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Abstract— Least-costly experiment design has received ample
attention over the past decades, and efficient numerical algo-
rithms that can compute optimal excitation spectra for linear
models have been found. The interpretation of such spectra,
however, has received far less attention. We restrict ourselves
to uni-parametric models, for which an analytical solution to
the experiment design problem is derived. This solution enables
us to address, among other things, the following questions:
What determines the frequency and amplitude of the excitation
signal? Does the optimal frequency depend on the location(s)
that the parameter occupies in the transfer function? With
the optimal signal, is a closed-loop identification experiment
cheaper than an open-loop one? We show that the answers are
quite delicate for some of these questions.

I. INTRODUCTION

The design of optimal identification experiments for
control has received a lot of attention in recent years [2],
[4], [5], [8]. In the least-costly paradigm, the problem is
formulated as an optimization problem where the decision
variable is the power spectrum Φr of the excitation signal.
The optimal spectrum is the one that minimizes the cost of
the identification while guaranteeing that the uncertainty of
the to-be-identified model is small enough to enable robust
control design with satisfying performance. Adopting the
framework of [4] reduces the problem to one in which
the cost of the identification has to be minimized, while
ensuring that the inverse P−1

θ
of the covariance matrix of

the to-be-identified parameter vector is larger than a positive
and symmetric matrix Radm. This matrix can be computed
based on user-imposed control specifications.

The cost of an identification experiment is generally
expressed as a linear function of the spectrum Φr, and the
inverse of the covariance matrix is affine in Φr (in the case of
a linear, explicitly-known controller). Therefore, the optimal
experiment design problem is convex and can thus be solved
using standard convex optimization techniques.

Recent theoretical and numerical developments have re-
sulted in the ability to solve the optimization problem for
linear systems with nonlinear or implicit controllers as well,
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see e.g. [5] and [8]. This has broadened the range of
applications considerably.

Apart from some technicalities, this least-costly
optimization problem is now solvable for essentially
all linear systems parameterized by an arbitrary number of
parameters and with any type of controller, through the use
of convex optimization algorithms.

A remaining challenge from a theoretical point of view is,
however, the interpretation of the optimal power spectra that
result from these numerical algorithms. The ability to derive
analytically the solution to the least-costly problem will
enhance our understanding, and could help in speeding up
numerical algorithms. Obviously, this ability will be limited
to specific cases. We restrict attention in this paper to LTI
systems where only one parameter has to be identified. (The
parameter may be located at multiple locations in the transfer
function.) This situation occurs in e.g. reservoir engineering
[7] and in functional magnetic resonance imaging [1].

For this particular class of systems, we derive an analytical
solution of the least-costly identification experiment design
problem (formulated in the framework of [4]). We consider
both the open-loop and closed-loop identification cases and
we show that the unique solution of the least-costly identifi-
cation experiment problem is a single sinusoid with a specific
amplitude and frequency. The fact that the optimal solution
is a sinusoid could have been derived from the result in [9,
pages 35-36]. However, its frequency is there only given for
a very special case due to normalization.

Since we have an analytical solution for this special case,
it is now possible to interpret the result. As an example,
we provide insight into the frequency and amplitude of
the optimal excitation signal. Furthermore, we derive that
for some particular family of cost functions it is always
better to do an identification experiment in closed loop
compared to open loop. It is also shown that when the to-be-
identified parameter resides at just one location in the transfer
function, the optimal frequency only depends, location-wise,
on whether the parameter is located in the numerator or
denominator.

The results above pertains to the case where the cost of
the identification is a linear function of the power spectrum
of the excitation. We also present a method to solve the
optimization problem when the cost is a nonlinear function
of the spectrum, a case for which known numerical methods
are no longer applicable.

The paper is organized as follows. In Section II, we
introduce the notations and the least-costly optimization
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problem under consideration. Our analytical solutions are
derived in Section III. We discuss and interpret our findings
in Section IV, and provide a numerical study in Section V.
Lastly, we draw conclusions in Section VI.

II. LEAST-COSTLY IDENTIFICATION
EXPERIMENT

Consider a linear data-generating system consisting of a
uni-parametric model G0 =G(z,θ0) with unknown parameter
θ0 ∈R and a known noise model H0 = H(z). The parameter
θ0 may be present at an arbitrary number of positions in the
transfer function G(z,θ0). We will consider the identification
of this unique parameter in both an open-loop and in a
closed-loop setting. Since the open-loop setting is a special
case of the closed-loop one, we first present the closed-loop
identification setting. We thus suppose that the true system is
operated in closed loop with a known linear controller C(z)
(see Fig. 1). The output y(t) ∈ R and input u(t) ∈ R of the
true system are thus given by

u(t) = r(t)−C(z)y(t), (1)
y(t) = G0(z)u(t)+H(z)e(t). (2)

Here, e(t) ∈ R is white noise with variance σ2
e , and G0(z)

and H(z) are stable, discrete-time transfer functions. Fur-
thermore, H(z) is assumed to be monic and minimum-
phase. The signal r(t) ∈ R is the excitation signal r(t) ∈
R that is used to identify the true system. Suppose this
excitation signal is applied from t = 1 to t = N and that
the corresponding input and output data are collected: ZN =
{u(t),y(t) | t = 1, . . . ,N}. This data set can be used to de-
termine an estimate of θ0 in a full order model struc-
ture M = {G(z,θ)}: θ̂N = argminθ Vid(θ), with Vid(θ) =
1
N ∑

N
t=1 ε2(t,θ), where ε(t,θ)=H−1(z) [y(t)−G(z,θ)u(t)] is

the prediction error.
With the assumption of a model structure containing the

true system, the identified parameter vector θ̂N is asymptot-
ically normally distributed around the true parameter vector
θ0. Hence, under certain conditions on the excitation signal
(and the controller in closed loop), we have for N→ ∞ that√

N(θ̂N−θ0)→N (0,Pθ ), with P−1
θ

a positive scalar given
by [6]

P−1
θ

=
σ2

e

N
Ē
[
(ψ(t,θ) |θ0)

2] , (3)

that can be estimated from θ̂N and ZN . In this equa-
tion, the expectation operator Ē is defined as Ē f (t) ≡
limN→∞

1
N ∑

N
t=1 E f (t), where E is the usual expectation

operator. Lastly, ψ(t,θ) ≡ − ∂ε(t,θ)
∂θ

, where ε(t,θ) is the
prediction error defined previously.

It can be shown that (3) admits a frequency domain
expression given by [6]

P−1
θ

=
N

2πσ2
e

∫
π

−π

|Fr(ω,θ0)|2Φr(ω)dω +R0, (4)

where R0 = N
2π

∫
π

−π
|Fv(ω,θ0)|2 dω , and Fr(ω,θ0) =

H−1(e−iω)S(ω,θ0)ΛG(ω,θ0), Fv(ω,θ0) =
−C(e−iω)S(ω,θ0)ΛG(ω,θ0). In these expressions,

G0
-

ur y

e

C(z)

H0

Fig. 1. Schematic overview of the true closed-loop system.

S(ω,θ) = (1 + C(e−iω)G(e−iω ,θ))−1 is the sensitivity
function of the closed-loop system, ΛG(ω) = ∂G(e−iω ,θ)

∂θ
|θ0 ,

and Φr(ω) is the power spectrum of the excitation signal
r(t) in (1). The spectrum is an even function in ω .

With these notations, the least-costly experiment design
problem can be defined mathematically as

min
Φr(ω)

1
2π

∫
π

−π

F [Φr(ω),ω]dω (5)

subject to P−1
θ
≥ Radm,

and Φr(ω)≥ 0 ∀ω,

with P−1
θ

as defined in (4), F [Φr(ω),ω] a (possible nonlin-
ear) objective function, and Radm a scalar value calculated
prior to the experiment, guaranteeing a certainty of the to-
be-identified parameter that is large enough to enable robust
control design. For more details on the computation of Radm,
see [4].

The solution to this problem, Φ
opt
r (ω), is used to generate

a time-domain excitation signal r(t) = ropt(t), which is
used in the identification method explained previously. This
completely defines the least-costly experiment.

The objective function F [Φr(ω),ω] is, in literature, most
often linear in Φr(ω). Many functions fall in the class
of F [Φr(ω),ω] = L (ω)Φr(ω), where we assume that
L (ω) > 0∀ω ∈ [−π,π] and is sufficiently smooth. This is
not a restrictive assumption, as L is a weighting function,
and it therefore makes no sense for it to have negative values.

A popular choice of L (ω) reads

L (ω) =
(
α|G0(e−iω)|2 +β

)
|S(ω,θ0)|2, (6)

which results in objective function consisting of the power
of the perturbations induced by r(t) on the input and the
output. The parameters α,β ∈R are constant weightings [2].

Until now, we have considered the identification of θ0 in
a closed-loop setting. However, the identification can also
be performed in an open-loop setting. The open-loop setting
corresponds to the case where C = 0 and thus u(t) = r(t).
The excitation signal r(t) is thus directly applied to the input
of the system 1. In the open-loop setting it thus follows that
R0 = 0 and the sensitivity S= 1 in (4). The popular weighting
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function for the open-loop case is thus

L (ω) =
(
α|G0(e−iω)|2 +β

)
. (7)

In the Introduction, we mentioned that the optimization
problem for objective functions linear in Φr(ω) can be cast
into a convex problem, which can be solved numerically.
However, the somewhat unsatisfactory aspect in this proce-
dure is the inability to obtain a good understanding of the
resulting excitation spectrum.

In the following section, we adopt an analytical approach
that provides insight into the solution of (5). For the sake of
brevity, we will from now on omit the argument θ0 in all
terms in (4).

III. ANALYTICAL SOLUTION TO THE
LEAST-COSTLY PROBLEM

In Section III-A, we address objective functions in (5)
that are linear in Φr(ω). Then, in Section III-B, we show
how to solve the optimization problem for objective functions
nonlinear in Φr(ω). We will consider functions F [Φr(ω),ω]
that are even in ω , but note that all results can eas-
ily be extended to non-even functions. In such a case,
one has to replace F [Φr(ω),ω] with 1

2FT [Φr(ω),ω] =
1
2 (F [Φr(ω),−ω]+F [Φr(ω),ω]) in the equations below.

In the following, we have made use of the fact that
|Fr(ω)|2, |Fv(ω)|2, and Φr(ω) are even functions in ω .
Lastly, we remark that the solution is given for the closed-
loop case, but that the open-loop case can be derived from
it as a particular case.

A. Objective function linear in Φr(ω)

We consider (5) for F [Φr(ω),ω] = L (ω)Φr(ω), where
L (ω)> 0∀ω is an even function. The optimization problem
thus reads:

min
Φr(ω)

1
π

∫
π

0
L (ω)Φr(ω)dω (8)

subject to

1
π

∫
π

0
|Fr(ω)|2Φr(ω)dω ≥ K (9)

and Φr(ω)≥ 0 ∀ω, (10)

where K = σ2
e

N (Radm−R0). We assume that Radm > R0.
Otherwise, the contribution of the noise to P−1

θ
is sufficient

to satisfy the first constraint in (5) and the optimal excitation
signal is simply r(t) = 0,∀t.

We are now ready to derive the solution to the above
problem, and show that this solution is unique.

Proposition 1: Consider the optimization problem (8)-
(10). The spectrum solving this problem reads:

Φ
opt
r (ω) =

πσ2
e (Radm−R0)

N|Fr(ω†)|2 ∑
k={−1,1}

δ (ω− kω
†) (11)

with

ω
† = arg max

ω∈[0,π]

|Fr(ω)|2

L (ω)
. (12)

The excitation signal in the time-domain is given by

ropt(t) =
σe
√

2
|Fr(ω†)|

√
(Radm−R0)

N
cos(ω†t +φ),

where φ is an arbitrary phase.
Proof: First, we omit constraint (10). We thus need

to verify after our calculations that our solution satisfies this
constraint. With ω† defined in (12), for all eventual solutions
Φr to the optimization problem, the following inequality
should hold:

K ≤ 1
π

∫
π

0

|Fr(ω)|2

L (ω)
L (ω)Φr(ω)dω ≤ (13)

1
π

|Fr(ω
†)|2

L (ω†)

∫
π

0
L (ω)Φr(ω)dω,

where the first inequality is the constraint (9), while the latter
is derived using (12). The last term is thus greater than or
equal to K. Multiplying the inequality equation formed by
the first and latter terms of (13) with L (ω†)

|Fr(ω†)|2 shows that the

minimum of (8) subject to (9) is equal to L (ω†)
|Fr(ω†)|2 K. With K

defined in (9), it is obvious that this minimal cost:∫
π

0
L (ω)Φr(ω)dω =

L (ω†)

|Fr(ω†)|2
K (14)

is obtained for the spectrum Φr(ω) = Φ
opt
r (ω) given in (11).

This solution is even by construction, and satisfies the
constraint (10), that we had disregarded previously.

Proposition 2: Solution (11) is the unique minimizer of
(8)-(10).

Proof: Suppose another solution, Φ̂
opt
r (ω) =Φ

opt
r (ω)+

η(ω) exists. Then this solution should be even (Φ̂opt
r (ω) =

Φ̂
opt
r (−ω)) and positive (Φ̂opt

r (ω) ≥ 0∀ω). This in turn
means that η(ω) = η(−ω), and that η must be positive
everywhere except at ω = ω†, where it may be negative.

Substitution of Φr(ω) = Φ̂
opt
r (ω) into (14) yields

1
π

∫
π

0
L (ω)(Φopt

r (ω)+η(ω))dω =

LT (ω
†)

|Fr(ω†)|2
K +

1
π

∫
π

0
L (ω)η(ω)dω.

The minimum of (8) is given by (14). Hence, in order to
obtain the same minimum, the condition∫

π

0
L (ω)η(ω)dω = 0 (15)

must hold. The function η(ω) may only be negative at the
point ω =ω†. Hence, this point must be given infinite weight
in order to generate a negative contribution to the above
integral. Therefore, the only possible solution for η(ω) is
of the form

η(ω) = f (ω)+Bδ (ω−ω
†), (16)

where B < 0 is a constant, and f (ω) ≥ 0∀ω is an even,
well-behaved function. Indeed, this solution satisfies all the
conditions on η(ω) stated above. Both B and f (ω) are yet
to be determined. Furthermore, we do not allow f (ω) =
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−Bδ (ω − ω†), as this will result in the trivial solution
η(ω) = 0 ∀ω . Substitution of (16) into (15) fixes B, which
is given by

B =− 1
L (ω†)

∫
π

0
L (ω) f (ω)dω. (17)

Condition (15) is now satisfied. The remaining freedom,
f (ω), is to be used such that the constraint (9) with the
potential solution Φ̂

opt
r is satisfied. Substitution of Φr(ω) =

Φ̂
opt
r = Φ

opt
r (ω)+η(ω) in (9), and using (13), (14), and (17)

give

1
π

∫
π

0
|Fr(ω)|2Φ̂

opt
r (ω)dω =

K +
1
π

∫
π

0
|Fr(ω)|2 f (ω)dω +

B
π
|Fr(ω

†)|2 =

K +
1
π

∫
π

0

[
|Fr(ω)|2

L (ω)
− |Fr(ω

†)|2

L (ω†)

]
L (ω) f (ω)dω.

By virtue of (12), |Fr(ω)|2
L (ω) ≤

|Fr(ω
†)|2

L (ω†)
for all ω ∈ [0,π]. It

thus follows that the above equation is less than K for any
nontrivial f (ω), while they may be equal for f (ω) = 0∀ω ,
but this results in B = 0, such that η(ω) = 0∀ω . This is a
trivial solution for which Φ̂

opt
r = Φ

opt
r .

Thus, we have shown that we can not obtain the minimum
(8) while also ensuring that the constraint (9) is satisfied by
any solution other than Φ

opt
r .

Hence, we find that solution (11) is unique.

B. Objective function nonlinear in Φr(ω)

As shown in the proof of Proposition 1, with the optimal
power spectrum Φ

opt
r , the inverse P−1

θ
of the variance of

the identified parameter vector is equal to Radm. In other
words, the constraint (9) is equal to K. This is due to
the fact that all terms in (8)-(9) are positive, such that an
increase on the left hand side of the constraint (9) will
result in a larger value of the objective function. The same
argument holds for positive, nonlinear objective functions
F [Φr(ω),ω], which we will consider to be even. Positive
but non-even F can be treated as well, see Section II.
In this section, we address the question: What will be the
optimal spectrum when the objective function is nonlinear
in Φr? This question can not be addressed with numerical
convex algorithms that explicitly require linearity.

The optimization problem (5) for nonlinear objective func-
tions is thus to minimize

F [Φr(ω)] =
1
π

∫
π

0
F [Φr(ω),ω]dω (18)

subject to

G[Φr(ω)] =
1
π

∫
π

0
|Fr(ω)|2Φr(ω)dω = K. (19)

As in the linear case, we have disregarded the constraint
Φr(ω) ≥ 0∀ω . This is only permitted when the solution to
the above problem is identical to the solution of the original
problem (c.f. (5)), i.e., the solution is positive on the entire
domain.

The problem we need to solve is classical: find the path
of integration along which the integral (18) has its minimum
subject to the constraint (19). This type of problem can be
solved with variational calculus and the method of Lagrange
multipliers. For details, see [3].

Using these methods, we will now show with a simple
example that the solution Φ

opt
r for nonlinear objective

functions is no longer a sinusoid.

Example Let F [Φr(ω),ω] = L (ω)Φ2
r (ω), where

L (ω)> 0∀ω . It follows from variational calculus that

Φ
opt
r (ω) =

2πK|Fr(ω)|2L −1(ω)∫
π

0 L −1(ω ′)|Fr(ω ′)|4 dω ′
.

The solution Φ
opt
r (ω) is continuous, positive, and even (by

construction).
It can be shown that any (well-behaved) nonlinear ob-

jective function will generate a continuous spectrum in the
interval ω ∈ [0,π]. Hence, on leaving the linear domain, the
solution can not be a sinusoid (or a finite sum of sinusoids).

IV. INTERPRETATION

We now return to the case of linear objective functions.
In Section III, we saw that the unique solution to (8) is
given by a sinusoid with frequency ω† (c.f. (12)) and an
amplitude that is determined, besides other things, by the
experiment length N, the sensitivity function, and the noise
variance.

We observe from (12) that the optimal frequency ω = ω†

is located at the frequency for which the ratio |Fr(ω)|2
L (ω) is

maximal. This is an intuitively appealing result.
For the sake of argument, let L (ω) be a constant, say

one. This means that the power of r(t) at each frequency has
equal weight in the objective function (8). Then the optimal
frequency is where |Fr(ω)|2 attains its global maximum.
Inspection of (9) indeed shows that this term should be
maximized in order to minimize

∫
π

0 Φr(ω)dω (or simply
Φr(ω)∀ω , as Φr(ω)≥ 0∀ω). This observation has also been
mentioned in [6] and observed numerically in [1].

When the weighting function L (ω) is not a constant,
not all terms Φr(ω) are weighted equally in the objective
function. However, by rewriting the optimization problem in
the variable Ξ(ω) = L (ω)Φr(ω), the above reasoning may
again be followed, where one now needs to maximize the
ratio |Fr(ω)|2/L (ω) (this follows trivially from the change
of variables) in order to minimize the objective function∫

π

0 Ξ(ω)dω . Note that in this variable, the objective function
again has a constant weighting function.

Let us consider transfer functions for which the unknown
parameter θ0 may now occur only once: in either the
denominator or numerator. Let these functions be given by
G1(z,θ0) =

B(z)
1+A(z,θ0)

and G2(z,θ0) =
B(z,θ0)
1+A(z) , where A, B are

polynomials in z−1. Note that this is a restriction from the
general case we have considered so far.
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For convenience, we recall the optimal excitation fre-
quency:

ω
† = arg max

ω∈[0,π]

|Fr(ω)|2

L (ω)
= arg max

ω∈[0,π]

|ΛG(ω)|2|S(ω)|2

|H(e−iω)|2L (ω)
.

(20)
A first question that arises is: Will the optimal frequency

depend on the location of θ0 in G(z,θ0)? First, observe from
the expression of ω† that only the term |ΛG(ω)|2 could
influence the optimal frequency location-wise, while all the
others remain the same. We then need to distinguish two
classes of transfer functions: (i) G1(z,θ0), and (ii) G2(z,θ0).
For case (i), we find that |ΛG(ω)|2 = |B(e−iω )|2

|1+A(e−iω )|4 . This means
that ω† depends on both the location of the poles and the
zeros of G1(z,θ0), but is independent of the location of θ0.
For case (ii), |ΛG(ω)|2 = 1

|1+A(e−iω )|2 , showing that ω† only
depends on the location of the poles of G2(z,θ0) but is
invariant with respect to the position of θ0 in the numerator.
Hence, there are only two optimal frequencies for a uni-
parametric model G(z,θ0), of which the unknown θ0 appears
at only one location: one for identifying a parameter in the
numerator and one for the denominator.

When the parameter appears in the more than one location
in the numerator or denominator, the optimal frequency will
depend on its locations.

We return to the general case of transfer functions G(z,θ0),
of which all parameters are known except θ0, which may
again appear at multiple locations in A(z,θ0) and B(z,θ0). We
will now compare the least-costly identification experiment
problem in the open-loop and the closed-loop settings. We
recall that the open-loop setting is characterized by R0 = 0,
S(ω) = 1∀ω and Fr(ω) = ΛG(ω)/H(e−iω).

The cost of the optimal spectrum (11) is given by:

Jopt =
1
π

∫
π

0
L (ω)Φopt

r (ω)dω

=
σ2

e

N|Fr(ω†)|2
(Radm−R0)L (ω†). (21)

The ratio of optimal cost for the open- and closed-loop
experiment, fO/C =

JOL
opt

JCL
opt

, can be derived from the above
equation, and reads

fO/C =
LO(ω

†
O)

LC(ω
†
C)

|H(eiω†
O)|2

|H(eiω†
C)|2
|ΛG(ω

†
C)|2

|ΛG(ω
†
O)|2

|SC(ω
†
C)|2

1−R0/Radm
, (22)

where the subscripts O and C refer to the open- and closed-
loop settings. For any family of L , (22) shows that there
may be cases in which an open-loop experiment is cheaper
than a closed-loop one.

From now on, we restrict attention to the case where
the cost of the identification is factorized as L (ω) =
Lin(ω)|S(ω)|2, where Lin is identical for the open- and
closed-loop cases, i.e., controller-independent. This family of
functions includes the popular choice (6)-(7). Consequently,
this factorization results in a frequency of the optimal ex-
citation signal that is identical for the open-loop and in the
closed-loop settings, and is given by (c.f. (20)):

ω
† = arg max

ω∈[0,π]

|ΛG(ω)|2

|H(e−iω)|2Lin(ω)
. (23)

The ratio of the open- and closed-loop experiment costs
(22) in this case then reduces to fO/C = 1

1−R0/Radm
. This

equation clearly reveals the advantage of the closed-loop
setting with respect to the open-loop setting for this family
of L . This benefit of closed-loop identification is due to the
term R0 i.e. the accuracy that is due to the noise. Observe
that for Radm� R0 this fraction approach its limit fO/C = 1,
in which case both experiments yield equal costs.

This observation is intricately related to the amplitude
of the excitation signal r(t). Indeed, from (11), (13), and
(21), it follows that the cost is proportional to the square
root of the amplitude of r(t). The amplitude of r(t) in the
closed-loop case is thus always smaller than the one in the
open-loop case. What does this mean for the power of the
input and output, i.e., the overall level of perturbation? If
the system is already operated in closed-loop and if the
controller effectively reduces the effects of the noise on the
output, i.e., ||SH0||2 < 1, it is always beneficial to perform
the identification in closed loop. The power of the output
y(t) = G0Sr(t)+H0Se(t) and input u(t) = r(t)−C(z)y(t) for
r(t) = ropt(t) in the closed-loop case (c.f. (11)):

Py = |G0(e−iω†
)|2 σ2

e π|H(e−iω†
)|2

N|ΛG(ω†)|2
(Radm−R0)

+ |H(e−iω†
)|2|S(ω†)|2σ

2
e , (24)

Pu =
πσ2

e |H(e−iω†
)|2

N|ΛG(ω†)|2
(Radm−R0)

+ |S(e−iω†
)|2|H(e−iω†

)|2|C(e−iω†
)|2σ

2
e .

The first equation trivially shows that if ||SH0||2 < 1 holds,
the power of y(t) in closed-loop will always be smaller than
in the open-loop case (for which ω† is identical, but R0 = 0).
The same conclusion holds for the input u(t), even without
the above assumption. Indeed, inspection of R0, see (4),

shows that the term σ2
e π|H(e−iω†

)|2
N|ΛG(ω†)|2 R0 is always larger than

the last term of Pu.

V. A CASE STUDY
The aim of this section is to verify our theoretical findings

of Section III.
To this end, we consider the true system G0(e−iω) =

a1(1−θ0)e−iω

1−θ0e−iω , and H(e−iω) = 1, where a1 = 10 is the steady-
state gain, σ2

e = 4.0 is the variance of the noise e(t), and
θ0 = 0.45 is the unknown parameter that we need to identify
with a least-costly experiment. We first consider the closed-
loop setting with a PI controller C(z) defined by the constants
Kp = 0.00853 and Ki = 0.0171. With this controller R0 =
3.0826.

The optimization problem we consider is (8), with L (ω)
given by (6). The parameters defining the optimization
problem are: N = 200, α = 0.1, β = 0.7, and Radm = 1000.

We first consider the theoretical predictions. The op-
timal excitation is given by (13) and is here equal to
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ropt(t) = 0.5033cos(ω†t + φ) with an arbitrary phase shift
φ and with ω† = 1.8903 rad/s. The frequency ω† can
be determined by inspection of the frequency response
of |Fr(ω)|2/L(ω) or, alternatively, via straightforward but
tedious algebraic manipulations leading to the expression
ω† = arccos

[
1− (1−θ0)

2

2βθ0

√
β (β +αa2

1)
]
. The cost of the

identification corresponding to this identification is equal to
Jopt = 0.4580.
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Fig. 2. Optimal excitation spectra for M = 10 (red), M = 25 (green), M = 50
(blue), and M = 75 (purple). The black vertical line is the analytical optimal
spectrum. The parameter values for the simulations are θ0 = 0.45, N = 200,
a1 = 10, σ2

e = 4.0, and Radm = 1000. Observe that when M is increased,
the numerical spectra converge to the analytical solution.

We will compare this optimal excitation with the excitation
that we obtain via convex optimization. As already men-
tioned, the least costly problem is usually solved numerically
using convex optimization. Although other parameterizations
are possible, we use the following class of power spectra
in this convex optimization [2]: Φr(ω) = ∑

M
k=−M cke−iωk,

where c−k = ck are to-be-determined coefficients and M the
order. Note that, for finite M, this class does not contain
all possible spectra and, in particular, does not contain the
optimal spectra (11).

We have solved the least-costly problem in this example
using this numerical routine for different values of M, i.e.,
M = {10,25,50,75}. The obtained spectra are depicted in
Figure 2 and we observe that, for small values of M, the
obtained spectra are relatively far from the optimal one which
is a Dirac pulse at ω† = 1.8903 rad/s. This discrepancy
is also observed in the optimal identification cost that are
respectively given by Jopt = {0.4601,0.4584,0.4581,0.4580}
for these four values of M. We see that only for the large
values of M the cost converges to the optimal one, i.e., the
one obtained with the sinusoid excitation.

We now compare the closed-loop setting and the open-
loop setting. Recall that, for open-loop identification, the
identification cost is defined by (21). The optimal excitation
signal is here ropt

OL (t) = 0.5273cos(ω†t + φ) with the same
frequency ω† as in the closed-loop case, but with another
amplitude. Since the controller reduces the effects of the
disturbance on the output and given the relation (24), the
optimal open-loop experiment leads to a signal y with a
higher variance that the optimal closed-loop experiment, c.f.

(24). The differences are not striking because Radm >> R0,
as observed from (22). However, if Radm is chosen equal
to 1.1R0, the differences between the open-loop and closed-
loop settings are much larger. Note that the relation (24) and
fO/C = 1

1−R0/Radm
only hold since (6) is of the form L (ω) =

Lin(ω)|S(ω)|2. To illustrate this, as a last experiment, we
change the objective/cost function to L (ω) = 1∀ω (i.e.
the experiment cost is thus now solely the power of the
excitation signal). All parameter values are kept as defined
above (Radm = 1000). The fraction of costs (22) is now
fO/C = 0.843, indicating that an open-loop experiment is
cheaper than a closed-loop one.

VI. CONCLUSIONS

We have calculated the excitation signal that is required to
identify a uni-parametric linear system with the least-costly
framework. This enabled us to address several fundamental
questions about the shape of optimal signal and the cost of
the identification experiment.

We have shown, among other things, that for an ob-
jective function linear in the power spectrum, the solution
is a sinusoid with a unique frequency and amplitude, and
what determines these. Using this solution, it is shown that
for L (ω) ∝ |S(ω)|2, the optimal excitation frequency is
identical for a system being in an open or a closed loop,
and that for this case a closed-loop experiment is always
cheaper than an open-loop one. We also proved that the
optimal frequency is only different, location-wise, for the
to-be-identified parameter residing in solely one position in
the numerator or denominator. This is, however, not true if
the parameter appears at multiple positions.

Lastly, a case study illustrates some of the theoretical
insights.
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