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Abstract— This paper presents an instrumental variable (IV)
method dedicated to identification of coreless linear motors
(CLMs) operating in closed-loop. The dynamics of a CLM
can be described as a linear dynamical system preceded by
a static input gain that is nonlinearly dependent on the output.
The nonlinear dependency on the output makes it challenging
to find an appropriate predictor model for identification. In
this paper, we introduce a linear-in-the-parameter predictor
model for the CLM dynamics, which is a modification of
the nonlinear autoregressive exogenous (NARX) model. It is
proven that the IV method using the introduced predictor model
results in a consistent estimate. In addition, we show that in
many applications, the simple NARX predictor model, which
does not require knowledge of the statistical properties of the
output measurement noise, can provide an estimate that is very
close to the true parameter. A numerical example is shown for
demonstration.

I. INTRODUCTION

Coreless linear motors (CLMs), also known as ironless
linear motors, are widely used in industrial positioning sys-
tems. For high-precision control of CLMs, an accurate model
is crucial. In many practical applications, first principle
modeling is not accurate enough for high performance due to
uncertainty of the physical parameters. Therefore, identifica-
tion of the motor’s model is of interest. The identification
experiments must be performed in closed-loop for safety
reasons.

In the literature, identification of linear motors is typically
formulated as identification of the model of the force ripple,
which basically is the sum of all force components other
than the nominal force. The force ripple model is usually
written as a sum of basis functions where the coefficients
are to be estimated by fitting the model to experimental
data. Some of the research works only consider position-
dependent and velocity-dependent force ripple [1]–[3]. The
current-dependent force ripple has been considered in [4]–
[6]. However, the contribution of the current in each coil
to the force ripple was not addressed. In [7], [8], a method
to identify the force function of each coil was proposed, but
was limited to linear motors with one set of three-phase coils.
Furthermore, in the above-mentioned works, the effect of the
output measurement noise on the parameters estimation is
neglected.

In this paper, we aim to identify the force function of each
coil separately, with no limit on the number of coils. It is as-
sumed that the true model of the system is a nonlinear output-
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error (NOE) model with zero-mean white noise on the output
measurement. We model a CLM as a multiple input-single
output (MISO) nonlinear dynamical systems with electrical
currents as inputs and the position of the translator as output.
The model consists of a linear dynamical system preceded
by a static input gain vector that is nonlinearly dependent
on the output. The linear dynamical system captures the
motion dynamics of the translator, while the static input
gain vector contains the position-dependent force functions
of the coils, which describe the relation between the currents
in the coils and the resulting forces. It should be noted
that this model structure is different from the well known
Hammerstein model structure. The static nonlinear part of
this model structure is nonlinear in the noise-free output,
while the static nonlinear part of the Hammerstein model
structure is nonlinear in the input [9].

The nonlinear dependency on the unknown noise-free
output makes it difficult to find an appropriate predictor
model for identification. The simple nonlinear autoregressive
exogenous (NARX) model structure suffers from unrealistic
noise assumptions, which leads to a biased estimate in the
presence of output measurement noise [10]. On the other
hand, the more realistic NOE model structure can provide
a consistent estimate, but it is nonlinear in the parameters
and requires the global solution of a nonconvex optimization
problem, which is usually difficult to find. In this paper,
we employ the instrumental variable (IV) method and we
introduce a new linear-in-the-parameter predictor model,
which is a modification of the NARX model. It is proven that
the IV method using the introduced predictor model provides
a consistent estimate. The method only requires the analytical
solution of a simple generalized linear least square problem.
In addition, we provide an analysis of the bias obtained by
using the NARX model. It is shown that in many applications
where the output measurement noise is small compared to the
magnet pole pitch of the CLM, the simple NARX predictor
model, which does not require knowledge of the statistical
properties of the output measurement noise, can provide an
estimate that is very close to the true parameter. A numerical
example is presented for demonstration.

Regarding practical implementation, the new identification
method is easy to implement compared to other identification
methods for linear motors, e.g. [5], [7], [8]. It is able to
identify the force functions of all the coils together with the
motion dynamics of the translator from a single experiment.
In addition, there is no need to apply a constant load on the
motor.

The paper is organized as follows. Section II describes



the identification problem. The IV framework is reviewed in
Section III. Section IV presents the bias-corrected predictor
model. A numerical example is shown in Section V for
demonstration. The conclusions are summarized in Sec-
tion VI.

II. PROBLEM DESCRIPTION
A. Coreless linear motor

Fig. 1 shows a cross-sectional view of a CLM. A CLM
contains a stationary part called the stator and a moving part
called the translator. The stator consists of two permanent
magnet arrays mounted on two iron plates. The translator
contains one or multiple sets of three-phase coils placed in
between the two magnet arrays. Each set of three-phase coils
consists of three electrical coils A, B and C connected in star
configuration.
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Fig. 1. Cross-sectional view of a CLM.

A CLM can be modeled as two separated parts, the
electromagnetic part and the motion part, as shown in
Fig. 2. This is a common approach in modeling of linear
and planar electrical motors [11]–[13]. The electromagnetic
part describes the relation between the force produced by
the motor and the currents in the coils. It is modeled as
a static gain Ψ(x, θ0) which is nonlinearly dependent on
the position of the translator. The motion part G(q, θ0)
is a linear time-invariant system that captures the motion
dynamics of the translator. Here, q−1 is the delay operator
with q−ix(t) = x(t − i), θ ∈ Rnθ denotes the parameter
vector and θ0 ∈ Rnθ denotes the true parameter vector. More
details on the adopted model of a CLM can be found in [13].

B. Control loop

The standard control loop of a CLM is shown in Fig. 2.
The controller consists of two parts: a feedback linearization
block Ψ−1(x̂, θ̂), which aims to invert the nonlinearity, and
a linear controller C(q) which controls the linear dynamics.

Linear motor

Fig. 2. A CLM control loop.

The description of the signals is listed below:
• u(t) ∈ Rnu : the input of the system, which is the vector

of the currents in the coils. The number of independent
coils in the translator is nu.

• x(t) ∈ R: the noise-free output of the system, which is
the position of the translator.

• y(t) ∈ R: the noise-corrupted output, which is the
measurement obtained from the encoder.

• e0(t) ∈ R: the output measurement noise. It is assumed
that e0(t) is a zero-mean white noise with a symmetric
probability distribution.

• w(t) ∈ R: an unmeasurable internal signal, which is the
motor force.

• r2(t) ∈ R: the output reference.
• r1(t) ∈ Rnu : the additional input excitation signal.

The input signal u and the output measurement y are known.
The signals w and x cannot be measured.

The controller C(q) is chosen such that there is no direct
feedthrough from y(t) to u(t), which implies that u(t) and
e(t) are uncorrelated. It follows that x(t) and e(t) are also
uncorrelated.

C. System description

The data generating system is a NOE model of the
following form

S :


x(t) = G(q, θ0)w(t),
w(t) = Ψ(x(t), θ0)u(t),
y(t) = x(t) + e0(t),

u(t) = r1(t) + Ψ−1(x̂(t), θ̂)C(q)(r2(t)− y(t)).
(1)

The linear dynamics is parameterized as follows

G(q, θ) =
B(q, θ)

A(q, θ)
=

∑nb
k=1 bkq

−k

1 +
∑na
j=1 ajq

−j . (2)

The noise-free output can then be written as

x(t) = −
na∑
j=1

a0jx(t− j) +

nb∑
k=1

b0kw(t− k). (3)

The position-dependent static gain Ψ(x, θ) is a row vector
of the force functions

Ψ(x, θ) =
[
Ψ1(x, θ) . . . Ψnu(x, θ)

]
. (4)

Ideally, the force function of a coil is a perfect sinusoidal
function of the position x. However, in reality, there are
also other harmonic components. Therefore, it is common
to model the force function Ψl(x, θ) as a Fourier series [4],
[5], [7]

Ψl(x, θ) =

nF∑
n=1

(cl,n cos(ωnx) + dl,n sin(ωnx)) . (5)

Here, we denote ωn = nω1, where ω1 is the fundamental
frequency of the Fourier series, nF is the number of Fourier
harmonics, c and d are the Fourier coefficients. The force
w(t) can be written as

w(t)=

nu∑
l=1

nF∑
n=1

c0l,n cos(ωnx(t))ul(t)

+

nu∑
l=1

nF∑
n=1

d0l,n sin(ωnx(t))ul(t). (6)



For brevity, let us denote

cxl,n(t) = cos(ωnx(t))ul(t), sxl,n(t) = sin(ωnx(t))ul(t),

and similarly

cyl,n(t) = cos(ωny(t))ul(t), syl,n(t) = sin(ωny(t))ul(t).

Substituting (3) and (6) into the system model (1), the input-
output relation of the system can be written in the following
form

y(t)=−
na∑
j=1

a0jx(t− j) +

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,nc
x
l,n(t− k)

+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,ns
x
l,n(t− k) + e0(t). (7)

D. Proposed approach

The model structure (1) is different from the well known
Hammerstein model in that its static part is nonlinearly
dependent on the output instead of the inputs. The iden-
tification methods available for Hammerstein systems are
therefore not applicable. The nonlinear dependency of the
model structure (1) on the unknown noise-free output makes
it challenging to find an appropriate predictor model.

Using the simple NARX model structure, the noise-
corrupted output enters the predictor model nonlinearly,
which can result in a biased estimate. On the other hand,
the more realistic NOE model is nonlinear in the parameters
and thus requires solving a nonconvex optimization problem,
which is generally non-tractable.

In this paper, we employ the IV method, together with
a new linear-in-the-parameter predictor model, which is a
modification of the NARX model. We will prove that the
IV method together with the new predictor model provide
a consistent estimate of the parameters. The method only
requires the analytical solution of a generalized linear least
square problem, which is simple to compute.

III. INSTRUMENTAL VARIABLE METHOD FOR
CLOSED-LOOP IDENTIFICATION

A. The IV framework

Consider a linear-in-the-parameter predictor model of the
form

ŷ(t, θ) = ϕ>(t)θ, (8)

where θ ∈ Rnθ is the parameter vector, ϕ(t) ∈ Rnθ is the
regressor vector and ŷ(t, θ) ∈ R is the predicted output. The
IV estimate is the generalized version of the least square
estimate and is given by

θ̂IV =

(
1

N

N∑
t=1

ζ(t)ϕ(t)>

)−1(
1

N

N∑
t=1

ζ(t)y(t)

)
, (9)

where ζ(t) ∈ Rnθ is the instrumental vector. The selection
of the instrumental vector ζ(t) is discussed in Section III-B.
It can be seen that the IV estimate is the analytical solution
of a generalized linear least square problem and is therefore
attractive from computational perspective.

The IV estimate is consistent, i.e. θ̂IV → θ0 with proba-
bility 1 when N → ∞, if the following two conditions are
satisfied [14]

Ē[ζ(t)ϕ(t)>] is nonsingular, (10)
Ē[ζ(t)(y(t)− ŷ(t, θ0))] = 0. (11)

Here, the notation Ē[·] = limN→∞
1
N

∑N
t=1 E[·] is adopted

from the prediction error framework [15]. Condition (10) is
satisfied if the system is sufficiently excited and ζ(t) is well
correlated with ϕ(t). To satisfy condition (11), ζ(t) must be
uncorrelated with the measurement noise and the predictor
model should be selected appropriately. The selection of the
predictor model will be discussed in Section IV.

B. Instrumental vector selection
The instrumental vector ζ(t) should be selected such that

it is uncorrelated with the output measurement noise e0(t)
and well correlated with ϕ(t). In this paper, we choose
the instrumental vector as the noise-free version of ϕ(t),
obtained by simulating the noise-free model

S̊ :


ẙ(t) = G(q, θ̂)ẘ(t),

ẘ(t) = Ψ(̊x(t), θ̂)̊u(t),

ů(t) = r1(t) + Ψ−1(x̂(t), θ̂)C(q)(r2(t)− ẙ(t)).
(12)

Here, θ̂ is an estimate of θ0, which can be obtained by
first principle modeling using nominal physical parameters
provided by the manufacturer. The signal r1(t) and r2(t)
here are the same as those used in the real experiment, in
order to make ζ(t) and ϕ(t) well correlated. It is obvious
that ζ(t) is uncorrelated with e0(t).

IV. PREDICTOR MODELS
In this section we discuss the selection of the predictor

model for the IV method. This is a challenging problem due
to the nonlinear dependency of the system on the unknown
noise-free output. We will show that the simple NARX
model would result in a biased estimate, although the bias is
negligible in many applications. A bias-corrected predictor
model is then introduced and consistency of the resulting IV
estimate is proven.

A. NARX predictor model
Let us consider the NARX predictor model

ŷNARX(t, θ)=−
na∑
j=1

ajy(t− j)

+

nb∑
k=1

bk

nu∑
l=1

nF∑
n=1

cl,nc
y
l,n(t− k)

+

nb∑
k=1

bk

nu∑
l=1

nF∑
n=1

dl,ns
y
l,n(t− k)

=ϕ>NARX(t)θ, (13)

where θ is the parameter vector

θ = [a1 . . . ana b1c1,1 . . . bnbcnu,nF

b1d1,1 . . . bnbdnu,nF ]>, (14)



and ϕNARX(t) is the regressor vector

ϕNARX(t) = [− y(t− 1) . . . − y(t− na)

cy1,1(t− 1) . . . cynu,nF (t− nb)
sy1,1(t− 1) . . . synu,nF (t− nb)]>. (15)

We have nθ = na + 2nbnunF .
Note that the NARX model (13) is written in a linear-in-

the-parameter form by using the overparameterization tech-
nique, which transforms a bilinear-in-the-parameter model
to a linear-in-the-parameter model by replacing every
crossproduct of parameters with new independent parame-
ters [16]. When the new parameters have been identified, the
original parameters can be obtained by performing singular
value decomposition as explained in [16].

In addition, it is important to note that this parameteriza-
tion is not unique. Let us define the parameter vectors b =
[b1 . . . bnb ]

>, c = [c1 . . . cnF ]> and d = [d1 . . . dnF ]>.
Then any set of parameter vectors b̃ = βb, c̃ = β−1c and
d̃ = β−1d provides identical input-output relation as the
one in (13). To have a unique parameterization, a common
approach is to fix the first element of b to a constant.

In what follows we will analyze the consistency of the IV
estimate obtained by using the NARX predictor model. For
that purpose we will calculate the term in condition (11).
By substituting y(t) = x(t) + e0(t) and using the following
trigonometric identities

cos(χ1 + χ2)=cos(χ1) cos(χ2)− sin(χ1) sin(χ2),

sin(χ1 + χ2)=sin(χ1) cos(χ2) + cos(χ1) sin(χ2),

we can rewrite cyl,n(t− k) and cyl,n(t− k) as follows

cyl,n(t− k)=cxl,n(t− k) cos(ωne0(t− k))

−sxl,n(t− k) sin(ωne0(t− k)), (16)
syl,n(t− k)=sxl,n(t− k) cos(ωne0(t− k))

+cxl,n(t− k) sin(ωne0(t− k)). (17)

Consequently, subtracting ŷNARX(t, θ0) from y(t) results in

y(t)− ŷNARX(t, θ0)

=

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,nc
x
l,n(t− k) [1− cos(ωne0(t− k))]

+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,ns
x
l,n(t− k) [1− cos(ωne0(t− k))]

+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,ns
x
l,n(t− k) sin(ωne0(t− k))

−
nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,nc
x
l,n(t− k) sin(ωne0(t− k))

+

na∑
j=1

a0je0(t− j) + e0(t). (18)

In order to analyze the term in condition (11), let us calculate
the expected values of cos(ωne0(t−k)) and sin(ωne0(t−k)).
The characteristic function of e0(t) is defined as

φe0(α) = E[eiαe0(t)], where α ∈ R. (19)

We have the following proposition.

Proposition IV.1 If e0(t) is a zero-mean white noise with a
symmetric probability distribution then

E[cos(ωne0(t))] = φe0(ωn), E[sin(ωne0(t))] = 0. (20)

Proof: Using Euler’s formula we have

φe0(ωn) = E[cos(ωne0(t))] + iE[sin(ωne0(t))]. (21)

Since e0(t) is a zero-mean white noise with a symmetric
probability distribution, the characteristic function φe0(ωn) is
real-valued [17]. By equating the real part and the imaginary
part of the two sides of equation (21), the proposition is
proven.

Now let us substitute (18) into the term in condition (11).
We note that e0(t−k) is uncorrelated with x(t−k), u(t−k)
and ζ(t). As a result, using the fact that

E[χ1χ2] = E[χ1]E[χ2] (22)

if χ1 and χ2 are independent variables, and using the result
of Proposition IV.1, it follows that

Ē[ζ(t)(y(t)− ŷNARX(t, θ0))]

=

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,n
(
Ē
[
ζ(t)cxl,n(t− k)

]
(1− φe0(ωn))

)
+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,n
(
Ē
[
ζ(t)sxl,n(t− k)

]
(1− φe0(ωn))

)
6=0. (23)

Therefore, condition (11) is not satisfied. We conclude that
the IV method using the NARX predictor model results in a
biased estimate.

B. Bias-corrected predictor model

In this section we introduce a simple bias-correction for
the NARX model. Let us define the bias-correction factors

ρn =
1

E[cos(ωne0(t))]
=

1

φe0(ωn)
, n = 1, . . . , nF . (24)

Assume that φe0(ωn) is known, we propose the following
bias-corrected predictor model

ŷbc(t, θ)=−
na∑
j=1

ajy(t− j)

+

nb∑
k=1

bk

nu∑
l=1

nF∑
n=1

cl,nc
y
l,n(t− k)ρn

+

nb∑
k=1

bk

nu∑
l=1

nF∑
n=1

dl,ns
y
l,n(t− k)ρn

=ϕ>bc(t)θ, (25)

where

ϕbc(t) = [− y(t− 1) . . . − y(t− na)

cy1,1(t− 1)ρ1 . . . cynu,nF (t− nb)ρnF
sy1,1(t− 1)ρ1 . . . synu,nF (t− nb)ρnF ]>. (26)



It can be seen that the proposed bias-corrected predictor
model preserves the linear-in-the-parameter property. We will
now show that the IV method using the proposed predictor
model results in a consistent estimate.

Theorem IV.2 Given that the condition (10) is satisfied, by
using the predictor model (25) and an instrumental vector
which is uncorrelated with the output measurement noise, the
IV estimate (9) is consistent.

Proof: Let us consider condition (11). Due to (16)
and (17), subtracting ŷbc(t, θ0) from y(t) results in

y(t)− ŷbc(t, θ0)

=

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,nc
x
l,n(t− k) [1− cos(ωne0(t− k))ρn]

+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,ns
x
l,n(t− k) [1− cos(ωne0(t− k))ρn]

+

nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

c0l,ns
x
l,n(t− k) sin(ωne0(t− k))ρn

−
nb∑
k=1

b0k

nu∑
l=1

nF∑
n=1

d0l,nc
x
l,n(t− k) sin(ωne0(t− k))ρn

+

na∑
j=1

a0je0(t− j) + e0(t). (27)

Note that e0(t − k) is uncorrelated with x(t − k), u(t − k)
and ζ(t). Substituting (27) into the term in condition (11)
and using (22) and Proposition IV.1 we have

Ē[ζ(t)(y(t)− ŷbc(t, θ0))] = 0. (28)

Therefore, condition (11) is satisfied. Given that condi-
tion (10) is also satisfied, the IV estimate using the bias-
corrected predictor model (25) is consistent.

Note that the bias-corrected predictor model requires the
knowledge of the probability distribution function of the out-
put measurement noise. For example, the two most common
probability distribution functions of the measurement noise
are the normal (or Gaussian) distribution and the uniform
distribution.
• If the measurement noise is normally distributed with

zero mean and variance σ2, which is very common in
practice, then the bias-correction factors are

ρnormal
n =

1

φnormal
e0 (ωn)

= e
ω2
nσ

2

2 . (29)

• If the measurement noise is uniformly distributed on the
interval [−η, η] then the bias-correction factors are

ρuniform
n =

1

φuniform
e0 (ωn)

=
ωnη

sin(ωnη)
. (30)

However, it will be shown in Section IV-D that in many
applications, it is possible to obtain an estimate that is very
close to the true parameter just by using the simple NARX
predictor model, which does not require the knowledge of the
probability distribution function of the output measurement
noise.

C. Relation between the NARX IV estimate and the bias-
corrected estimate

Comparing the NARX regressor vector ϕNARX(t) in (15)
and the bias-corrected regressor vector ϕbc(t) in (26) we
have

ϕbc(t) = ΩϕNARX(t), (31)

where Ω ∈ Rnθ×nθ is the diagonal bias-correction matrix

Ω = diag(1, . . . , 1, ρ1, . . . , ρnF , ρ1, . . . , ρnF ). (32)

From (9) and (31), it follows that

θ̂bcIV = Ω−1θ̂NARX
IV . (33)

Therefore, the bias-corrected IV estimate can be obtained
simply by multiplying the NARX IV estimate by Ω−1.

D. Analysis of the bias in NARX IV
Let us calculate the bias of the IV estimate obtained using

the NARX predictor model. From Theorem IV.2, we know
that θ̂bcIV → θ0 with probability 1 as N →∞. Consequently,
it follows from (33) that

θ̂NARX
IV → Ωθ0 with probability 1 as N →∞. (34)

Therefore, as N →∞, the bias is

θ̂NARX
IV − θ0 → (Ω− I)θ0 = Γθ0, (35)

where I is the identity matrix and

Γ = diag(0, . . . , 0, ρ1−1, . . . , ρnF −1, ρ1−1, . . . , ρnF −1).
(36)

It is observed from (29) and (30) that if the variance of the
output measurement noise is small compared to the Fourier
period then the factors ρn are very close to 1. For example,
if the measurement noise is a white Gaussian noise with
variance σ = 0.001τp, where τp is the magnet pole pitch of
the CLM, and the Fourier period is 2τp, then ρnormal

1 − 1 =
5 × 10−6. Consequently, the bias is negligible and we can
thus safely use the NARX model as the predictor model. The
knowledge of the probability distribution of the measurement
noise is therefore not required in this case.

V. NUMERICAL EXAMPLE
In this section, a numerical example is presented to verify

the performance of the proposed IV method. Assume that
we have a CLM with three-phase coils A, B, C as shown in
Fig. 1. The coils are connected in star configuration, which
implies that the sum of the three currents is zero. Therefore,
we actually only have two control inputs uA and uB .

In the ideal case, the force function ΨA(x) and ΨB(x)
only contains the first order harmonics ω1 = π

τp
, where τp =

0.04m is the magnet pole pitch. In reality, however, there
are also other harmonic components due to manufacturing
tolerances. In this example, it is assumed that there is a
higher-order harmonic component ω2 = 2ω1. The force
produced by the motor can be written as

w =

[∑2
n=1 (cA,n cos(ωnx) + dA,n sin(ωnx))∑2
n=1 (cB,n cos(ωnx) + dB,n sin(ωnx))

]> [
uA
uB

]
.

(37)



The linear dynamical part is a mass-damper system which
has the following discrete-time transfer function

G(q, θ) =
b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
. (38)

The sampling frequency of the system is Fs = 10kHz. We
fix b1 = 1 × 10−7. The reference signal r2(t) is generated
as a consecutive sequence of random forth-order motion
profiles in the range [0m, 0.08m]. The input excitation signal
is chosen as r1(t) =

∑100
n=1 pn sin(t + ψn), where pn and

ψn are random amplitudes and phase shifts. The output
measurement noise is a zero-mean white Gaussian noise with
variance σ = 5× 10−6m. The signal to noise ratio is 84dB.

The system parameters are estimated from closed-loop
data of length N = 2 × 106. A Monte-Carlo simulation of
100 runs is performed. The results are summarized in Table I.
It is observed that there is no significant difference between
the NARX IV method and the bias-corrected IV method,
as the noise variance is small. Both methods give unbiased
estimates. However, the standard deviations of the Fourier
coefficients are quite large. How to improve the statistical
efficiency of the method needs further research.

TABLE I
MEAN AND STANDARD DEVIATION OF 100 ESTIMATED MODELS

Para- True NARX IV Bias-corrected IV
meter value
a1 −1.9950 −1.9950 ± 0.0001 −1.9950 ± 0.0001
a2 0.9950 0.9950 ± 0.0001 0.9950 ± 0.0001
b̄2 0.9983 1.0322 ± 0.1913 1.0392 ± 0.1913
cA,1 0 −0.0260 ± 0.2694 −0.0260 ± 0.2694
cA,2 −0.6988 −0.7051 ± 0.1282 −0.7051 ± 0.1282
cB,1 −9.0781 −8.9724 ± 0.8467 −8.9724 ± 0.8467
cB,2 −0.2745 −0.2786 ± 0.1132 −0.2786 ± 0.1132
dA,1 7.8619 7.8004 ± 0.7308 7.8004 ± 0.7308
dA,2 −0.3694 −0.3297 ± 0.1035 −0.3297 ± 0.1035
dB,1 −4.5391 −4.5286 ± 0.5407 −4.5286 ± 0.5407
dB,2 0.4592 0.4444 ± 0.1318 0.4444 ± 0.1318

Note: b̄2 = b2 × 107.

Fig. 3 shows the force produced by the true system
model and the averaged estimated model when three-phase
sinusoidal current waveforms are applied to the coils:

uA = ip cos

(
ω1x+

2π

3

)
, uB = ip cos (ω1x) , (39)

where ip = 12.82A is the amplitude of the current. The
maximum force error between the true system and the
averaged estimated model is about 1.4%.

The normal linear least square method is also tested but
the resulting estimate is very far from the true parameter and
therefore is not shown here.

VI. CONCLUSIONS

This paper presented an IV method for closed-loop iden-
tification of CLMs. We introduced a linear-in-the-parameter
predictor model, which is a modification of the NARX
model. It was proven that the IV method together with the
introduced predictor model provide a consistent estimate.
Besides, we analyzed the bias of the NARX IV method
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Fig. 3. Force produced by the system and the averaged estimated model.

and showed that in many applications, the simple NARX
predictor model can provide an estimate that is very close
to the true parameter. A numerical example was shown for
demonstration.
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