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Abstract: Linear dynamic networks are typically described in either a state-space form or a
module representation. The question is addressed under which conditions these representations
are equivalent and can be transformed into one another. Hidden states and especially shared
hidden states have a central position in this analysis. A consequences for identification is that
MIMO parameterised modules may be necessary in order to appropriately take care of shared
hidden states. Further, the construction of sub-networks in a linear dynamic network resulting
in a module representation is illustrated. The module representation allows to zoom in/out on
the network to include/exclude more detailed structural information. Zooming in and out on
the network is respectively described by realisation and immersion.
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1. INTRODUCTION

Linear dynamic networks are interconnections of linear
dynamic systems. The attention for dynamic networks
is growing, because in current day’s technology, systems
are increasing in complexity and size and an increasing
number of systems is being interconnected. The interest in
identification, control, and reduction of dynamic networks
is spreading over a diversity of scientific fields such as
social science, finance, computer science, bio-informatics,
biology, and engineering. As a result, a variety of represen-
tations of dynamic networks is developed and the question
arises how these representations are related to each other.

In one part of the literature, state-space forms are used
as a basis of dynamic network descriptions. State-space
forms are typically related to first principles modelling
and can be very much appealing in this sense. State-
space descriptions can be depicted in several ways. Often
only the structure of the network is drawn in a directed
or undirected graph, where the nodes are the states of
the system, see e.g. Mason (1953), Mason (1956), Lunze
(1992), Wasserman and Faust (1994), Mantegna (1999),
Urban and Keitty (2001), Sontag et al. (2004), Materassi
and Innocenti (2009), and Paré et al. (2013).

Sometimes, the edges of the graph are weighted with
the corresponding elements of the system matrices, as
in Chang et al. (2014), which gives some insight in the
relations between the inputs, states, and outputs, see also
Boccaletti et al. (2006), Mesbahi and Egerstedt (2010),
and Cheng et al. (2016). The weights can also be dynamic
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transfer functions, which relates closely to the dynamical
structure function described by Gongalves et al. (2007) and
the module representation of Van den Hof et al. (2013).

A dynamic network formulation in an identification con-
text has been introduced recently in Van den Hof et al.
(2013). Dynamic networks are considered in a node and
link structure, including noise disturbances, excitation sig-
nals, and sensor noises, see Dankers et al. (2015). The
network is based on scalar transfer function links between
(measured) node signals. These transfer function links are
referred to as modules. The dynamic network formulation
starts with a module representation, but is re-written into
a dynamical structure function, which is later related to
the overall transfer function of the network in Weerts et al.
(2015) and Weerts et al. (2018). The missing part is the
relation to the state-space description.

In terms of identification in dynamic networks, the follow-
ing problems have been addressed so far: the identification
of a single module: Van den Hof et al. (2013), Gevers and
Bazanella (2015), Materassi and Salapaka (2015), Dankers
et al. (2015), Everitt et al. (2016), Dankers et al. (2016);
the identification of all modules: Weerts et al. (2017),
Risuleo et al. (2017); the identification of the structure or
topology: Materassi and Innocenti (2009), Materassi and
Innocenti (2010), Hayden et al. (2014); and the identifiabil-
ity of the network: Gongalves and Warnick (2008), Weerts
et al. (2015), Bazanella et al. (2017), Weerts et al. (2018).

Some different representations of dynamic networks are
presented in Yeung et al. (2010), Yeung et al. (2011),
Chetty and Warnick (2015), and Warnick (2015). These
characterise the structure of dynamic networks on differ-
ent levels. The emphasis is on the difference between the
dynamical structure function and the module representa-
tion, while the relation to state-space forms is given less
attention.



Paul
Text Box
Version 22-12-2017. Submitted for presentation at 18th IFAC Symposium on System Identification (SYSID 2018), 9-11 July 2018, Stockholm, Sweden.


The main question in this paper is: can a state-space
form always be converted into a module representation
without losing any information, and vice versa? To answer
this question, algorithms are developed to transform one
network representation into the other. The focus is on
discrete time systems, although the results are applicable
to continuous time systems as well.

The paper is organised as follows. Section 2 defines the
module dynamic network and the state-space dynamic
network. The relations between these two representations
are described in Section 3. Section 4 contains the extension
to general measurements. Section 5 describes the division
of a network into sub-networks. Section 6 contains the
discussion and Section 7 presents the conclusion. The
proofs of the lemmas and propositions are included in a
report version of the paper: Kivits and Van den Hof (2018).

2. REPRESENTATIONS OF DYNAMIC NETWORKS
2.1 Module dynamic networks

A module representation of dynamic networks as consid-
ered in this paper is based on Van den Hof et al. (2013).
A dynamic network is the interconnection of L measured
variables or nodes w;(t), 7 = 1,...,L, and K known
signals r(t), k = 1,..., K. Each node signal is equal to

L K
w;(t) = ZGji(Q)wi(t) + ZRjk(Q)Tk(t) +v;(t), (1)
i1 k=1

where Gji(¢) and Rji(q) are proper rational transfer
functions, ri(t) is a quasi-stationary external excitation
signal, v;(¢) is an unmeasured disturbance signal being a
realisation of a stationary stochastic process, and ¢! is
the delay operator meaning ¢ 'w;(t) = w;(t — 1). As a
further generalisation of the setup in Van den Hof et al.
(2013), the signals w;(t), w;(t), rx(t), and v;(t) can be
vector-valued in which case the related transfer functions
become matrices of appropriate dimensions; additionally
self-loops are allowed, i.e. G;;(q) is not necessarily 0.

The measured node signals can be subject to additional
sensor noise. Since the measurements are not in the centre
of attention, the sensor noise is omitted for simplicity.

The expressions for the node signals (1) can be combined
in a matrix equation describing the network as

w(t) = Gw(t) + Rr(t) + v(t), (2)
with matrices G and R composed of elements Gj;(q) and
R;i(q) respectively, and where w(t), r(t), and v(t) are
vectorised versions of w;(t), rx(t), and v;(t) respectively.
All minors of T — G(o0) should be non-zero in order to
achieve a well-posed network. Equation (2) is a dynamical

structure function of the form y = Qy+ Pu, as introduced
by Gongalves et al. (2007), with Q = G, P = [R 1], y = w,
and u = [rT ’UT]T.

Figure la shows a single building block of a module
dynamic network as described in (1).

Definition 1. (Module dynamic network). A module dy-
namic network is a network consisting of interconnections

of nodes and excitations through transfer function ma-
trices (or modules), as defined in (1). If all signals are

scalar-valued, this is referred to as a SISO module dynamic
network.

A particular property of the module dynamic networks in
literature is that they only allow for SISO modules and
that they exclude self-loops. This choice has been made in
order to avoid identifiability problems as implied by the
following lemma.

Lemma 1. (Self-loops). A module dynamic network with
self-loops can always equivalently be written as a module
dynamic network without self-loops.

FEquivalent here means that the node signals w;(t) remain
invariant. In this paper, self-loops are allowed in module
dynamic networks in order to be able to link with state-
space dynamic networks as described in the next section.

Network properties that depend on the structure or topol-
ogy are referred to as structural or generic network prop-
erties. One such property is the generic McMillan degree,
see Karcanias et al. (2005).

Definition 2. (Generic McMillan degree). The generic
McMillan degree of a system is the McMillan degree of the
system when all parameters take generic values.

Generic values are numerical values that preserve the net-
work structure and avoid special situations, such as pole-
zero cancellations. Hence, the generic McMillan degree
of a network prevents for pole-zero cancellations when
all modules are merged and thus also when an arbitrary
number of modules is merged.

Lemma 2. (Generic McMillan degree). The generic McMil-
lan degree of a network is equal to the sum of the generic
McMillan degrees of all modules in the network.

2.2 State-space (SS) dynamic networks

In some research areas the behaviour of a dynamic network
is described mathematically in a state-space form as

x(t+1) = Ax(t) + Br(t) + v(t), w(t)==x(t), (3)
where x(¢) is the state variable, r(¢) is a quasi-stationary
external excitation signal, v(t) is an unmeasured distur-
bance signal, and w(t) is the measured output variable.
It is typically assumed that all state variables are directly
measured.

(a) A single node of a module
dynamic network.

(b) A single node of an SS
dynamic network.

Fig. 1. A single node of a module dynamic network and of
an SS dynamic network.



A state-space description can also be depicted as a dy-
namic network. Moreover, this dynamic network is a spe-
cial form of a SISO module dynamic network, where
the state variables are the node signals of the network.
Figure 1b shows a single building block of a state-space
dynamic network as described in (3).

Definition 3. (State-space (SS) dynamic network). A
state-space (SS) dynamic network is a SISO module dy-
namic network, as defined in Definition 1, with the addi-
tional properties that

o Every state variable x;(t) is a node signal.

e Every module between node signals has the form
Gji(q) = q " A(j,9).

e Excitations r; to node j have modules of the form
Rji(q) = ¢ B(j, k).

In general, SS dynamic networks contain self-loops, be-
cause A(i,1) # 0. These diagonal elements of A represent
the relation from =;(t) to x;(t + 1).

3. RELATIONS BETWEEN MODULE AND SS
DYNAMIC NETWORKS

3.1 Immersion of state-space dynamic networks

One of the major expansions of module dynamic networks
compared to SS dynamic networks is that in module dy-
namic networks the states are grouped into a single mod-
ule, while in SS dynamic networks the network is split into
its core elements with modules that only have (weighted)
delays. A natural step to go from SS dynamic networks to
general module dynamic networks is by grouping states,
that is, by removing state variables as (measured) node
signals and thereby increasing the order of the dynamic
terms in the modules of the network.

The process of removing unmeasured node signals from the
network is called immersion and has been worked out in
Dankers et al. (2016) for SISO module dynamic networks
without self-loops. In immersion, the paths through nodes
are lifted and isolated nodes are deleted. Lifting the path
abc means that the paths ab and bc are deleted and
the path ac is added. The resulting network is called an
immersed dynamic network, in which the nodes behave
exactly the same as in the original network and the
remaining node signals stay invariant. The immersion
process of Dankers et al. (2016) is generalised to dynamic
networks with self-loops in the following algorithm.

Algorithm 1. (Single-path immersion). An immersed dy-
namic network is obtained from a dynamic network by
taking the following steps:

(1) Select an unmeasured node.

(2) Find all nodes (w) and inputs (r, v) connected to
this unmeasured node. The nodes and inputs with
paths to the unmeasured node are denoted as local
inputs. The nodes and inputs with paths from the
unmeasured node are denoted as local outputs.

(3) Lift the paths from each local input, through the

unmeasured node, to each local output.

) Delete the unmeasured node from the network.

(5) If there is an unmeasured node left go to step 1,
otherwise quit.

Unmeasured state variables are removed from the network
in the sense that they are not node signals anymore. These
states are still present in the network, but are hidden in the
modules and therefore referred to as hidden states. Hidden
states present in multiple modules are said to be shared by
these modules and therefore referred to as shared hidden
states, see Warnick (2015).

Algorithm 2. (Multi-path immersion). An immersed dy-
namic network can also be obtained from a dynamic net-
work by Algorithm 1 with the modification that in step (3)
the paths from all local inputs, through the unmeasured
node, to all local outputs are combined to create one
(multi-variate) module.

Algorithm 2 allows for MIMO modules and thus less
modules arise during immersion. The main disadvantage
of these modules is that a part of the network structure
disappears into the modules. Note that single-path and
multi-path immersion are equivalent for a node (or a group
of nodes) with only one local input and one local output.
Immersion can be seen as zooming out on the network and
excluding some detailed structural information.

Ezample 1. (Single-path immersion). Consider a dynamic
network with state-space description

CEl(t —+ ].) 0 0 ais l’l(t) 0
To (t + 1) = [agl 0 a23‘| [1‘2 (t) +10|7m (t)7
xg(t + 1) 00O $3(t) b31

where all states are measured. Its SS dynamic network is
shown in Figure 2a with

Giz = q 'ai3, Go1 = q 'ag1, Gas = ¢ ags, Rs1 = q 'bai.
Suppose that x3(t) is not measured anymore and that it is

removed from the network by single-path immersion. The
immersed dynamic network is shown in Figure 2b with

Roy = ¢ 2assbs1.
Since x3 has become a shared hidden state, the dynamics
of R31 appears in both modules.

5 —2
R11 = q""a13b31,

Ezample 2. (Multi-path immersion). Consider the SS dy-
namic network of Example 1 and suppose that x3(t) is
removed from the network by multi-path immersion. The
immersed dynamic network is shown in Figure 2c with

-2
; q “aizbs
Ri=1|"_ .
! (q 2023b31>
Since only one module results from immersion, x3(¢) has
not become a shared hidden state.

8.2 Realisation of module dynamic networks

The major difference between module dynamic networks
and SS dynamic networks is that in SS dynamic networks
the modules are one-dimensional state-space descriptions,
while in module dynamic networks the modules contain
higher order dynamics which have many possible state-
space realisations. The process of transforming a general
module dynamic network into an SS dynamic network is
called realisation.

Algorithm 3. (Realisation). A state-space realisation (SS
dynamic network) of a module dynamic network is ob-
tained by taking the following steps:

(1) Select a module.
(2) Replace the module by a state-space realisation of it.



(3) Turn all state variables into node signals and find the
modules between them.

(4) If there is any module without a state-space realisa-
tion left go to step 1, otherwise quit.

Step (2) does not change the behaviour of any module or
node signal in the network. Step (3) adds node signals
to the network, but the already existing node signals
remain invariant. A minimum number of node signals is
added if minimal state-space realisations are substituted
into the modules. Realisation can be seen as zooming in
on the network and including more detailed structural
information.

Ezample 3. (Realisation with shared hidden states). Con-
sider the SISO module dynamic network of Figure 2b with
Riy = q 2oy, Ry = q 2as.

A state-space realisation (SS dynamic network) is found

through Algorithm 3 and is shown in Figure 2d with

Giz3=q B, Goa =q B2, R31 = q B3, Ra1 = q 'Bu,
where 8183 = a1 and 8284 = ao. This SS dynamic network
has a different structure than the underlying SS dynamic
network shown in Figure 2a, caused by the shared hidden
state in én and Rgl.

Ezample 4. (Realisation without shared hidden states).
Consider the module dynamic network of Figure 2c with

. -2
Ry = (q_2a1> .
q Q2

A state-space realisation (SS dynamic network) is found
through Algorithm 3 and is shown in Figure 2e with

Gz =q 5, Gasz = q ' Ba, Ry =q B3,
where 8183 = a1 and (283 = as. This SS dynamic network

has the same structure as the underlying SS dynamic
network shown in Figure 2a.

(a) The SS dynamic network of
Example 1 and 2.

(b) The immersed dynamic net-
work by single-path immersion.

(c) The immersed dynamic net-
work by multi-path immersion.

(d) A realisation of the module
dynamic network of Figure 2b.

ri R @)

(e) A realisation of the module
dynamic network of Figure 2c.

(f) The immersed dynamic net-
work of Example 5.

Fig. 2. An SS dynamic network, three immersed dynamic
networks of it, and realisations of two of the immersed
dynamic networks.

3.8 Equivalence between module and SS dynamic networks

Now it is clear how to transform SS dynamic networks into
general module dynamic networks and vice versa and that
they are equivalent if the node signals remain invariant.

Proposition 1. (From SS to module dynamic network).
An SS dynamic network with minimal state-space dimen-
sion n can be transformed by immersion into a general
module dynamic network with generic McMillan degree
> n, where equality holds if and only if the immersed
dynamic network has no shared hidden states.

Single-path immersion does not lead to shared hidden
states when it is equivalent to multi-path immersion. The
local network structure already shows whether shared
hidden states are introduced by immersion.

Proposition 2. (Shared hidden states).

(a) Single-path immersion of a single node leads to a
shared hidden state if and only if this node has
multiple local inputs or multiple local outputs.

(b) Single-path immersion of multiple nodes leads to
shared hidden states if and only if at least one of
the following holds:

e The nodes jointly have multiple local inputs and
at least one of the nodes has multiple local inputs.

e The nodes jointly have multiple local outputs
and at least one of the nodes has multiple local
outputs.

(¢) Multi-path immersion never leads to shared hidden
states.

Proposition 2b implies that the introduction of a shared
hidden state can sometimes be nullified by removing an
additional node from the network.

Ezample 5. (Nullified shared hidden state). Consider the
immersed dynamic network of Example 1, see Figure 2b.
Suppose that node z; is also removed from the network.
Then ]%11, Rgl, and G2 are merged into one module,
without shared hidden states, see Figure 2f.

The reverse transformation of immersion is the realisation
of a module dynamic network into an SS dynamic network.
In this process, shared hidden states are not taken into
account, because their existence is unknown.

Proposition 3. (From module to SS dynamic network). A
module dynamic network with generic McMillan degree n
can be transformed into an equivalent SS dynamic net-
work with state-space dimension n by realisation through
Algorithm 3.

The resulting SS dynamic network is not unique due to the
freedom in creating minimal realisations of single modules.
Further, shared hidden states represent the same node
signal, but are realised as different node signals. Sometimes
the modelling procedure prevents for shared hidden states.
To wit, when each module represents a distinct part of the
network.

4. NETWORKS WITH GENERAL MEASUREMENTS

Dynamic networks as discussed in this paper were only
considered to have measurements equal to the state vari-
ables of the network (3). It is not always possible to



measure the states. The measurements can also be linear
combinations of states and excitation signals and can be
subject to additional sensor noise. The L,, measurements
are then written in matrix form as

w(t) = Cx(t) + Dr(t) + s(t), 4)
where s(t) is the sensor noise.

Algorithm 4. (From general to node measurements). A

module dynamic network with measurements of the form
(4) can be transformed into a module dynamic network
with measured node signals by taking the following steps:

(1) Add node signals to the network that are directly
measured, i.e. equal to w;(t), j =1,---, L.

(2) Add the corresponding modules, containing gains of
the form C(j,1), D(j, k), and 1.

The resulting network contains unmeasured node signals
x;(t), which can be removed from the network by immer-
sion, and measured node signals w;(¢), which depend on
the unmeasured node signals via static terms.

5. CONSTRUCTING SUB-NETWORKS

Dynamic networks often consist of sub-systems interacting
with each other, where each sub-system has its own
dynamics. From this point of view, a dynamic network
can be seen as the interconnection of sub-networks, where
a sub-network consists of several modules. A network can
be partitioned into sub-networks by drawing boxes around
certain areas in the network and grouping the interior
of a box into a new module. The boxes should be non-
overlapping and such that its terminals are connected to
inputs (r, v) or nodes (w). This method is equivalent to
removing all node signals in the box from the network
by immersion and is analogues to zooming out on the
network.

Ezample 6. (Sub-networks). Consider the module dynamic
network of Figure 3a, where the red and blue box indicate
sub-networks. The interior of the blue box can be captured
in a single module, as shown in Figure 3b. This is the same
as removing node ws from the network by (either form of)
immersion. Capturing the interior of the red box in a single
module is the same as removing node w; and ws from the
network by multi-path immersion. This results in a module
with two inputs and one output (R, in Figure 3b). Single-
path immersion results in two SISO modules (R41 and R42
in Figure 3b) with shared hidden states.

s TR

T3 >Ry, @

(b) The immersed
dynamic network.

(a) A module dynamic network with
two sub-networks (red and blue box).

Fig. 3. A module dynamic network with two sub-networks
and the corresponding immersed dynamic network.

6. DISCUSSION

Lemma 1 implies that module dynamic networks with
self-loops in general are never a unique representation
and thus cannot uniquely be identified from measurement
data. This is not true for SS dynamic networks, because
their modules have a specific structure. The identifiability
problem can be solved by eliminating self-loops from the
network, but this can introduce shared hidden states.

In the current literature, identification is often applied
in a module dynamic network without self-loops and
restricted to SISO modules. This implies that if there
is a (physical) state-space form underneath the module
dynamic network, shared hidden states can be present
that will not be recognised as such in an identification
setting, when all modules are independently parameterised
as SISO modules. In order to appropriately deal with
this situation (and arrive at minimum variance results for
estimated models) the handling of MIMO parameterised
modules in identification would be necessary.

The network structure cannot be identified completely
through its modules if a dynamic network contains hidden
states. Only the network structure that manifests itself
in transfer functions between inputs and node signals can
be identified. The remaining structure is hidden in the
modules, and shared hidden states appearing in multiple
modules will remain undetected.

7. CONCLUSIONS

A module dynamic network has been formalised as a model
for describing dynamic networks. This concept has been
extended by allowing self-loops and MIMO modules. As
a result, the module dynamic network incorporates state-
space forms as a special case of SISO module dynamic
networks. A module dynamic network allows to zoom
in/out on the network to include/exclude more detailed
structural information. Zooming in/out is represented by
an increased/decreased number of node signals and a de-
creased/increased order of the module dynamics. Zoom-
ing in takes place by realisation (replacing modules by
state-space realisations), which in construction is non-
unique. Zooming out takes place by immersion (removing
measured node signals from the network), of which two
forms are discussed: single-path and multi-path immer-
sion. Single-path immersion can cause loss of information
in the model transforms due to the occurrence of shared
hidden states, which are not recognised in the module
representation. The loss of structural information by the
introduction of shared hidden states is avoided in multi-
path immersion.

The main question in this paper was: can a state-space
form always be converted into a module representation
without losing any information and vice versa? The answer
to this question is: yes, provided that MIMO modules are
allowed in the module dynamic networks.
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