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Abstract— In order to identify a specific system (module) of
interest embedded in a dynamic network, one typically has
to formulate a multi-input single-output (MISO) identification
problem which requires to identify all modules in the MISO
structure, and determine their model order. While the former
task poses the problem of estimating a large number of
parameters that are of no interest to the experimenter, the
latter task may result computationally challenging in large-size
networks. To avoid these issues and increase the accuracy of
the identified module of interest, we use regularized kernel-
based methods. Keeping a parametric model for the module
of interest, we model the impulse response of the remaining
modules in the MISO structure as zero mean Gaussian vectors
with covariance matrix (kernel) given by the first-order stable
spline kernel, accounting also for the noise model affecting
the output of the target model. Using an Empirical Bayes
(EB) approach, the target-module parameters are estimated by
maximizing the marginal likelihood of the module output. The
related optimization problem is solved using the Expectation-
Maximization (EM) algorithm. Numerical experiments illus-
trate the potentials of the introduced method in comparison
with the state-of-the-art techniques for local identification.

I. INTRODUCTION

In recent years increasing attention has been devoted by
the system identification community to the identification of
dynamic networks. Within a large body of literature in this
topic, we can distinguish three main research treads. The first
one concerns detection of the network topology [16], [5],
[12]. The second research tread focuses on the identification
of the full network dynamics [11], [24], [23], [25], while
the third studies the identification of a specific component
(usually referred to as a module) of the network; under
the assumption of known topology, the identification of a
target module in a dynamic network is discussed in [21],
[7], [13]. In these contributions, classic methods for closed-
loop identification such as the direct method [14] and the
two-stage method [22], are generalized to a dynamic network
framework. The setting of the aforementioned contributions
is generalized in [6], where also sensor noise affecting the
measurements is considered. In [10], a method known as si-
multaneous minimization of the prediction error is introduced
to identify a specific module in a dynamic network with only
sensor noise. The method is extended to a Bayesian setting
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in [9], where regularized kernel-based methods are used to
reduce the mean-square error of the identified target module.

Using a reasoning similar to [9], in this paper we aim at
improving the performance of the direct method for dynamic
networks introduced in [21]. In that work it was shown that,
in order to identify a given module of interest, we have to
formulate a multi-input single-output (MISO) identification
problem where the modules entering the MISO structure
correspond to the modules of the network sharing the same
output with the module of interest (see Sec. III-A for details).
This implies that, to avoid possible bias in the parameter
estimates, one has to identify all the modules constituting the
MISO structure, bringing in the problem a possibly very high
number of parameters to be estimated that are of no interest
to the experimenter. In addition to it, it may be required to
select the number of parameters of each of these additional
modules using complexity criteria such as AIC, BIC, or cross
validation [14]. If the number of modules is high, one may
have to test a huge combination of candidate model orders,
making model order selection a computationally infeasible
step (e.g., for 5 modules with FIR model structure and orders
from 1 to 5, one has to test 55 possible combinations).

To avoid model order selection issues and reduce the num-
ber of nuisance parameters in local module identification, we
introduce a novel identification method based on regularized
nonparametric kernel-based methods (see [19] for a survey
on this subject). Considering known topology, we keep a
parametric model for the module of interest in order to have
an accurate description of its dynamics. As for the remaining
modules of the MISO structure, we model their impulse
responses as zero mean Gaussian processes. The covariance
matrix (usually called a kernel) is given by the first-order
stable spline kernel [4], [19], which encodes stability and
smoothness of the processes. We also incorporate the process
noise model indirectly through the impulse response model-
ing. The setup is different from [5], where all the modules
are modeled as Gaussian processes.

Using this approach, we obtain a Gaussian probabilistic
description that depends on a vector of parameters η contain-
ing the parameters of the module of interest, the variance of
the noise, and the hyperparamaters characterizing the stable
spline kernel. Therefore, by estimating η we can obtain the
parameters of interest. To accomplish this task, we use an
Empirical Bayes (EB) approach [15], where η is estimated by
maximizing the marginal likelihood of the data. The solution
of the problem is obtained by using an iterative scheme based
on the Expectation-Maximization (EM) method [8], which
turns out computationally attractive. Numerical experiments
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on a simple dynamic network show the potentials of the
developed method in comparison with the direct method and
the two-stage method.

II. PROBLEM STATEMENT

Following the setting of [21], we consider a dynamic
network that is built up of L measurable internal variables
or nodes wj(t), j = 1, . . . , L. The dynamic network can be
defined by the equation (time and frequency dependence is
omitted below),
w1

w2

...
wL

 =


0 G0

12 . . . G0
1L

G0
21 0 . . . G0

2L
...

. . . . . .
...

G0
L1 G0

L2 . . . 0



w1

w2

...
wL

+


r1
r2
...
rL

+


v1
v2
...
vL


= G0(q)w(t) + r(t) + v(t)

(1)

In this equation,
• q−1 is the delay operator i.e. q−1u(t) = u(t− 1);
• G0

ji(q) is a strictly proper rational transfer function for
j = 1, . . . , L and i = 1, . . . , L;

• vj(t) is unmeasured process noise entering node wj(t).
It is a realization of a stationary stochastic process rep-
resented by vj(t) = H0

j (q)ej(t), with ej(t) a Gaussian
white noise process with unknown variance σ2

j and
H0
j (q) a monic, stable and minimum phase filter;

• rj(t) is a measured external reference signal entering
node wj(t). In some nodes, it may be absent.

The following assumptions are made on the considered
dynamic network.

Assumption 1: The dynamic network is stable, i.e. (I −
G0(q))−1 is stable, and well posed (see [21] for details).

Assumption 2: The process noise vj(t) entering the node
wj(t) is uncorrelated with the process noise entering any
other node of the network.

We assume that we have collected N measurements of the
internal variables {wk(t)}Nt=1, k = 1, . . . , L, and that we are
interested in building a model of the module directly linking
node i to node j, that is G0

ji(q), using these measurements.
To this end, we choose a parameterization of G0

ji(q), denoted
as Gji(q, θ), that describes the dynamics of the module of
interest for a certain parameter vector θ0 ∈ Rnθ .

III. THE DEVELOPED IDENTIFICATION TECHNIQUE

In this section we describe the developed method for
identification of module G0

ji(q).

A. The standard direct method

Following the above definition of a dynamic network, the
node signal wj(t) follows the equation

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (2)

where Nj is the set of indices of internal variables wk(t)
(k 6= j and G0

jk(q) 6= 0) that have direct causal connections
with wj(t). The above equation represents a MISO structure

and is the starting point of the methodology presented in this
paper, which is based on extending the direct method [21].
We construct the one-step ahead predictor [14] of wj(t):

ŵj(t|t− 1; θ) =
(
1− (H0

j )−1(q)
)
wj(t) + (H0

j )−1(q)Gji(q, θ)wi(t)

+ (H0
j )−1(q)

( ∑
k∈Nj\{i}

G0
jk(q)wk(t) + rj(t)

)
which is a function of the parameter vector θ entering the
target module G0

ji(q). In the standard direct method for
dynamic networks [21], all the modules G0

jk(q), k ∈ Nj ,
and the noise model H0

j (q), are suitably parameterized with
additional parameters. The parameter vector of interest θ
is identified by minimizing the prediction error εj(t) =
wj(t)− ŵj(t|t− 1; θ). We note that in this formulation, the
prediction error depends also on the additional parameters
entering the remaining modules and the noise model, which
need to be identified to guarantee consistent estimates of θ.
Therefore, the total number of parameters may grow large if
the cardinality of Nj is large, with a detrimental effect on
the variance of the estimate of θ in the case where N is not
very large.

B. The direct method meets the Empirical Bayes approach

We now discuss how to use regularized kernel-based
methods to avoid parameterization of the additional modules
in the MISO structure. We define the following quantities:

S0
j (q) := 1− (H0

j )−1(q) , S0
jk(q) := (H0

j )−1Gjk(q) ,

where k ∈ {Nj}\i. Considering the parameterization of
G0
ji(q), Eq. (2) can be re-written as

wj(t) = S0
j (q)wj(t) + (1− S0

j (q))(Gji(q, θ)wi(t) + rj(t))

+
∑

k∈Nj\{i}

S0
jk(q)wk(t) + ej(t) (3)

Next, we consider a time-domain description of the module
dynamics. Our goal is to obtain a vector description of
the network dynamics for the available N measurements.
Since H0

j (q) is monic, proper and has a stable inverse, then
(H0

j )−1(q) is also monic, proper and stable. The impulse
response of (H0

j )−1(q) is represented as

(H0
j )−1(q) = h̃j(0) +

∞∑
d=1

h̃j(d)q−d (4)

where h̃j(0) = 1. Similarly, the impulse response of S0
j (q)

is represented as S0
j (q) =

∑∞
d=1 sj(d)q−d, and the impulse

response of the target module is written as Gji(q, θ) =∑∞
d=1 gji(d, θ)q

−d. For notation purposes, we consider the
first N samples of gji(d, θ) and collect them in the N -
dimensional vector gji (which will also depend on θ, al-
though we will keep this dependence tacit). Similarly, we
define the vector sjk, k ∈ {Nj}\i, and sj as the vectors
containing the first l coefficients of the impulse responses of
S0
jk(q), k ∈ {Nj}\i, and S0

j (q), respectively. The integer l
is chosen large enough to ensure sjk(l + 1), sj(l + 1) ' 0.

Next, we introduce a vector notation for the node wj(t):

wj :=
[
wj(1) . . . wj(N)

]T
, (5)

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 57th IEEE Conference on Decision and Control.
Received March 20, 2018.



and we denote by Wk ∈ RN×l the Toeplitz matrix of
the vector wk :=

[
0 wk(1) . . . wk(N − 1)

]T
, k ∈

{Nj ∪ j}\{i} and Wi ∈ RN×N the Toeplitz matrix of the
vector wi :=

[
0 wi(1) . . . wi(N − 1)

]T
. Similarly, we

denote by W̄i ∈ RN×l the Toeplitz matrix of the vector
w̄i :=

[
0 0 −wi(1) . . . −wi(N − 2)

]T
, and by Gji

the Toeplitz of gji. Without loss of generality, we can assume
rj(t) = 0 for the sake of brevity. With the above notations in
place, we can rewrite the network dynamics in the following
vector form:

wj = W̃sj +Wigji +
∑

k∈Nj\{i}

Wksk + ej , (6)

where W̃ := Wj +GjiW̄i and ej is the vectorized noise.
Having set a convenient notation for the network dy-

namics, we now discuss in details our modeling strategy.
Our goal is to limit the number of parameters necessary to
describe wj in (6), in order to increase the accuracy of the
estimated parameter vector of interest θ. Therefore, while we
keep a parametric model for gij , for the remaining impulse
responses in (6) we use nonparametric models induced by
Gaussian processes [20]. The choice of Gaussian processes
is motivated by the fact that, with a suitable choice of the
prior covariance matrix, we can get a significance reduction
in the variance of the estimated impulse responses [19].
Therefore, we model sj and sk, k ∈ Nj\{i}, as independent1

Gaussian processes (vectors in this case) with zero-mean.
The covariance matrix of these vectors, usually referred to
as a kernel in this context, is chosen to be corresponding to
the so-called First-order Stable Spline kernel. The general
structure of this kernel is given by

[Kβ ]x,y = λβmax(x,y) , (7)

where βj ∈ [0, 1) is a hyperparameter that regulates the
decay velocity of the realizations of the corresponding Gaus-
sian vector, while λ ≥ 0 tunes their amplitude. The choice of
this kernel is motivated by the fact that it enforces enjoyable
properties such as stability and smoothness in the estimated
impulse responses [17], [18]. Therefore, we have that

sj ∼ N (0, λjKβj) (8)

sk ∼ N (0, λkKβk) , k ∈ Nj\{i}, (9)

where we have assigned different hyperparameters to the
impulse response priors to guarantee flexible enough models.

We define

s :=
[
s>j sk

>
1 sk

>
2 . . . sk

>
p

]>
, (10)

where k1, . . . , kp are the elements of the set Nj\{i}, and

W :=
[
W̃ Wk1 Wk2 . . . Wkp

]
, (11)

1It is clear that these impulse responses share some common dynamics
given by the pre-multiplication with the inverse of the noise model Hj(q).
However, for computational purposes it is convenient to treat the impulse re-
sponses as independent. Furthermore, incorporating the mutual dependence
through a suitable choice of prior distribution seems a non-trivial problem
that deserves a thorough analysis that is outside the scope of this paper.

K := diag{λjKβj , λk1Kβk1
, . . . , λkpKβkp} (12)

Using the above, we can rewrite (6) in compact form as

wj = Ws+Wigji + ej . (13)

Having assumed a Gaussian distribution of the noise, we can
write the joint probabilistic description of s and wj , which
is jointly Gaussian, as:

p

([
s
wj

]
; η

)
∼ N

([
0

Wigji

]
,

[
K KW>

WK P

])
, (14)

where

P := σ2
j IN+W̃λjKβjW̃+

∑
k∈Nj\{i}

WkλkKβkWk
>. (15)

We note that this pdf depends upon the vector of parameters

η :=
[
θ λj λk1 . . . λkp βj βk1 . . . βkp σ2

j

]
,

which contains the parameter vector of the target module,
the hyperparameters of the kernels of the impulse response
models of the other modules, and the variance of the noise
corrupting wj(t). Therefore, we focus on the estimation of
η, since it contains the parameter of interest θ. To this end,
we apply an Empirical Bayes (EB) approach. We consider
the marginal pdf of wj , which is obtained by integrating out
the dependence on s and which corresponds to

p(wj ; η) ∼ N (Wigji,P). (16)

Then, the estimate of η is obtained by maximizing the
marginal likelihood of wj , namely

η̂ = arg max
η

p(wj ; η)

= arg min
η

log detP +
(
wj −Wigji

)>
P−1

(
wj −Wigji

)
(17)

Solving this optimization problem can be a cumbersome task,
because it is nonlinear. In the next section, we study how to
solve the marginal likelihood problem through a dedicated
iterative scheme.

IV. SOLVING THE MARGINAL LIKELIHOOD ESTIMATION

In this section we focus on solving the problem in (17).
We use an iterative solution scheme through the EM algo-
rithm. To do so, we first have to define a latent variable
whose estimation simplifies the computation of the marginal
likelihood. In our case, a natural choice is s. Then, the EM
algorithm iterates among the following two steps:
• E-Step: Given an estimate η̂(n) computed at the nth

iteration, compute

Q(n)(η) = E[log p(wj , s; η)] , (18)

which is the expected value of the joint log-likelihood
of wj and s with respect to the posterior p(s|wj ; η̂(n));

• M-Step: Update η̂ by solving

η̂(n+1) = arg max
η

Q(n)(η) . (19)
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Iterating among the above steps, convergence to a stationary
point of the marginal likelihood is ensured [3]. Clearly, we
get an advantage from using the EM algorithm if repetitively
solving (19) is significantly easier than solving the original
marginal likelihood problem (17). In the following subsec-
tions, we show that this is indeed the case.

A. Computation of E-step

First we focus on the E-step. The posterior distribution of
s given wj and an estimate of η is Gaussian and corresponds
to (see also [1]),

p(s|wj ; η) ∼ N
(
C(wj −Wigji),Ps

)
(20)

where

Ps =

(
W>W

σ2
j

+ K−1

)−1
C =

PsW
>

σ2
j

.

Let ŝ(n) and P̂
(n)
s be the posterior mean and covariance of

s obtained from (20) using η̂(n). We define

Ŝ(n) := P̂(n)
s + ŝ(n)ŝ(n)>,

and consider its l × l diagonal blocks, which we denote
by Ŝ

(n)
j , Ŝ

(n)
k1
, . . . , Ŝ

(n)
kp

, respectively. These submatrices
correspond to the posterior second moments of the estimated
impulse responses ŝ(n)j ,ŝ(n)k1

, . . . , ŝ
(n)
kp

.
The following lemma provides the structure of the function

Q(n)(η) for the particular situation of our setup in (17).
Lemma 1: Let η̂(n) be the estimate of η at nth iteration

of the EM algorithm. Then

Q(n)(η) = Q
(n)
0 (σ2

j , θ) +
∑

k∈{Nj∪j}\{i}

Qs
(n)
k (λk, βk) (21)

where

Q(n)
o (σ2

j , θ) =−N log(σ2
j )− 1

σ2
j

[
w>j wj − 2w>j Wigji+

g>jiW
>
i Wigji − 2w>j Wŝ(n) + 2g>jiW

>
i Wŝ(n)

+ tr
(
W>WŜ(n)

)]
,

(22)

Qs
(n)
k (λk, βk) =− log det(λkKβk)− tr

(
(λkKβk)

−1
Ŝ
(n)
k

)
.

(23)

�
The proof is reported in the Appendix. It is seen that the
function Q(n)(η) is the summation of several terms that
depend on different components of the vector η. In particular,
we have a term of the type Qs

(n)
k (λk, βk) for each module in

the MISO structure, and a term Q
(n)
0 (σ2

j , θ) for the module
of interest and the noise variance. Therefore, the update of η
splits into a number of independent and smaller optimization
problems.

B. Computation of M-step

We now focus on the M-step. From (21), it is evident that
the each kernel hyperparameters can be updated indepen-
dently of the rest of the parameters. The following theorem,
first introduced in [2] and [9], shows how to update the kernel
hyperparameters.

Theorem 1: Define

Qβ
(n)
k (βk) = log det(Kβk) + l log

(
tr
(
(Kβk)

−1
Ŝ
(n)
k

))
(24)

for k ∈ {Nj ∪ j}\i. Then,

β̂k
(n+1)

= arg min
βk∈[0,1)

Qβ
(n)
k (βk); (25)

λ̂k
(n+1)

=
1

l
tr
(
(K

β̂
(n+1)
k

)
−1

Ŝ
(n)
k

)
(26)

�
The proof is reported in the Appendix. We note that from
(26) we get closed form solutions for all λk, k ∈ {Nj∪j}\i,
while the βk, k ∈ {Nj ∪ j}\i, can be updated by solving
scalar optimization problems in domain [0, 1), as detailed in
(25). Therefore, the hyperparameters update turns out to be
a computationally fast operation.

We now turn our attention to θ and σ2
j . We notice that the

optimum with respect to θ does not depend on the optimal
value of σ2

j . Then, we can first update θ and then use its
optimal value to update σ2

j . How to update of θ is explained
in the following theorem.

Theorem 2: The parameter vector θ are updated by solv-
ing the nonlinear least-squares problem

θ̂(n+1) = arg min
θ

[
g>jiÂ

(n)gji − 2b̂(n)>gji

]
, (27)

where Â(n) and b(n) are computed using the current esti-
mates ŝ(n) and η̂(n). �

The proof is reported in the Appendix. Therefore, the
parameter vector of the target module is updated by solving
a (generally) nonlinear least-squares problem given by (27).
If gji is linearly parameterized with θ (e.g. in case of FIR
models), the above problem becomes quadratic and a closed-
form solution is achieved. That is, if gji = Mθ where
M ∈ RN×nθ , then

θ̂(n+1) =
(
M>Â(n)M

)−1
M>b̂(n). (28)

We are left with updating σ2
j . This is done in the following

statement.
Theorem 3: Let ĝ(n+1)

ji , Ŵ(n+1) be constructed by insert-
ing θ̂(n+1) in the general expression of gji and W. Then

(σ̂2
j )(n+1) =

1

N

[
‖wj −Wiĝ

(n+1)
ji ‖

2

2
− 2w>j Ŵ

(n+1)ŝ(n)+

2ĝ
(n+1)>
ji W>i Ŵ(n+1)ŝ(n) + tr

(
Ŵ(n+1)>Ŵ(n+1)Ŝ(n)

)]
�

The proof is reported in the appendix. Thus, a closed form
solution for the noise variance is also obtained.
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All-in-all, we have obtained a fast iterative procedure that
provides a local solution to the marginal likelihood problem
(17). Except for θ that requires solving a nonlinear optimiza-
tion problem at each iteration, all the updates follow simple
rules that allow for fast iterative computation. Algorithm 1
summarizes the steps to follow to obtain η̂ and therefore
θ̂. The initialization can be done by randomly choosing η

Algorithm 1 Algorithm for local identification in dynamic
networks
Input: {wk(t)}Nt=1, k = 1, . . . , p
Output: θ̂

1) Set n = 0, Initialize η̂(0).
2) Compute P̂

(n)
s , Ĉ(n), Ŝ(n) and ŝ(n).

3) Update hyperparameters β̂k
(n+1)

and λ̂k
(n+1)

using
(25) and (26) respectively for all k ∈ {Nj ∪ j}\{i}.

4) Update θ̂(n+1) by solving (27).
5) Update σ̂2(n+1)

j as in Theorem 3.
6) Set η̂(n+1)

= [ θ̂(n+1) λ̂j
(n+1)

λ̂k
(n+1)
1 ... λ̂k

(n+1)
p

β̂j
(n+1)

β̂k
(n+1)
1 ... β̂k

(n+1)
p σ̂

2(n+1)
j ]>

7) Set n = n+ 1.
8) Repeat from steps (2) to (7) until convergence.

considering the constraints of hyperparameters. The conver-
gence criterion for the algorithm depend on the value of
‖η̂(n)−η̂(n−1)‖
‖η̂(n−1)‖ . This value should be small for convergence

so that the algorithm can be terminated. A value of 10−9 is
considered for the numerical experiment in Sec. V.

V. NUMERICAL EXPERIMENTS

Numerical experiments are performed to evaluate the
performance of the developed method, which we abbreviate
as Empirical Bayes Direct Method (EBDM). To this end, the
EBDM is compared with the standard direct method and the
two-stage method (see [21] for details). The comparison is
made on the dynamic network depicted in Fig. 1. The goal
is to identify G0

31(q). The network modules are given by

G0
31 =

q−1 + 0.05q−2

1 + q−1 + 0.6q−2
=

b01q
−1 + b02q

−2

1 + a01q
−1 + a02q

−2

G0
32 =

−0.367q−1 − 0.063q−2 + 0.02q−3 + 0.005q−4

1− 0.895q−1 − 0.104q−2 + 0.052q−3 + 0.011q−4
;

G0
34 =

1.184q−1 − 0.647q−2 + 0.151q−3 − 0.082q−4

1− 0.8q−1 + 0.279q−2 − 0.048q−3 + 0.01q−4
;

G0
14 = G0

21 =
0.4q−1 − 0.5q−2

1 + 0.3q−1
;H0

1 =
1

1 + 0.2q−1
;

G0
12 = G0

23 =
0.4q−1 + 0.5q−2

1 + 0.3q−1
;H0

2 =
1

1 + 0.3q−1

H0
3 =

1− 0.505q−1 + 0.155q−2 − 0.01q−3

1− 0.729q−1 + 0.236q−2 − 0.019q−3
;H0

4 = 1

We run 50 independent Monte Carlo experiments where
the data is generated using known reference signals r2(t) and
r4(t) that are realizations of white noise with unit variance.
The number of data samples is N = 500. The noise sources

G21w1G14w4 w2 G32 w3

r4 r2

G12 G23

G34

H4

G31

H2H1 H3e2

e4 e1 e3

Fig. 1. Network example with 4 internal nodes, 2 reference signals and a
noise sources at each node.
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Fig. 2. Box plot of the fit of the impulse response of Ĝ31 obtained by the
Two-stage method, Direct method and proposed method. Number of data
samples used for estimation is N = 500.

e1(t), e2(t), e3(t) and e4(t) have variance 0.05, 0.08, 1, 0.1,
respectively. We assume that we know the model order of
G0

31(q). In the case of direct method, we solve a 3-input/1-
output MISO identification problem with w1(t), w2(t) and
w4(t) as inputs. In the two-stage method, the projection
of the three inputs on external signals r1(t) and r2(t) are
used as inputs to the MISO identification problem. For both
these methods, we consider the case where the model order
selection of all the modules in the MISO structure (except
for the target module) is required, and the case where the
model orders are known. Moreover, in order to improve the
accuracy of the identified module in the two-stage method,
we identify the noise model even though it is not necessary.

The box plots of the fits of the impulse response of G31(q)
are shown in Fig. 2, where we have compared the two-stage
method with true model orders (’TS+TO’), the direct method
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Fig. 3. Bias and standard deviation of each parameter obtained from 50
MC simulations using different identification methods.
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with true model orders and model orders selected via BIC
(’DM+TO’ and ’DM+MOS’, respectively), and the Empirical
Bayes Direct Method (’EBDM’). As for the latter, we choose
l = 100. It can be noted that in this setup the EBDM
achieves better fit than the classic methods. Fig. 3 shows
the mean and standard deviation of the parameter estimates
of G31. It is evident that the EBDM gives a smaller bias and
a greatly reduced variance compared to the other considered
identification methods. The reduction in variance is attributed
to the regularization approach used in this method. Consid-
ering a relatively small sized network with 3 modules in
the MISO structure, the developed method proves effective.
When the size of the network grows, the results of the direct
method may deteriorate further due to increase in variance;
furthermore, it is expected that in large networks the model
order selection step contributes to inaccurate results. Thus
the EBDM, by offering reduced variance and circumventing
the problem of model order selection, can stand out as an
effective local module identification method in large dynamic
networks.

VI. CONCLUSIONS

An effective regularized kernel-based approach for local
module identification in large dynamic networks has been
introduced in this paper. The introduced method (EBDM)
circumvents the model order selection step for all the mod-
ules that are not of primary interest to the experimenter, but
still need to be identified in order to get a consistent estimate
of the target module. Furthermore, by using regularized
nonparametric methods, the number of parameters to be
estimated is greatly reduced, with a clear benefit in terms of
mean square error of the estimated target module. Numerical
experiments performed with a dynamic network example
illustrate the potentials of the developed method on com-
parison with the already available methods. The developed
method provides better estimates and a reduced variance is
observed in the identified model due to the integration of the
regularization approach in the method.
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APPENDIX

A. Proof of Lemma 1

Using the Bayes’ rule the expression in Eq. (18) can be
written as,

Q(n)(η) = E[log p(wj |sj , sjk1, sjk2, . . . , sjkp; η)]

+ E[log p(sj ; η) + log p(sjk1; η) + · · ·+ log p(sjkp; η)]

(29)

Q(n)(η) = E[A] + E[B] (30)

A := −N
2

log(2π)− N

2
log(σ2

j )−
1

2σ2
j

(wj −Wigji −Ws)>(wj −Wigji −Ws)
(31)
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B := − l
2

log(2π)− 1

2
log[det(λjKβj)]−

1

2
sj
>(λjKβj)

−1
sj

+
∑

k∈Nj\{i}

[
− l

2
log(2π)− 1

2
log[det(λkKβk)]

− 1

2
sjk
>(λkKβk)

−1
sjk

]
(32)

Taking Expectation of each element in A and B with respect
to p(s|wj ; η̂(n)) (i.e. Ep(s|wj ;η̂(n))) we get,

E[A] = −N
2

log(2π)− N

2
log(σ2

j )− 1

2σ2
j

[
w>j wj − g>jiW>i wj

− E[s>]W>wj − w>j Wigji + g>jiW
>
i Wigji+

E[s>]W>Wigji − w>j WE[s] + g>jiW
>
i WE[s]

+ tr(W>WE[ss>])

]
(33)

E[B] = − l
2

log(2π)− 1

2
log[det(λjKβj)]−

1

2
tr
(
(λjKβj)

−1E[sjsj
>]
)

+
∑

k∈Nj\{i}

[
− l

2
log(2π)− 1

2
log[det(λkKβk)]

− 1

2
tr
(
(λkKβk)

−1E[sjksjk
>]
)]

(34)

The constants can be removed from the objective functions
and multiplication with scalar value 2 can be done to simplify
the objective function. On substituting the expected values
E[ss>] = Ŝ(n), E[sjksjk

>] = Ŝ
(n)
k , E[sjsj

>] = Ŝ
(n)
j and

E[s] = ŝ(n) we get the statement of the Lemma.

B. Proof of Theorem 1

The proof follows the procedure used in [2]. We partially
differentiate (23) with respect to λk and get the λ∗k expression
for which the derivative is zero. Substituting this λ∗k in (23)
we get the expression for (24) using which we obtain β̂(n+1)

k .
Equation (26) is the expression of λ∗k after substituting
β̂
(n+1)
k .

C. Proof of Theorem 2

In order to find θ̂(n), σ2
j is fixed to σ̂2(n)

j and substituted
in Eq. (22). After substitution the terms that are independent
of θ can be removed from the objective function since it
becomes a constant. Then we get,

Q(n)
o (θ, σ̂

2(n)
j ) = constant −

1

σ̂
2(n)
j

[
− 2w>j Wŝ(n) + tr

(
W>WŜ(n)

)
− 2w>j Wigji + g>jiW

>
i Wigji + 2g>jiW

>
i Wŝ(n)

]
.

(35)

We know introduce the following notation. Let D1 ∈ RN2×N

and D2 ∈ RN2×N are two matrices such that, for any vector
w ∈ RN , D1w = vec(W ), where W is the Toeplitz matrix

of w, and D2w = vec(W>). Let us define s̆(n) ∈ RN be
a vector such that, if N ≤ l, s̆(n) is the vector of first N
elements of ŝ(n) and if N > l, s̆(n) is a vector with the first
l elements equal to ŝ(n) and the remaining ones equal to 0.
Let S̆(n), W̆i ∈ RN×N be the Toeplitz matrix of ŝ(n) and
w̄i respectively. Then

X =
[
Wj Wk1 Wk2 . . . Wkp

]
, Ŷ(n) = S̆(n)W̆i

and
Z =

[
W̄i 0 0 . . . 0

]
∈ RN×(p+1)l.

We can re-write the following terms, Wŝ(n) = X ŝ(n) +

GjiW̄iŝ
(n)
j = X ŝ(n) + Ŷ(n)gji and W = X + GjiZ .

Therefore,

θ̂(n+1)

= arg max
θ

[
2w>j Wŝ(n) − tr

(
W>WŜ(n)

)
+ 2w>j Wigji − g>jiW>i Wigji − 2g>jiW

>
i Wŝ(n)

]
= arg max

θ

[
2w>j X ŝ(n) + 2w>j Ŷ(n)gji − tr

(
XX>Ŝ(n)

)
− tr

(
Z>G>jiX Ŝ(n)

)
− tr

(
X>GjiZŜ(n)

)
− tr

(
Z>G>jiGjiZŜ(n)

)
+ 2w>j Wigji − g>jiW>i Wigji

− 2g>jiW
>
i X ŝ(n) − 2g>jiW

>
i Ŷ(n)gji

]
Neglecting constant terms we get,

θ̂(n+1) =

= arg max
θ

[
2w>j Ŷ(n)gji − tr

(
X Ŝ(n)Z>G>ji

)
−

tr
(
ZŜ(n)X>Gji

)
− tr

(
GjiZŜ(n)Z>G>ji

)
+ 2w>j Wigji

− g>jiW>i Wigji − 2ŝ(n)>X>Wigji − 2g>jiW
>
i Ŷ(n)gji

]
= arg max

θ

[
2w>j Ŷ(n)gji − vec(ZŜ(n)>X>)>D2gji−

vec(X Ŝ(n)>Z>)>D1gji − g>jiD>1 (ZŜ(n)Z> ⊗ IN )D1gji

+ 2w>j Wigji − g>jiW>i Wigji − 2ŝ(n)>X>Wigji

− 2g>jiW
>
i Ŷ(n)gji

]
.

Defining

Â(n) = [W>i Wi +D>1 (ZŜ(n)Z> ⊗ IN )D1 + 2W>i Ŷ(n)]

and

b̂(n) =
[
w>j Wi + w>j Ŷ(n) − ŝ(n)>X>Wi

− 1

2
vec(ZŜ(n)>X>)>D2 −

1

2
vec(X Ŝ(n)>Z>)>D1

]>
,

we get the statement of the theorem.

D. Proof of Theorem 3

In order to find σ̂2(n)
j , θ is fixed to θ̂(n+1) and substituted

in Eq. (22). After substitution, Q(n)
o (σ2

j , θ̂
(n+1)) is differen-

tiated w.r.t. σ2
j and equated to zero to the theorem statement.
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