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Abstract— We present a novel optimal experiment design
method that is applicable to linear time-invariant systems
regulated by unknown, nonlinear and implicitly-defined con-
trollers. Current methods require an explicit expression for the
controller in order to construct the optimal excitation spectrum.
Consequently, these are limited to linearly-controlled systems.
The identification scheme suggested in this paper circumvents
the aforementioned requirement by ensuring that the excitation
signal remains unnoticed by the controller, i.e., the identification
data is gathered in an open-loop fashion.
Our theoretical analysis is complemented with a numerical
study on a six-parameter, single-input single-output linear
system controlled by an MPC. We find that our method
generates least-costly excitation signals which deliver identified
models that lie close to the true system whilst honoring quality
constraints, validating the novel optimal experiment design
framework.

I. INTRODUCTION

In optimal identification experiment design, the excitation
signal used during an identification experiment is designed
to either maximize the accuracy of the to-be-identified model
under some constraints on the cost of the identification [1],
[2] or, conversely, to obtain a given accuracy at minimal
cost [3]. Generally, the accuracy of the identified model is
measured in terms of the inverse of the covariance matrix,
P−1
θ , of the identified parameter vector. This matrix is a

function of the spectrum Φr of the excitation signal r.
We consider here least-costly experiment design [3].

Hence, the optimal experiment design problem is formulated
as determining the excitation spectrum minimizing the cost
of the identification experiment whilst guaranteeing that
P−1
θ � Radm, with Radm a matrix corresponding to the

minimal accuracy required for the use of the model (e.g.
for control purpose). There exist different techniques to
construct the matrix Radm (see e.g. [4], [5]).

We restrict to optimal experiment design for direct
closed-loop identification. Direct closed-loop identification
[6] is an identification technique that allows to determine a
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model of a real-life system G0 (the so-called true system)
when this true system is operated in closed loop. The
procedure is as follows: an excitation signal r is added e.g.
at the output of the controller for a given amount of time,
during which the corresponding input and output of the
true system are collected. The model of the true system is
subsequently determined by minimizing the power of the
prediction error computed with this data. The procedure
delivers a consistent model of the true system provided
some conditions are met (the strongest condition being
that a full-order model structure is used). An advantage
of this identification technique is that the procedure does
not require the knowledge of the controller present in the
loop during the identification experiment, and can thus be
applied to systems with any type of stabilizing controllers
(e.g. implicit, piece-wise linear, and nonlinear).

Unfortunately, this property does not hold for the optimal
design of a direct closed-loop identification experiment [3].
In order to solve the experiment design problem using the
convex optimization techniques of [3], an affine relation
must exist between the decision variable Φr and P−1

θ .
Such a relation only exists if the controller is linear and
explicitly expressed as a transfer function C(z). Moreover,
the transfer function must be known. In this paper, we
extend the framework presented in [3] so that the optimal
excitation spectrum Φr can also be determined when the
controller in the loop is unknown, implicit, or nonlinear.

To this end, we modify the feedback mechanism during
the identification experiment in such a way that the (possibly
unknown, implicit or nonlinear) controller does not see the
excitation signal. If this is the case, the signal r is applied
in an open-loop fashion to the to-be-identified system G0

and the dependence of P−1
θ on Φr becomes independent of

the expression of the controller. It enables to determine the
optimal spectrum Φr using convex optimization techniques
even though the true system is operated by an unknown,
implicit or nonlinear controller. For the above property to
hold, we will show that the feedback signal to the controller
should be changed to y − G0r. Evidently, this scheme
requires the knowledge of the unknown system G0. We
thus propose to replace G0 by an initial estimate Gid of G0

such as is generally done in optimal experiment design to
circumvent the so-called chicken and egg problem (i.e. the
fact that Pθ is dependent on the unknown system G0).

The paper is organized as follows. In Section II we
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Fig. 1. Schematic overview of the true closed-loop system.

introduce the direct method. We restrict to SISO notation for
ease of notation, but note that generalization to multiple-input
multiple-output (MIMO) systems is straightforward. Section
III explains the current limitation of optimal experiment
design and introduces our novel identification method. Our
method is further elaborated in Section IV, where we show
its applicability to nonlinear controllers. The framework
is then tested on a SISO example in Section V. Finally,
conclusions are drawn in Section VI.

II. DIRECT CLOSED-LOOP IDENTIFICATION WITH A
KNOWN LINEAR CONTROLLER

We will first consider the case of a linear controller. We
then consider a linear time-invariant true system S, operated
in closed loop with a linear controller C(z), consisting of
output y(t) ∈ R and input u(t) ∈ R,

y(t) = G(z, θ0)u(t) +H(z, θ0)e(t), (1)
u(t) = r(t)− C(z)y(t). (2)

Here, θ0 ∈ Rn is the unknown true parameter vector with
dim(θ0) = n, e(t) ∈ R is white noise with variance σ2

e ;
G(z, θ0) = G0 and H(z, θ0) = H0 are stable, discrete-
time transfer matrices. Furthermore, H(z, θ0) is monic and
minimum-phase. Lastly, we assume that G0 or C(z) has one
delay.

As can be seen in (2) (see also Fig. 1), the closed-
loop system is excited via an external signal r(t) ∈
R that is added to the output uC(t) = −Cy of
the controller. Applying the excitation signal r(t) for
t = {0, . . . , N − 1} to the system and measuring the
signals ZN = {u(t), y(t) | t = 0, . . . , N − 1}, a model{
G(z, θ̂N ), H(z, θ̂N )

}
of the true system can be iden-

tified. The parameter vector θ̂N is defined as θ̂N =
arg minθ Vid(θ), with

Vid(θ) =
1

N

N−1∑
t=0

ε2(t, θ), (3)

where ε(t, θ) = H−1(z, θ) [y(t)−G(z, θ)u(t)] is the pre-
diction error. Throughout this paper, we assume that r is
sufficiently exciting and that the model has been identified
in a model structure M containing the true system (1)-(2),
i.e., S ∈ M. In this way, the parameter vector θ̂N identified
with (3) will be asymptotically normally distributed around
the true parameter vector θ0. Hence, we have for N → ∞

that θ̂N → N (θ0, Pθ), with Pθ a strictly positive definite
matrix given by

Pθ =
σ2
e

N

(
E

[(
∂ε(t, θ)

∂θ
|θ0
)(

∂ε(t, θ)

∂θ
|θ0
)T])−1

(4)

that can be estimated from θ̂N and ZN [6].
Alternatively, in the frequency domain, the inverse of Pθ

is of the form:

P−1
θ =

N

2πσ2
e

∫ π

−π

[
Fr(e

iω, θ0)Fr(e
iω, θ0)∗Φr(ω)

+Fv(e
iω, θ0)Fv(e

iω, θ0)∗σ2
e

]
dω, (5)

with Fr(z, θ0) = S
H0

ΛG(z, θ0), Fv(z, θ0) =
ΛH(z,θ0)

H0
− C(z)SΛG(z, θ0), S = (1 + C(z)G0)−1 the

sensitivity function of the closed-loop system (G0, C(z)),
ΛG = ∂G

∂θ |θ0 , ΛH = ∂H
∂θ |θ0 , and Φr(ω) is the spectrum of

the excitation signal.

The purpose of least-costly experiment design is to de-
velop an excitation signal (or spectrum) that disturbs the
process in a minimal way, whilst guaranteeing user-imposed
constraints on the quality of the to-be-identified model.

Mathematically, we wish to solve the problem

min
Φr(ω)

Identification cost (6)

subject to P−1
θ � Radm,

where P−1
θ is as defined in (5) and Radm a matrix corre-

sponding to the minimal accuracy required for the use of the
to-be-identified model. This matrix is computed numerically,
see [4] for details. The above optimization problem can be
reformulated into a Linear Matrix Inequality (LMI) problem,
linear in the decision variable Φr, which can be numerically
solved.

A few comments are in order. First of all, we do not
exactly know σ2

e and θ0, so these should be replaced by some
estimates. Secondly, the decision variable Φr(ω) has infinite
dimension (since ω is continuous). We therefore parameterize
the spectrum such that the LMI problem becomes tractable
by writing the the excitation spectrum as [3]

Φr(ω) =

m∑
k=−m

cre
iωr ≥ 0 ∀ω, (7)

where cr = c−r, r = 0 . . . ,m are now the decision
variables.

Observe that in order to solve the LMI problem, the
expression of C(z) needs to be known and be explicit.
Indeed, the terms Fr(e

iω, θ0) and Fv(e
iω, θ0) require a

closed-form expression of the controller C(z). Therefore,
closed-loop least-costly experiment design is only possible
in this way when the controller is linear, time-invariant, and
known.
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Fig. 2. Schematic overview of the stealth identification set up for a closed-
loop system with a linear (possibly implicit or unknown) controller.

III. EXPERIMENT DESIGN WITH UNKNOWN AND
IMPLICIT LINEAR CONTROLLERS

We now present a novel least-costly identification method
to allow for unknown and implicit linear controllers, see Fig.
2. The idea is to ensure that the excitation signal r(t) is
not noticed by the controller, i.e., r(t) affects the system in
an open-loop fashion. Notice that the feedback term to the
controller is adjusted from y(t) to y(t) − Gidr(t), where
Gid is an initial estimate of G0. In the case Gid = G0 the
controller does not sense the excitation signal at all.

The input and output signals are, for any Gid, given by

u(t) = ur + ue =
1 + CGid
1 + CG0

r(t)− CH0

1 + CG0
e(t),

y(t) = yr + ye

= G0
1 + CGid
1 + CG0

r(t) +
H0

1 + CG0
e(t), (8)

where ye(t) and ue(t) are the output and input signals that
are generated by the closed loop (G0, H0, C(z)) without the
presence of the excitation signal r(t) (if Gid = 0, r remains
in the equations).

Let us now use these equations to find the expression of
the inverse of the covariance matrix P−1

θ of a parameter
vector identified using (3) with the data set ZN = {y, u}
given by (8). The prediction error becomes

ε(t, θ) = H−1(z, θ)(y(t)−G(z, θ)u(t)) (9)
= H−1(z, θ)(yr(t)−G(z, θ)r(t))

+ H−1(z, θ)(ye(t)−G(z, θ)ue(t))

= εr(t, θ) + εe(t, θ),

where εe(t, θ) is the prediction error that would be obtained
if ∀t, r(t) = 0. We will give explicit expressions of both
terms below.

Since εe(t, θ) is independent of r(t), the inverse of the
covariance matrix can be expressed (via (4) and Parseval’s
theorem) as

P−1
θ = Mr +Me, (10)

with Mr a matrix that is affine in the excitation spectrum
Φr and Me the matrix corresponding to the term εe(t, θ).
Matrix Me is easily evaluated by simulating the system with
r(t) = 0∀ t, gathering the data ZN = {y, u} and identifying

the system. The resulting covariance matrix is Me. We stress
that (8) - (10) hold for any Gid.

If we now restrict to Gid = G0, the matrix Mr is
computed as

N

σ2
e

1

2π

∫ π

−π
F̄r(e

iω)F̄r(e
iω)∗Φr(ω) dω, (11)

with F̄r(z) = ΛG(z,θ0)
H0

(which can be obtained by using
(8) with Gid = G0 and the expression (4)). This is the
contribution of the excitation signal r to the quality of the
parameter vector of the to-be identified model. Notice that
this expression is not a function of the controller anymore.
To perform optimal experiment design of Φr, we will
suppose that Gid = G0 and solve (6) with the expressions
(9) - (11) for P−1

θ .

The actual identification experiment can now be started.
We use the direct method as explained in the previous
section. We excite the true system represented in Fig. 2 (with
Gid = G0) with the signal r(t) that was computed from (6),
and gather the data ZN = {y, u}. We then identify θ̂N with
(3).

A. Convergence and Consistency

The stealth identification scheme delivers consistent es-
timates of the true system, even when Gid 6= G0. We
summarize the result in the following theorem. We will use
the notations in [6] and refer to theorems therein.

Theorem 1: Assume that the true system S is operated
as in Fig. 2 and that the considered closed loop is sta-
ble (condition D1 in [6]). Consider a model set M :=
{G(z, θ), H(z, θ)} that contains the true system, i.e., S ∈
M. Furthermore, we assume that our dataset ZN is suffi-
ciently informative w.r.t. M, that there is a delay in either
the controller or in both G0(z) and G(z, θ), and that the
system is globally identifiable at θ0.

Then the stealth identification scheme yields a consistent
estimate of the true parameter vector θ0, even when Gid 6=
G0.

Proof: Under the above assumptions, we have (cf.
Theorem 8.2 in [6]) that θ̂N → Dc w.p. 1 as N → ∞,
where

Dc = arg min
θ
V̄ (θ) =

{
θ | V̄ (θ) = min

θ′
V̄ (θ′)

}
,

with

V̄ (θ) = Ē
1

2
ε2(t, θ).

The set Dc contains all parameter vectors θ∗ that minimize
the quadratic criterion. For consistency, we now need to
prove that the set Dc only contains the true parameter θ0, i.e.
Dc = {θ0}. In other words, that θ0 is the unique minimizer
of the quadratic criterion (cf. Theorem 8.3 in [6]).
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Fig. 3. Schematic overview of the stealth identification scheme for
nonlinear controllers.

To this end, we substitute Eqs. (8) into (9) and obtain

ε(t, θ) =
G0(z)−G(z, θ)

H(z, θ)

(
1 + CGid
1 + CG0

)
r(t)

+
H0(z)

H(z, θ)

(
1 + CG(z, θ)

1 + CG0

)
e(t), (12)

where the first and the second term on the r.h.s. are respec-
tively εr(t, θ) and εe(t, θ) (cf. (9)).

Using the assumption on the presence of a delay in either
C(z) or in both G(z, θ) and G0, the power of ε reaches its
minimum at θ = θ0. It is furthermore a unique minimizer
due to the assumption of an informative data set.
We note that the proof also holds for other minimization
criteria. Please see [6] for details. Notice that when Gid =
0 the prediction error (12) reduces to the expression one
would have obtained from the direct method for a closed-
loop system. Furthermore, when Gid = G0, we see that the
first term on the r.h.s. becomes H−1(z, θ)(G0−G(z, θ)r(t)).
This term is now equivalent to the one which would have
been obtained with identification of an open-loop system.

IV. EXPERIMENT DESIGN WITH (IMPLICIT) NONLINEAR
AND MPC CONTROLLERS

As the previous section showed, the stealth identification
scheme enables least-costly experiment design. However, we
only considered the concept for systems regulated by an
LTI controller. In this section, we continue the theoretical
analysis of the scheme by generalizing to (possibly implicit
or unknown) nonlinear controllers, see Fig. 3.

To this end, we first adapt Eqs. (8) to incorporate various
nonlinear controllers:

u(t) = ur + ur,e = r(t) + f(y −Gidr),
y(t) = yr(t) + yr,e(t)

= G0r(t) +G0f(y −Gidr) +H0e(t), (13)

with yr,e = G0f(y−Gidr)+H0e(t), and where we suppose
that f(·) completely describes the dynamics of the controller.
Observe that it is a function of y, Gid and r. Furthermore,
we define ye(t) and ue(t) = f(y − G0r) = f(ye) as the
output and input signals that are generated by the closed
loop (G0, H0, f) shown in Fig. 3 without the presence of
the excitation signal r(t).

The expression for the prediction error in the nonlinear
case becomes (cf. (9))

ε(t, θ) = H−1(z, θ)(y(t)−G(z, θ)u(t))

= H−1(z, θ)(yr + yr,e −G(z, θ)(ur + ur,e))

= εr(t, θ) + εr,e(t, θ) (14)

with εr,e = H−1(yr,e − G(z, θ)ur,e). Indeed, substituting
Eqs. (13) into (14) gives

ε(t, θ) =
G0(z)−G(z, θ)

H(z, θ)
(r + f(y −Gidr)) +

H0(z)

H(z, θ)
e(t),

showing that the first term on the r.h.s. is εr(t, θ) and the
latter two define εr,e(t, θ).

In the case where Gid = G0 the above equation reduces
to

ε(t, θ) =
G0 −G(z, θ)

H(z, θ)
(r + ue) +

H0

H(z, θ)
e(t)

= εr(t, θ) + εe(t, θ), (15)

since, by definition, ue = f(y−G0r) = f(ye). We find that
εe(t, θ) is now independent of r, so the covariance matrix
can be written as an affine function of Φr (cf. (10)-(11)).

Contrary to the linear case discussed in the previous
section, the inverse of the covariance matrix is now no longer
affine in the excitation spectrum Φr(ω) for all Gid, due to the
nonlinear nature of the controller. The underlying reason is
that in the linear case we could make use of the superposition
principle to obtain closed-form expressions for u(t) and y(t),
which are not available in the nonlinear case.

An affine relation is, however, obtained when Gid = G0.
For this particular case it holds that f(y−G0r) = f(ye) = ue
as feedback term, and the expression for the prediction error
then becomes εr + εe, as in the linear case.

We now give heuristic arguments that show that for
nonlinear controllers a consistent estimate is also achieved
with the stealth identification scheme. The main difference
between the linear and nonlinear case is that no closed-
form expressions for u(t) and y(t) exist. Fortunately, one
is still able to prove consistence without much difficulty.
The consistency result for the linear case can be extended
to a nonlinear controller under the same assumptions (see
Theorem 1). In particular, the loop shown in Fig. 4 should
be exponentially stable, see [7] for details. The form of the
prediction error (14) clearly shows that θ = θ0 minimizes
ε(t, θ) for all t.

The least-costly framework can thus also be applied to
nonlinearly-controlled systems. The identification experi-
ment that follows after construction the excitation signal r(t)
is equivalent to the one in the linear case. In practice, one
assumes that Gid = G0 and then computed the optimal
excitation spectrum stipulated above.

729



A. Remarks for model predictive control
An MPC controller computes the optimal control strategy

for future inputs u(t), u(t+ 1), . . . , u(t+Nu) by recur-
sively solving a finite-time horizon control problem at each
time instant. However, for each instant in time, only the input
for the next time instance is applied to the system. This is
called the receding horizon strategy [8]. An MPC controller
is thus implicit and time-varying. Furthermore, constraints
are imposed on the input and the output of the system.

By fooling the MPC with the stealth identification method,
constraints will be respected for the signals ue and ye (i.e.
input and output without excitation), but not necessarily for
u and y (input and output during excitation). After having
determined the excitation signal r(t), the constraints for the
MPC can be adapted so that we are sure that u(t) = r(t) +
ue(t) satisfies the constraints. Another option is to saturate
r(t) as follows.

Suppose that the optimal spectrum can be realized by a
signal ropt(t) (the time-domain solution of (6)) and that we
have the following constraint on u(t) : u(t) ≤ |umax|. Once
the MPC has computed its input uMPC(t) at time t, the
component r(t) added to time t is given by

r(t) =


ropt(t) if |uMPC(t) + ropt(t)| ≤ umax,
umax − uMPC if uMPC(t) + ropt(t) > umax,

−umax − uMPC if uMPC(t) + ropt(t) < −umax.
A similar approach can be used for the output. Enforcing
this type of saturation decreases the information contents in
the data. However, by extending the experiment time, one
can compensate for this loss and ensure P−1

θ � Radm.

We now summarize some differences in stealth identifi-
cation between linear and nonlinear controllers. Firstly, we
recall that in the linear case an affine relation exists between
Φr and P−1

θ for any Gid, but in the nonlinear case only when
Gid = G0. This has the following implications.

For a linear, explicit and known controller, the novel
least-costly framework can produce excitation signals that
minimize the identification cost whilst honoring P−1

θ �
Radm for any Gid (in such cases, P−1

θ will also be a function
of Gid). The ability to find excitation signals in this way
might prove beneficial for applications wherein the controller
should not be disturbed (too much). This can, however, not
be accomplished for known, explicit nonlinear controllers for
Gid 6= G0 as P−1

θ is not affine in Φr.
Lastly, we consider the case when the (linear or nonlinear)

controller is unknown or implicitly defined. In order to solve
the optimization problem, one requires Gid = G0, such that
P−1
θ becomes independent of the controller. In practice, we

replace θ0 by some estimate θcom and assume Gid = G0 in
the optimization problem in order to solve it. The constraint
P−1
θ � Radm or the minimal identification cost could,

however, not be met in this case. This should be investigated.

V. NUMERICAL STUDY

In this section we test the stealth identification framework
on a SISO system regulated by a model predictive controller.

We verify whether the least-costly framework can indeed
yield models that obey Pθ � Radm for Gid = G0 as well as
Gid 6= G0.

A. Simulation set-up

We consider a data-generating system (1)-(2) embedded in
a Box-Jenkins (BJ) model structure M =

{
M(θ), θ ∈ R6

}
.

The family of models M(θ) in this structure is given by
G(z, θ) = θ1z

−1+θ2z
−2

1+θ5z−1+θ6z−2 and H(z, θ) = 1+θ3z
−1

1+θ4z−1 . A white-
noise signal e(t) with variance σ2

e = 0.5 is added through
the filter H(z, θ0), yielding v = H(z, θ0)e(t). The noise
realization e(t) is fixed for all four experiments during a
Monte Carlo step in order to compare results. At each new
Monte Carlo step a new white-noise signal is randomly
generated. The true system is defined as S0 = M(θ0), where
θ0 = [0.5, 0, 0, −0.6, −0.6, 0.8]T .

B. MPC algorithm

The data-generating system (1)-(2) is operated in closed
loop with an MPC controller based on our commissioning
model (Gcom, Hcom), which lies in the model structure M,
where θcom = [0.15, 0.05, 0.92, 0.92, −0.30, 0.71]T . We
denote this controller by C(Gcom).

The MPC is tuned so that we get sufficient performance
for the commissioning model (Gcom, Hcom). The MPC has
a prediction horizon of Ny = 40 and a control horizon of
Nu = 20. The output variable y has a weight of Q = 1.0,
and the input a weight of R = 0.1. The constraint on the
input u is −3 ≤ u ≤ 3, but are reduced to −2.5 ≤ u ≤ 2.5
to allow excitation. There are no constraints on the output.

C. Optimal Experiment Design parameters

As identification cost (6) we use

Pyr + Pr =
1

2π

∫ π

−π
(Φyr + Φr) dω, (16)

where Pyr and Pr are the power of yr = G0r and of
r(t), respectively. The optimal cost is an output of the LMI
algorithm. The matrix Radm =

γH(θ0)χ2
α(n)

2 , with α = 0.99,
γ = 400, and the Hessian H(θ0). We refer to [4], [5] for
details on how to compute Radm.

Following (6), we minimize the identification cost (16)
subject to the constraint

P−1
θ = Mr +Me � Radm, (17)

The matrix Me is estimated using (4) with r(t) = 0 during
the entire simulation (in closed loop) with a length of
N = 10000. Hence, the optimal excitation spectrum Φr is
computed such that Mr � Radm −Me.

D. Results

The optimal experiment design algorithm (6) for the
identification cost (16) yields an excitation spectrum shown
in Fig. 4. We computed all terms in (6) by substituting
θ0 = θcom since in reality, we don’t know the true system
beforehand.
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Fig. 4. Optimal excitation spectrum Φr(ω) used in experiments 1 and 2.

Experiment 1 2 3 4
104||θ̂N − θ0||2 2.45 8.28 4.15 2.95

λmin(P−1
θ −Radm) 267 174 -3003 -3029

103
∫

(∆B) 3.5 4.4 10.3 4.9

TABLE I
THE DIFFERENT MEASURES CALCULATED FOR FOUR TYPES OF

EXPERIMENTS.

We compare different identified models with various
measures, see Table I. The values in this table are averages
over 250 Monte Carlo simulations. The first row in the
table shows the average mean-square error of the identified
parameter vector compared with the true vector θ0. The
second row shows the averaged minimal eigenvalue λmin
of the matrix P−1

θ − Radm. When this value is negative, it
means that the condition P−1

θ � Radm is not met. The last
row shows the integrated difference between the magnitude
of the transfer function G0 and the one obtained from the
experiment, i.e., 20

∫ π
−π(log |G(jω)| − log |G0(jω)|)dω.

This integral is indicated by
∫

∆B in the table.

We now describe the experiments.
1) Experiment 1: The first identification was done with

Gid = G0. This is the situation in which the controller will
not notice the excitation signal. The excitation spectrum is
shown in Fig. 4. A good model is found that satisfies P−1

θ �
Radm with a low identification cost.

2) Experiment 2: The second experiment had Gid =
Gcom, i.e., the model available at commissioning was used.
The excitation spectrum is equal to that of experiment 1.
Again, a good model is found that satisfies P−1

θ � Radm
with a low identification cost.

3) Experiment 3: We use Gid = Gcom but now excite
the system using a reference signal r having a white-noise
spectrum with variance equal to the one of experiments 1
and 2. Note that a consistent model is found, but that the

requirement P−1
θ � Radm has not been met.

4) Experiment 4: Finally, we perform a white-noise ex-
citation with a spectrum equal to that of experiment 3, but
take Gid = 0. Again, we find a consistent model but we do
not meet the accuracy requirements for the parameter vector
that was imposed as a design constraint.

From the table, we conclude that the least-costly signals
deliver precise models of the true system satisfying
P−1
θ � Radm. The converse holds for the white-noise

experiments. These models deliver a consistent parameter,
but do not satisfy the model accuracy requirements.

VI. CONCLUSIONS

We have presented a novel experiment design method
that is applicable to nonlinearly-controlled LTI systems. It
generalizes current methods which are only applicable to
LTI systems regulated by known, explicit linear controllers.
This is achieved by modifying the feedback mechanism
during the identification experiment in such a way that the
(possibly unknown, implicit or nonlinear) controller does not
see the excitation signal. We prove that this new identification
scheme yields consistent estimates of the true system.

Our numerical results show that least-costly identification
for nonlinear controllers result in identified models that
obey user-defined criteria for parameter certainty (even when
Gid 6= G0). However, our method currently doesn’t support
an attractive way to deal with input constraints. This raises
the question as to how one can compensate for the infor-
mation loss that occurs when signals saturate (cf. Section
IV)?

More theoretical and numerical analysis is required. From
a theoretical point of view, a natural question to ask is: What
conditions on Gid 6= G0 are required such that we still
minimize the identification error, and honor the constraint
P−1
θ � Radm? Our findings seem to suggest that this is

possible for Gid not very far from G0.
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