the node signals (1) can be combined
in a matrix equation describing the network as

w(t) = Gw(t) +Rr(t), (2)

w(t) = (I −G)−1Rr(t), (3)

with matrices G and R composed of elements Gji(q) and
Rjk(q) respectively, and where w(t) and r(t) are vectorised
versions of wj(t) and rk(t) respectively. All minors of I −
G(∞) should be non-zero in order to achieve a well-posed
network. Equation (2) is a dynamical structure function
as introduced by Gonçalves et al. (2007). Figure 1a shows
a single building block of a module dynamic network.

Definition 1. (Module dynamic network). A module dy-
namic network is defined by the pair (G,R) describing a
map r(t)→ w(t) according to (3).

Definition 2. (Equal and equivalent networks). Consider
the networks N1 and N2 defined by the pairs (G1, R1) and
(G2, R2) respectively. The networks N1 and N2 are

• equal if (G1, R1) = (G2, R2).
• equivalent if (I −G1)−1R1 = (I −G2)−1R2.

A particular property of the module representations in
literature is that they only allow for SISO modules and
exclude self-loops. This choice has been made to avoid
identifiability problems as implied by the following lemma.

Lemma 1. (Self-loops). A module dynamic network with
self-loops can always equivalently be written as a module
dynamic network without self-loops.

In this paper, self-loops are allowed in module dynamic
networks in order to be able to link with state-space
dynamic networks as described in the next section.
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Fig. 1. A single node of a module and SS dynamic network.

Network properties that depend on the structure or topol-
ogy are referred to as structural or generic network prop-
erties. One such property is the generic McMillan degree,
see Karcanias et al. (2005).

Definition 3. (Generic McMillan degree). Let a system be
represented by a coefficient vector θ ∈ Rnθ . The generic
McMillan degree of the system is the McMillan degree of
the system for almost all θ, i.e. for all θ ∈ Rnθ except for
a set of measure 0.

Lemma 2. (Generic McMillan degree). The generic McMil-
lan degree of a network is equal to the sum of the generic
McMillan degrees of all modules in the network.

2.2 State-space (SS) dynamic networks

In some research areas the behaviour of a dynamic network
is mathematically described in a state-space form as

x(t+ 1) = Ax(t) +Br(t), (4)

where x(t) is the state variable and r(t) is a known external
excitation signal. A state-space description can also be
depicted as a module dynamic network. Figure 1b shows
a single building block of a state-space dynamic network.

Definition 4. (State-space (SS) dynamic network). A
state-space (SS) dynamic network is a module dynamic
network, as defined in Definition 1, with the additional
properties that

• Every state variable xj(t) is a node signal wj(t).
• Every element in G has the form Gji(q) = q−1A(j, i).
• Every element in R has the form Rjk(q) = q−1B(j, k).

In general, SS dynamic networks contain self-loops, be-
cause A(i, i) 6= 0. These diagonal elements of A represent
the relation from xi(t) to xi(t+ 1).

3. RELATIONS BETWEEN MODULE AND SS
DYNAMIC NETWORKS

3.1 Abstraction of state-space dynamic networks

One of the major expansions of module dynamic networks
compared to SS dynamic networks is that in module dy-
namic networks the states are grouped into a single mod-
ule, while in SS dynamic networks the network is split into



its core elements with modules that only have (weighted)
delays. A natural step to go from SS dynamic networks to
general module dynamic networks is by grouping states,
that is, by removing state variables as node signals and
thereby increasing the order of the dynamic terms in the
modules of the network. This process is referred to as
abstraction, see Woodbury et al. (2017).

Definition 5. (Abstraction). Consider the networks N1

and N2 defined by the pairs (G1, R1) and (G2, R2) respec-
tively. N1 is an abstraction of N2 with respect to nodes
wα(t) if (I − G1)−1R1 =

[
(I −G2)−1R2

]
wα

, where [T ]wα

means T without the rows corresponding to nodes wα(t).

Abstracted node signals are still present in the network,
but are hidden in the modules and therefore referred to as
hidden states. Hidden states present in multiple modules
are said to be shared by these modules and therefore
referred to as shared hidden states, see Warnick (2015).

Abstraction is performed by eliminating wα(t) from the
node equations and is non-unique, since various node
equations can be used for this, Weerts and Linder (2018).
If the node equation of wα(t) itself is used, this approach
is referred to as immersion and has been worked out
in Dankers et al. (2016) for module dynamic networks
without self-loops and with only SISO modules, and is
equivalent to vertex elimination. This immersion process
is generalised to dynamic networks with self-loops in
the following algorithm and is equivalent to the Kron
reduction, see Dörfler and Bullo (2013).

Algorithm 1. (Immersion). An abstraction of a module
dynamic network is obtained through immersion by taking
the following steps:

(1) Select a node wα(t).
(2) Substitute the node equation of wα(t) into the other

node equations.
(3) Delete the node equation of wα(t) from the network.
(4) Repeat the procedure to abstract more nodes.

Graphically, immersion is performed by lifting the paths
through wα(t) and deleting the isolated wα(t).

Example 1. (Lifting path). Consider a network with three
nodes w1, w2, and w3 and two paths w1 → w2 with weight
G21 and w2 → w3 with weight G32. Lifting the path
through w2 means that the paths w1 → w2 and w2 → w3

are deleted and the path w1 → w3 with weight G32G21 is
added, as shown in Figure 2.

In general, this procedure can be performed in two ways. In
the first approach, every single path through wα(t) results
in a new module and therefore this approach is referred to
as single-path immersion.

For a particular node, local inputs are all nodes and inputs
that have direct paths towards this node and local outputs
are all nodes that have direct paths from this node.

w1 w2 w3G21 G32

G32G21

Fig. 2. The path through w2 is lifted by deleting the red
paths and adding the blue path.

Algorithm 2. (Single-path immersion). An abstraction of
a module dynamic network is graphically obtained through
single-path immersion by taking the following steps:

(1) Select a node wα(t).
(2) Lift the paths from each local input, through wα(t),

to each local output.
(3) Delete the isolated wα(t) from the network.
(4) Repeat the procedure to abstract more nodes.

A part of the network that is present in multiple paths in
the original dynamic network appears in multiple modules
arising from single-path immersion. Due to this, shared
hidden states are introduced and the network structure
changes.

In a second approach of lifting the paths through wα(t),
all paths through wα(t) together result in a new module
and therefore this approach is referred to as multi-path
immersion.

Algorithm 3. (Multi-path immersion). An abstraction of a
module dynamic network is graphically obtained through
multi-path immersion by Algorithm 2 with the modifi-
cation that in step (2) the paths from all local inputs,
through wα(t), to all local outputs are lifted together to
create one (multi-variate) module.

Algorithm 3 allows for MIMO modules and therefore
only one module arises during multi-path immersion and
hence, no shared hidden states are introduced. The main
advantage of this approach is that multi-path immersion
can be seen as zooming out of the network and excluding
some detailed structural information.

Example 2. (Single-path immersion). Consider a dynamic
network with state-space description[

x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

]
=

[
0 0 a13
a21 0 a23
0 0 0

][
x1(t)
x2(t)
x3(t)

]
+

[
0
0
b31

]
r1(t).

Its SS dynamic network is shown in Figure 3a with

G13 = q−1a13, G21 = q−1a21, G23 = q−1a23, R31 = q−1b31,

and with nodes wi = xi. Suppose that w3 is abstracted
from the network by single-path immersion. The abstrac-
tion is shown in Figure 3b with

R̂11 = q−2a13b31, R̂21 = q−2a23b31.

The dynamics of R31 = q−1b31 appears in both modules
and hence, w3 has become a shared hidden state.

Example 3. (Multi-path immersion). Consider the SS dy-
namic network of Example 2 and suppose that w3 is ab-
stracted from the network by multi-path immersion. The
abstraction is shown in Figure 3c with

R̂1 =

(
q−2a13b31
q−2a23b31

)
.

Only one module results from immersion and hence, w3

has not become a shared hidden state.

3.2 Realisation of module dynamic networks

The major difference between module dynamic networks
and SS dynamic networks is that in SS dynamic networks
the modules are one-dimensional state-space descriptions,
while in module dynamic networks the modules contain
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dynamic network in (c).
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(f) The abstraction of w1 in (b),
corresponding to Example 6.

Fig. 3. An SS dynamic network, three abstractions of it
and realisations of two of the abstractions.

higher order dynamics which have many possible state-
space realisations. A natural step to go from a general
module dynamic network to an SS dynamic network is
by introducing nodes, that is, by turning state variables
that correspond to a particular module into node signals
and thereby decreasing the order of the dynamic terms in
the modules of the network. The process of transforming
a general module dynamic network into an SS dynamic
network is called realisation.

Algorithm 4. (Realisation). A realisation (SS dynamic net-
work) of a module dynamic network is obtained by taking
the following steps:

(1) Select a module Mα(q).
(2) Replace Mα(q) by a state-space realisation of it.
(3) Turn all state variables into node signals and find the

new modules in accordance with Definition 4.
(4) Repeat the procedure to realise all modules.

It is well-known that realisation is a non-unique process
and therefore the (number of) node signals added to
the network depends on the state-space realisation. A
minimum number of node signals is added if minimal state-
space realisations are substituted into the modules. When
using an observable canonical form, the outputs of the
module are state variables in the new network. Realisation
can be seen as zooming in on the network and including
more detailed structural information.

Instead of finding realisations of all modules (to obtain an
SS dynamic network), one can choose to find realisations
of only some modules and instead of turning all state
variables into node signals, one can choose to introduce
only one or some nodes.

Example 4. (Realisation with shared hidden states). Con-
sider the module dynamic network of Figure 3b with

R̂11 = q−2α1, R̂21 = q−2α2, G21 = q−1α3.

A realisation (SS dynamic network) is found through
Algorithm 4 and is shown in Figure 3d with

G̃13 = q−1β1, G̃24 = q−1β2, R̃31 = q−1β3, R̃41 = q−1β4,

where β1β3 = α1 and β2β4 = α2. This SS dynamic network
has a different structure than the underlying SS dynamic

network shown in Figure 3a, because of the shared hidden
state in R̂11 and R̂21.

Example 5. (Realisation without shared hidden states).
Consider the module dynamic network of Figure 3c with

R̂1 =

(
q−2α1

q−2α2

)
, G21 = q−1α3.

A realisation (SS dynamic network) is found through
Algorithm 4 and is shown in Figure 3e with

G̃13 = q−1β1, G̃23 = q−1β2, R̃31 = q−1β3,

where β1β3 = α1 and β2β3 = α2. This SS dynamic network
has the same structure as the underlying SS dynamic
network shown in Figure 3a.

3.3 Equivalence between module and SS dynamic networks

Now it is clear how to transform SS dynamic networks into
general module dynamic networks and vice versa and that
they are equivalent if the node signals remain invariant.

Proposition 1. (From SS to module dynamic network).
An SS dynamic network with minimal state-space dimen-
sion n can be transformed by abstraction into a general
module dynamic network with generic McMillan degree
≥ n, where equality holds if and only if the abstraction
generates no shared hidden states.

Single-path immersion does not lead to shared hidden
states if it is equivalent to multi-path immersion. The local
network structure already reveals whether shared hidden
states are generated by abstraction.

Proposition 2. (Shared hidden states).

(a) Single-path immersion of a single node leads to a
shared hidden state if and only if this node has
multiple local inputs or multiple local outputs.

(b) Single-path immersion of multiple nodes leads to
shared hidden states if and only if at least one of
the following holds:
• The nodes jointly have multiple local inputs and

at least one of the nodes has multiple local inputs.
• The nodes jointly have multiple local outputs

and at least one of the nodes has multiple local
outputs.

(c) Multi-path immersion never leads to shared hidden
states.

Point (b) of Proposition 2 implies that the introduction
of a shared hidden state can sometimes be nullified by
removing an additional node from the network.

Example 6. (Nullified shared hidden state). Consider the
abstraction of Example 2 shown in Figure 3b. Suppose that
w1 is also removed from the network by immersion. Then
R̂11, R̂21 and G21 are combined in one module, without
shared hidden states, see Figure 3f.

The reverse transformation of abstraction is the realisation
of a module dynamic network into an SS dynamic network.
In this process, shared hidden states are not taken into
account, because their existence is unknown.

Proposition 3. (From module to SS dynamic network). A
module dynamic network with generic McMillan degree n
can be transformed into an equivalent SS dynamic net-
work with state-space dimension n by realisation through
Algorithm 4 using minimal state-space realisations.



The resulting SS dynamic network is not unique due to the
freedom in creating minimal realisations of single modules.
Further, shared hidden states represent the same node
signal but are realised as different node signals. Sometimes
the modelling procedure prevents for shared hidden states.

4. MORE GENERAL NETWORKS

4.1 Networks with disturbances

Dynamic networks as discussed in this paper were only
considered to have known input signals (2). However, the
node signals of the network can also be influenced by
unknown disturbance signals. Typically, these disturbance
signals are modelled as realisations of stationary stochastic
processes. The network is described in matrix form by

w(t) = Gw(t) +Rr(t) +He(t), (5)

where He(t) represents the disturbance signals with H
composed of the elements Hjp(q), p = 1, . . . , P ≤ L and
with e(t) the vectorised version of ep(t).

From (5) it can be seen that e(t) and H have the same role
as r(t) and R respectively and therefore e(t) and H can be
considered likewise. Further,H is not part of the physics: it
is just a modelling choice used for describing the unknown
disturbance signals. This means that the realisations and
hidden states of these modules are of less interest.

4.2 Networks with general measurements

The node signals of the dynamic networks as discussed in
this paper where directly measured, but this is not always
possible. The measurements can also be linear combina-
tions of node signals and excitation signals and can be
subject to additional sensor noise. The Lm measurements
are then written in matrix form as

w̃(t) = Cw(t) +Dr(t) + s(t), (6)

where s(t) is the sensor noise.

Algorithm 5. (Handling general measurements). A module
dynamic network with measurements of the form (6) can
be transformed into a module dynamic network with di-
rectly measured nodes by taking the following steps:

(1) Add node signals to the network that are directly
measured, i.e. equal to w̃j(t), j = 1, · · · , Lm.

(2) Add the corresponding modules, containing gains of
the form C(j, i), D(j, k), and 1.

The resulting network contains unmeasured node signals
wj(t), which can be removed from the network by abstrac-
tion, and measured node signals w̃j(t), which depend on
the unmeasured node signals via static terms.

5. CONSTRUCTING SUB-NETWORKS

Dynamic networks often consist of sub-systems interacting
with each other, where each sub-system has its own
dynamics. From this point of view, a dynamic network
can be seen as the interconnection of sub-networks, where
a sub-network consists of several modules and at least one
node. A network can be partitioned into sub-networks by
drawing boxes around certain areas in the network and
grouping the interior of a box into a new module. The

R̂G

Ĝ6
r1 R11 w1

G12

w2R22 w3G23

w4

G53

G41

r2

G54

w5G21 w6G65

(a) The original dynamic network.

r1
R̂G

w3

w4

r2
Ĝ6 w6

(b) The abstraction.

Fig. 4. A module dynamic network with two sub-networks
(the red and the blue box) and its abstraction.

boxes should be non-overlapping, their terminals should
be connected to inputs (r) or nodes (w) and each box
should include all nodes between the modules in the box.

This method is equivalent to abstracting all nodes in the
box by multi-path immersion and analogous to zooming
out of the network, that is, viewing the network at a
higher level, where the network consists of less modules
and nodes.

Example 7. (Sub-networks). Consider the module dynamic
network of Figure 4a, where the red and blue box indicate
sub-networks. The interiors of the red and the blue box are
captured in the new modules R̂G and Ĝ6 respectively, as
shown in Figure 4b. This is the same as abstracting w1 and
w2 in the red box and w5 in the blue box by multi-path
immersion.

6. DISCUSSION

Lemma 1 implies that module dynamic networks with
self-loops in general are never a unique representation
and thus cannot uniquely be identified from measurement
data. This is not true for SS dynamic networks, because
their modules have a specific structure. The identifiability
problem can be solved by eliminating self-loops from the
network, but this can introduce shared hidden states.

In the current literature, identification is often applied in a
module dynamic network without self-loops and restricted
to SISO modules. This implies that if there is a (physical)
state-space form underneath the module dynamic network,
shared hidden states can be present that will not be
recognised as such, when all modules are independently
parameterised as SISO modules. In order to appropriately
deal with this situation (and arrive at minimum variance
results for estimated models) the handling of MIMO pa-
rameterised modules would be necessary. From an identi-
fication perspective, this is the primal lesson to be learned
from the analysis in this paper.

The network structure cannot completely be identified
through its modules if a dynamic network contains hidden
states. Only the network structure that manifests itself
in transfer functions between inputs and node signals can
be identified. The remaining structure is hidden in the
modules and shared hidden states will remain undetected.

7. CONCLUSIONS

A module dynamic network has been formalised as a model
for describing dynamic networks. This concept has been
extended by allowing self-loops and MIMO modules. As
a result, the module dynamic network incorporates state-
space forms as a special case.



A module dynamic network allows to zoom in/out on/of
the network to include/exclude more detailed structural
information. Zooming in/out is represented by an in-
creased/decreased number of node signals and a de-
creased/increased order of the module dynamics. Zooming
in takes place by realisation (replacing modules by state-
space realisations), which in construction is non-unique.
Zooming out takes place by multi-path immersion (remov-
ing measured node signals from the network), in which the
loss of structural information by the introduction of shared
hidden states is avoided.

The main question in this paper was: can a state-space
form always be converted into a module representation
without losing any information and vice versa? The answer
to this question is: yes, provided that MIMO modules are
allowed in the module dynamic networks.
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