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Prediction error identification in physical networks

E.M.M. (Lizan) Kivits and Paul M.J. Van den Hof

Abstract— System identification problems utilizing a prediction
error approach are typically considered in an input/output set-
ting, where a directional cause-effect relationship is presumed
and transfer functions are used to estimate the causal rela-
tionships. In more complex interconnection structures, as e.g.
appearing in dynamic networks, the cause-effect relationships
can be encoded by a directed graph. Physical dynamic networks
are most commonly described by diffusive couplings between
node signals, implying that cause-effect relationships between
node signals are symmetric and therefore can be represented
by an undirected graph. This paper shows how prediction
error methods developed for linear dynamic networks can
be configured to identify components in (undirected) physical
networks with known topology.

I. INTRODUCTION

Physical networks are only one example of dynamic net-
works, which are interconnections of dynamic units. Dy-
namic networks receive increasing attention from a variety of
scientific fields, since systems are growing in complexity and
size. Other examples of dynamic networks are biological and
chemical processes, neural networks, consensus networks,
synchronisation, social interactions, the Internet, the stock
market and multi-agent systems [1], [2], [3].

A framework for system identification in dynamic networks
has been introduced in [4], by extending classical closed-
loop prediction error methods. Other developments focus
on topology estimation [5], [6], full network identification
[7], local module identification [8], [9], [10] and network
identifiability [11], [12], [13]. In this framework, dynamic
networks are considered to consist of directed interconnec-
tions of dynamic modules that can be of any dynamic order.
In contrast, physical networks are typically considered as
undirected dynamic interconnections between node signals,
where the interconnections represent diffusive couplings [14]
and the model is typically described by a vector difference
equation of maximum second order. The most well-known
example is a mechanical mass-spring-damper system, with
positions of masses as node (state) signals and the dynam-
ics being described by a second order vector difference
equation. Identification of these physical models can be
done by conversion of the model into a state space form,
after which matrix transformations [15], [16] or eigenvalue
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decompositions [17], [18] are being applied to estimate the
dynamics of the model. However, during these operations the
network structure in the model is generally lost.

With the objective to preserve the network structure in the
models, we choose to extend the prediction error identifica-
tion framework to the situation of undirected network inter-
connections. We will do so, by rewriting vector difference
equation models in terms of module representations, without
restricting the modules to be limited to second order. By
exploiting the symmetrical nature of the diffusive couplings,
we can build a framework for prediction error identification
in physical networks and use all the insights from dynamic
network identification for the physical network models too.
The concept of a diffusively coupled physical network is de-
fined in Section II. Subsequently, the network identification
setting is presented in Section III. In Section IV identification
of the full network is discussed, while in Section V attention
is given to the local identification results. Finally, Section VI
concludes the paper.

II. PHYSICAL NETWORK

Physical networks are often described by second order dif-
ferential equations. They can be considered to consists of L
interconnected scalar node signals w;(t), j = 1,...,L, of
which the behaviour is described according to

Mjiis; () + Djorb;(t) + Y Dk (ti(£) — in(t))
kEN;
+ Kjow;(t) + Y K (wi(t) — wi(t)) = u;(t), (1)
keN;

with Mj > 0, Djk > 0, Kjk >0, Djj = 0, ij =0,
N is the set of indices of node signals wy(t) k # j with
connections to node signals w;(t), u;(t) are the external
input signals and w,;(t) and w;(t) are the first and second
order derivative of the node signals w;(t), respectively.

In a physical network, all connections are symmetric, mean-
ing that the strength of the connection from node wj(t)
to node wy(t) is equal to the strength of the connection
(in opposite direction) from node wg(t) to node wj;(t).
More precise, the interconnections of the node signals are
diffusive couplings, which emerge in (1) from the symmetric
connections: Dj; = Dy; and K, = K.

Proposition 1 (Second order physical network): A  second
order physical network is described by
Mii(t) + Diio(t) + Kw(t) = u(t), )
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with matrices M, D and K composed of elements containing
the physical parameters in the network as

_ M;, iftk=j
M, = J 3
ik {O, otherwise )
DjO+Z7VLENj Djm7 lfk:]
Djk =9 —Djp, if ke /\G “)
0, otherwise
Kjo+ Ymen, Kim, k=
Kjr = § —Kjp, if ke N (5)
0, otherwise

and w(t) and u(t) are vectorised versions of w;(t) and u;(t),
respectively.

Proof: The expressions for the node signals (1) can
be stacked for wy(¢),...,wr(t) and combined in a matrix
equation. [ |
Hence, M is a diagonal matrix, D and K are a diagonal
matrix plus a Laplacian matrix, which is a symmetric ma-
trix with non-positive off-diagonal elements and with non-
negative diagonal elements that are equal to the negative sum
of all other elements in the same row (or column) [3].

A. Mass-spring-damper network

An example of a physical network with diffusive couplings
is a mass-spring-damper system, in which the nodes are
masses interconnected through springs and dampers. The
couplings between the masses are diffusive, because springs
and dampers are symmetric components. To be more precise,
for two masses m and mgo with position z1(¢) and z5(t),
respectively, the strength of a connection through a spring
K is equal to K (z1(t) — x2(t)) seen from m; and equal to
—K (21(t) — z2(t)) seen from mo.

Figure 1 shows an example of a mass-spring-damper system.
The positions of the masses are the signals of interest and
therefore chosen to be the node signals: w;(t) := xz;(t).
For k # 0, Dj;, and K}, represent the dampers and springs
interconnecting the masses M; and Mj,, while D;o and K
represent the dampers and springs connecting to the earth.

B. Higher order network

A physical network is typically of second order, as the mass-
spring-damper system in Section II-A, but the theory can
easily be extended to higher order terms.

Fig. 1. A network of masses (M), dampers (D) and springs (K).

Definition 1 (Physical network): A physical network is a
network consisting of L node signals wy (t),...,w(t) in-
terconnected through diffusive couplings and with possibly
connections of node signals to a ground node. The behaviour
of the node signals w;(t), j = 1,..., L, is described by

n n—1
ST Bew? )+ 303 Agulwl? (1) —w ()] = us(1),
=0

kENj £=0
(6)

with B,, ; > 0, B&Z >0, A&jk > 0, Agvjj =0, A@jk =
Ay i, and where wf) (t) is the ¢-th derivative of w;(t). W
The graphical interpretation of the coefficients is as follows:
B,, ; represent the components intrinsically related to the
nodes wj;(t), Be; with ¢ # n represent the components
connecting the node w;(¢) to the ground node (or earth) and
Ay ;i represent the components in the diffusive couplings
between the node signals w;(t) and wg(t). In addition,
every matrix A, composed of elements Ay j;, is a Laplacian
matrix representing an undirected graph of a specific physical
component (i.e. of the diffusive couplings of a specific order).
Proposition 2 (Physical network): A physical network (6)
can be described by

B(p)w(t) + Alp)w(t) = u(t), ()

with B(p) and A(p) polynomial matrices in the difference

operator p = % and composed of elements

Mo Begpt, ifk=j
B; = = 8
i+(P) {0, otherwise ®

—1 . )
Zme]\/j Z?:o A&jmpe, if k=y

Aje(p) = = S2070 Avjrp, ifkeN;,
0, otherwise.
Proof: The expressions for the node signals (6) can
be stacked for wq(t),...,wr(t) and combined in a matrix
equation. [ |

Note that B(p) is diagonal and A(p) is Laplacian.

C. Discretisation

There are several options for identifying a physical network
from experimental data. One option would be to identify
the network in continuous time. Here, the approach is to
identify the network in discrete time in order to connect with
the system identification framework formulated for dynamic
networks. For this purpose, the continuous time network is
converted to an equivalent discrete-time network.

Proposition 3 (Discrete time): By using the approximation

dw(t) _ w(tqyTs) — w((tg — 1)Ty)
dt T, ’

the continuous time physical network (6) can be described
in discrete time by

(10)

n n—1
> Bejg wilta) + Y Y Av kg [ws(ta) — wi(ta)]
=0 keN; £=0

= u;(ta), (11)
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with ¢! the shift operator meaning ¢~ 'w;(tq) = w;(ta—1)
and with matrices

Bej = (-1)" T, ()T Bij, (12)

A= (D' X5 (T A, (13)

where T is the time interval defined by ¢ := t;75.

Proof: Equation (6) is discretised by a similar approach
as in [19] by using a backward shift (10). |
In the sequel, t is used for ¢4. The expressions for the node
signals (11) can be combined in a matrix equation describing
the network as

B(q)w(t) + A(q)w(t) = u(t),

with B(q) and A(q) polynomial matrices in the shift operator
q and composed of elements

(14)

: Yo Besgt ifk=j
Bjk(q) = 2= Brjq J s
0, otherwise
n—1 7 _ . .
_ Zmej\fj ZE:() AE,jmq K, if k=y
Ajr(q) = o e fkeN, (6)
0, otherwise.

Note that B(q) is diagonal and A(q) is Laplacian, i.e.
the structure of B(p) and A(p) is preserved in B(q) and
A(q), respectively, while there exits a one-to-one relationship
between (A(p), B(p)) and (A(q), B(q)).

D. Identification setup

In the identification setting as will be considered, the nodes
signals might be affected by a user-applied excitation signal,
while all measured node signals are subject to disturbance
signals that are mutually uncorrelated. This is represented
by splitting the input signal u(t) into two contributions: the
known excitation signal and the unknown disturbance signal.
Applying this partitioning to (14), the network description
becomes

B(g)w(t) + A(gw(t) = Fr(t) + Clq)e(t),

where F' is a binary diagonal matrix, i.e. a sub-matrix
of the identity matrix, and C(g) is a diagonal rational
matrix restricted to be monic. The disturbance C(q)e(t) is
a realisation of a stationary stochastic process with diagonal
spectral density. In the next section it will be shown how this
network representation can be written in a so-called module
representation, which is typically used in prediction error
identification [4].

a7

III. MODULE REPRESENTATION

A standard description of dynamic networks is the module
representation [4], in which a network is considered to be the
interconnection of modules through measured node signals.
Every node signal wj;(¢) is described by

= > Gulg)wi(t) + Ry (@)r; (1) + Hjj(q)e; (1),

kEN;
(18)

where G,;(q), R;;(¢q) and Hj;(q) are proper rational transfer
functions, r;(t) are known external excitation signals and
e;(t) are white noises. The module representation does not
allow for self-loops, implying that G,;(q) = 0.
The expressions for the node signals (18) can be combined
in a matrix equation describing the network as

w(t) = G(q)w(t) + R(g)r(t) + H(g)e(t),

with matrices G(q), R(q) and H(q) composed of elements
Gjx(q), Rj;(q) and H,;(q), respectively, and where w(t),
r(t) and e(t) are vectorised versions of wj;(t), r;(¢) and
e;(t), respectively. Note that G(g) is hollow and R(q) and
H(q) are diagonal. In addition, H(q) is restricted to be
monic, stable and stably invertible.

Proposition 4 (Module representation): A physical network
(17) with (15) and (16) can be described in the module
representation

w(t) = Glqw(t) + R(q)r(t) + H(g)e(t),

with é(t) Qo te(t), where Qq is a diagonal matrix
composed of the constant elements of (¢q) (the elements
of Q(q) related to ¢°) and with

19)

(20)

G(q) = Q' (9)P(q), (21a)
R(q) = Q '(q)F, (21b)
H(q) = Q" (q)BoC(q), 2lc)

with diagonal Q(q) and hollow and symmetric P(q) being
polynomial matrices composed of elements

> ZA“mq foifk=3

Qjr(q ZBe’jq -
j = —

meN; £=0
0, otherwise
(22)
n—1 .
Ag ikq L ifkeN;
Pik(q) = SR ! 23
i+(40) {O, otherwise 23)

and with F' and C(q) as in (17).

Proof: The diagonal elements of B(q) and A(q) are
collected in Q(p) and the remaining elements of A(q) yield
P(q). that is Qj;(q) = By;(a) + Aj;(q) and Pyu(q) =
Ajr(g) for k # j. All entries of G(q), R(q) and H(q) ar
proper rational transfer functions. G(g) is hollow and R(q)
and H(q) are diagonal, because P(q) is hollow and Q(q),
F, and C(q) are diagonal. H(q) is monic due to the scaling
with By. ]
Note that there exits a one-to-one relationship between
(A(g), B(q)) and (P(q),Q(g)). As a result of Proposition 4,
physical networks lead to module representations that satisfy
particular symmetric properties. This is specified next.
Proposition 5 (Symmetric properties): The module repre-
sentation (20) of a physical network has the following
symmetric properties

1) Gjx(q) and Gi;(g) have the same numerator.
2) Gjk(q) and R;;(q) have the same denominator for all
k.
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3) G,k(q) and Hj;(q) have the same denominator for all

k if C(q) is polynomial.
Proof:

1) Because Q(q) and P(q) are polynomial in (21a),
the numerators of G;(¢) and G};(q) are completely
determined by Pjx(¢q) and Py;(q), respectively, which
are the same because P(q) is symmetric.

2) Because (Q(g) and P(q) are polynomial and F is
constant in (21a) and (21b) and Q(q) is diagonal, the
denominators of G,;(¢) and R;;(¢q) are completely
determined by @), ;(¢) for all k.

3) Because Q(q), P(q) and C(q) are polynomial in (21a)
and (21c) and Q(g) is diagonal, the denominators
of G;i(q) and H,;(q) are completely determined by
Qj;(q) for all k.

|
The structure of G/(g) and R(q) for a physical network (20)
with two nodes is illustrated by Figure 2. It shows that the
modules G12(q) = glli((‘f])) and Ga1(q) = 512";((?1)) related to
the interconnection between w (t) and ws(t) have the same
numerator related to their interconnection and a different
denominator related to the node signal they enter. It can
also be seen that both paths entering node signal ws(t)
indeed have the same denominator. Since G12(q) and G1(q)
have the same numerator, they will either be both present or
both absent, which is in accordance with the fact that they
represent one physical interconnection.
In addition, the connections to the earth are only present in
the denominators, because they are only present in Q(q).
This means that they do not have an effect on the topology
in the module representation, although they are part of the
topology in the physical network.

IV. FULL NETWORK IDENTIFICATION

The module representation of a physical network (20) can
now be used to identify a dynamic network on the ba-
sis of measured data. The main difference with a general
prediction error network identification problem [7], is that
the symmetric structure of the interconnections has to be
accommodated. This symmetry can simply be encoded in the
parameterised model set that will be used for identification.
This identification can be directed towards identifying the
dynamic modules while the topology of the network is given
(it is known which nodes are interconnected) or for a full
network in which all interconnections are being identified.

Either of the two network descriptions (17) or (20)-(21) can
be used for identification. Here, (20)-(21) is chosen, because
it is more closely related to the module representation of

Fig. 2. Module representation of a physical network.

dynamic networks. Adopting the approach of [20], the one-
step-ahead predictor of the node signals w;(¢) is defined as

wj(tft = 1) := Efw; (8)|w;(t = 1) 75wk (8) ™, k # jir(t) ",

(24)
where w;(t—1)~ reflects the past of w;(t). All node signals
are considered to be output signals and at the same time input
signals to other node signals. Following the approach of [20]
further, results in the one-step-ahead predictor

w;(tlt —1) = [I - C~(q)(Qq) — P(q))] w(t)

+C Y q)Fr(t). (25)

Definition 2 (Data generating network): The data generat-
ing network of (20)-(21) is defined as

Q°(qw(t) = P (q)w(t) + F'r(t) + C°(q)e(t),

with Q%(q), P°(q), F° and C°(q) satisfying the properties
of Q(q), P(q), F and C(q) in Proposition 4 and with e(¢) a
white noise process with bounded moments of order higher
than 4. [ ]
Definition 3 (Network model structure): A network model
structure used for identifying (26) is defined as the set of
parameterised polynomial matrices

M(@) = {Q(Qa9)7P(Q79)7F(9)>C(Q79)30 € 6}7

with Q(q,0), P(q,0) and C(q,0) being polynomials
in the delay operator g—! with the first coefficient of
Q(q,0) and C(q,0) equal to I, F'(f) being constant and
Q1(q,0)C(q,0) being monic, stable and stably invertible.
The network model structure determines a one-step-ahead
predictor w;(t|t — 1;60) similar to (25), which leads to the
prediction error e(t,0) = w(t) — w;(t|t — 1;0) as

e(t,0) = C~'(q.0) [Q(q,0) — P(q,0)] w(t)
— C™ g, 0)F(O)r(t).

(26)

27)

(28)

Proposition 6 (Joint-direct method): Consider a network
that has generated data according to (26) with C°(q) poly-
nomial and an ARMAX network model structure according
to (27), that is C'(g, #) is polynomial. Then the parameters of
the model are consistently estimated through the joint-direct
method according to

R 1 Y

Oy = arg main )i t_zl e (t,0)e(t, 0), (29)
where £(t, 0) is given by (28) and under the conditions that
the network is identifiable [12] and the external excitations
r(t) are persistently exciting of sufficiently high order while
being uncorrelated with e(t).

Proof: If C°q) and C(q,0) are polynomial, the
network model structure is ARMAX and the identification
problem is similar to the joint-direct identification method in
Proposition 3 of [7], for the particular situation that P° and
P(q,0) are symmetric. [ |
Remark 1: Note that the module dynamics that are estimated
are proper but not necessarily strictly proper. This has
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consequences for the conditions under which the network is
identifiable. In the presence of algebraic loops in the network,
additional conditions on the persistency of excitation signals
need to be satisfied for achieving network identifiability [12],
Chapter 5 of [21]. |
Corollary 1 (Linear regression): Consider a network that
has generated data according to (26) with C°(q) = I and
an ARX network model structure according to (27), that
is C(g,0) = I. Based on Proposition 6, the parameters of
the model are then consistently estimated through a linear
regression according to

-1
b = |y Letve™0] |5 Teue]. oo
with o(t) defined as

o' (t) = (ep(t) o, ()

0o, (1) k(1) e (1), GD

with
pr(t) = diag (r1(t) ri(t)), (32)
pq. (1) = diag (¢~ wa (t) ¢ 'wr(t)),  (33)
Z0,L-1 Z1,L—2 Zr-2.1
Wg,(t)=( ¢ War(t) } { q Wsr(t) } |:q__iEVL,L(t):|)a
g 'dr—1(wi(t)) g d—2(wa(t)) g "dy(wr(t))
(34)

where Z; ;. is a matrix of size j X k with all elements equal
to 0, W o(t) = (w;(t) w(t)) and d;(w;(t)) is a
square and diagonal matrix of size ¢ X ¢ with all elements on
the diagonal equal to w,(?).

Proof: 1f C°(q) = I and C(q,0) = I, the network
model structure is ARX and the one-step-ahead predictor
W, (t]t — 1;0) is linear in the parameters 6, meaning that it
can be written as a linear regression

p ()0 = [I - (Q(a,0) — P(g,0))] w(t) + F(O)r(t), (35)
=X PiO)a = Qi0)a | w(t) + F(O)r(t), (36)
=0 =1

where the structure of Q(q,0) and P(q,0) is retained in
Q:(0) and P;(0), respectively, and with parameter vector

6=(0F g, 65, OF, 0L ) . @D
with

Or = (P P F)', (38)

0o, = (Qin  Qiz Qi,L)T, (39)

0p, = (Pix Pi2 H,L(Lfl)/g)—r, (40)

where these parameter vectors parameterise the matrices
according to F'(0) = diag(fr), Q;(0) = diag(fg,) and

0 P11 Pip Pp1
* 0 Py Pior_3
P0)= 1|, & 0o . : , (4D
x ok * 0 P12
* % * * 0

where the elements x follow from the symmetry. [ ]
The symmetry in P(q) is included in the parametrisation
and therefore, the resulting optimisation problem is uncon-
strained. That is, the identification procedure of the network
results in an unconstrained least squares optimisation prob-
lem in which the structure of P(q) is taken into account.
Now the physical components in the network model (7) can
be retrieved from the estimated model (Q(q), P(q), F, C(q)).

V. LOCAL NETWORK IDENTIFICATION
A. Problem definition

The local identification problem in networks is in general
formulated as the objective to identifying a single module in
the network [4], [8], [9], [10]. However, due to the symmetry
in the networks considered in this paper, it is attractive to
formulate the local identification problem slightly different.
Definition 4 (Local identification problem): The local iden-
tification problem concerns the identification of an intercon-
nection between two nodes in the physical network. [ ]
A single interconnection in the physical network is described
by two modules in the module representation, meaning that
the objective is to identify two modules simultaneously.
For the interconnection between the node signals w;(t) and
wg(t), these modules are Gjr(q) = Q;jl(q)Pj (¢) and
G1;(q) = Qi (¢) Prj(g), which contain the full information
on how the node signals w;(t) and w(¢) interact with each
other. Due to the symmetry in P(q), Pjx(q) = Pk;j(g) and
hence, this identification problem concerns the identification
of three polynomials: Q;;(q), Qrr(¢), and Pji(g). In order
to take account of the symmetric properties in physical
network interconnections, the currently available methods for
local module identification need to be reconsidered.

B. Immersion

In order to decide which of the node signals to take into
account for the identification of a local module, a standard
procedure is to remove (immerse) node signals from the
network, while guaranteeing that the target module remains
invariant [9]. The standard rules for this immersion are
described in [9]. Applying these rules to the two modules
G,x(q) and Gy;(q) simultaneously, leads to the conditions

o Every loop around w;(t) and every loop around wy(t)
needs to be blocked by a retained node signal.

o Every parallel path from w;(t) to wy(t) and every
parallel path from wy(t) to w;(t) needs to be blocked
by a retained node signal.

Because of the symmetric properties of a physical network,
these conditions lead to the following result.

Proposition 7 (Immersion in physical network): Immersion
in physical networks (18) keeps two modules Gx(q) and
Gy;(q) invariant if all neighbour node signals of w,(t) and
wy(t) are retained.

Proof: Since P(q) is symmetric, all nodes are bilat-
erally connected. Therefore, all loops around w;(t) and all
loops around wy(t) contain a retained node signal if and
only if all neighbour nodes of w;(¢) and all neighbour nodes
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of wy(t) are retained, respectively. As a consequence, all
parallel paths from w;(t) to wy(¢) and from wy(¢) to w;(t)
contain a retained node signal as well. [ ]
This proposition shows that for identification of a single /
local interconnection, all nodes that are not neighbours of
w;(t) and wg(t) can be immersed from the network. The
system equations can now be rewritten as

w;(t) 0 Gile) Gicle) 0 w;(t)
wk(t) _ ij (q) 0 Gkﬁ(Q) 0 W (t)
we(t) Gri(@) Gerlq) Grelq) Grz(q)| [we(t)
wz(t) 0 0 Gzelg) Gzz(q)] |wz(t)

+ R(q)r(t) + H(g)e(t), (42)

where w () is the set of node signals that are being retained,
i.e. the neighbour node signals of w;(¢) and wy(t), and
wz(t) is the set of node signals that will be discarded, i.e.
all other node signals. Since all neighbour nodes of w;(t)
and wy(t) are retained, there are no unmeasurable signals
affecting both w; (t) and wy(t), i.e. there are no confounding
variables related to w;(t) and wg(t).

Remark 2: If the model set is restricted to at most second
order dynamics, the network resulting from immersion con-
tains higher order dynamics and therefore, the network is not
in the model set anymore. That is, allowing for higher order
dynamics in the network model set allows for immersing
nodes from the network. [ ]
Remark 3: By using immersion, nodes are removed from the
network and the identification problem can be solved locally,
meaning that not all nodes are needed and not all dynamics
in the network need exactly be recovered in order to identify
the dynamics of a specific interconnection in the network. B

C. Identification setup

After immersion, the system representation is as follows:

w;(t) 0 Gir(a) Gjc(@)] [w;(t)
wi(t) | = | Grjiq) 0 Grelq) | | wi(t)
we(t) Gri(q) Gerle) Grelg ) we(t)

+ R(q)r(t) + H(q)e(t). (43)

Following the local identification approach in [10], (43) is
used for locally identifying the two modules G,;(q) and
Gy;(q). The input signals of this local identification problem
will be w;(t), wi(t) and w,(¢) and the output signals will
be w;(t) and wg(t). Hence, the first two rows of (43) will
be estimated consistently through the joint-direct method
according to Proposition 6, where the symmetry of P(q)
is taken into account in the parametrisation similar as in the
full network case and where the prediction error is

£(t,0) = C514(0.0) [Q)-1(0.0) — Pi—i(,0)] wy—c(t)
_ C’jilk(% O) )k (O)rj—k(t), (44)
with
Qj-x(q,0) = {ijéq,e) Qkk(()Qa 9) 8} W
B 0 Pi(q,0) Pic(q,0)
Pjk(q,0) = [pkj(q,e) %0 Pki(q,ﬂ)} o

with C;_1(q,0) = diag(Cj;(g,0), Cri(q,9)), Fj—1(0) =
diag (Fj;(0), Fie(0)), wj—c(t) = [w;(t), wi(t),w} (t)]"
and rj_k(t) [ri(t), re()] T

Once G;(q) and Gy;(g) have been identified, the physical
components in the network model (7) can be retrieved from
the estimated model (Q;—x(q), Pj—x(q), Fj—k, Cj—x(q)).

VI. CONCLUSION

The undirected network description of physical networks
has been extended by allowing for higher order diffusive
couplings. The resulting undirected network has been refor-
mulated into a directed module representation with specific
structural properties. This representation allows for effective
identification of the global and local properties of the phys-
ical network.

APPENDIX
A. Full network identification: alternative linear regression

Instead of using the network equations in terms of Q(q),
P(q), F, and C(q) (20)-(21), it is also possible to use the
network equations in terms of B(q), A(q), F', and C(q) (17)
for identifying the full network. The linear regression result
in Corollary 1 changes to the following result.

Corollary 2 (Alternative linear regression): Consider a net-
work that has generated data according to

BY(q)w(t) = A°(q)w(t) + FOr(t) + e(t). 47)
and an ARX network model structure according to
M(9) == {B(q.9), A(q,0), F(0),C(q,0),0 € ©}  (48)

that is, C(q,0) = I, with B(g,6) and A(q,0) containing
polynomials in the delay operator ¢—! and scaled such that
the diagonals of their constant terms (the terms related to ¢°)
sum up to I and F'(#) being constant. Then the parameters
of the model can be estimated consistently through a linear
regression according to (30) with ¢(t) defined as

e = (R k(1) - eh () @h (O o ek (),
(49)
with ¢ L(t) as in (32), gpgi(t) = 04, (t) 33), v} 1) =
©p, (t) (34) and with
20,01 Z1,0-2 Zr-2.
eh )= q Vo, (t) q ' Va,L(t) Ve | |,
—q ' dVa, (1) —q ' dV3,1(t) —q'dVy,, (1)
(50)
for ¢ = 1,...,n — 1, where Z;; is a matrix of
size j x k with all elements equal to 0, V;.(t) =

[wj(£) — wj—1(t), -+ ,wp(t) — wj—1(t)] and dVj (1) =
diag(Vj,(t)) is a square and diagonal matrix of size (L —
j+1)x(L—j5+1).

Proof: The one-step-ahead predictor w;(t|t — 1;6) is
linear in the parameters #, meaning that it can be written as
a linear regression

@ ()0 = [I— (B(q,0) + A(q,0))] w(t) + F(O)r(t), (51)

{—iﬁ( =B | wlo)+ FOX©, 652

i= =1
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where the structure of B(q,0) and A(g,6) is retained in
B;(6) and A;(0), respectively, and with parameter vector

0= (% 0% oL 0L - ggml)T, 53)
with 6 as in (38) and with

931. = (Bm Bi,2 Bi,L)T, (54)

04, = (Az',l /L‘,z Ai,L(L_U/Q)T, (55)

where these parameter vectors parameterise the matrices
according to F'(0) = diag(0r), B;(#) = diag(3,) and

* Ai,l 41‘,2 {h‘,L—l
ok Aip Aior—3
Ai(0) = * ok * ,  (56)
x % * ox Ajn-1)/2
* % * * *

where elements * follow from the Laplacian structure. In
addition, note that Ag(f) is hollow, since the diagonal
elements of Ay(6) are nullified by By(¢) and I in (51).
Note that B(q) + A(q) = Q(q) — P(q) in (17) and (20)-
(21). As a result, the scaling of B(q) and A(q) such that
their diagonals sum up to I is the same as the scaling of
Q(g) such that it is monic (remember that P(q) is hollow).
In other words, B(q) and A(q) are scaled with Q.
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