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Abstract5

We are concerned with the efficiency of stochastic gradient estimation methods for solv-6

ing large-scale nonlinear optimization problems in the presence of uncertainty. These7

techniques aim to estimate an approximate gradient from a limited number of random8

control vector samples and the corresponding objective function values. Ensemble meth-9

ods usually employ Gaussian sampling to generate the control samples. It is known from10

optimal design theory that the quality of sample-based approximations is affected by the11

distribution of the samples. We investigate if optimal sampling designs lead to improved12

gradient estimates, and subsequently to improved performance of the optimization pro-13

cess. We apply six different sampling strategies to optimization of a high-dimensional14

analytical benchmark problem, and, in a second example, to optimization of oil reser-15

voir management strategies with and without geological uncertainty. The effectiveness of16

the sampling strategies is analyzed based on the quality of the estimated gradient, the17

final objective function value, the rate of convergence and the robustness of the gradient18

estimate. We find that UE(s2) sampling strategies motivated by optimal design theory19

for supersaturated cases outperform all alternative approaches, including quasi-random20

sampling and LHS designs. We also introduce two new strategies that outperform the21

UE(s2) designs previously suggested in the literature.22

Introduction23

A continuous increase over recent decades in computing power, accompanied by improve-24

ments in numerical algorithms, has led to increasing use of simulation models to obtain25

optimal operating strategies for complex systems. Simulation of these models may be26

very computationally demanding and will therefore require highly efficient numerical op-27

timization workflows. One domain in which computational demands are continuously28

challenging the efficiency of optimization workflows is the management of subsurface (e.g.29
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oil) reservoirs. This problem can be characterized by large-scale multiphase and compo-30

sitional flow models, high-dimensional control spaces, and by large geological, economical31

and operational uncertainty. The presence of significant uncertainty, even after years of32

data gathering, motivates the optimization of the expected vale of the objective function,33

an approach that is sometimes referred to as robust optimization (Van Essen et al., 2009).34

Controls may include the number of wells to be drilled (10-100’s), their locations and35

trajectories, the drilling order, the well type (injector or producer) as well as operational36

controls such as well rates or pressures over a period of several years. The total number37

of variables to be optimized can easily be in the order of 1000’s. Gradient-based methods38

have been shown to be the most efficient techniques to find optimal solutions for these39

complex problems (Brouwer and Jansen (2004), Sarma et al. (2008), Jansen et al. (2008)40

and Van den Hof et al. (2009)). In many practical cases of interest the types of controls41

(e.g. integer or categorical) and lack of access to the numeric model code prevents use of42

efficient gradient estimation by means of the adjoint method.43

In such scenarios approximate gradient methods that require a limited number of44

test simulations with perturbed controls as input have been proven to be quite useful.45

An advantage of this approach is that it treats the model as a black box, and therefore46

offers great flexibility in terms of the type of controls that can be considered. The main47

challenge associated with this approach is to ensure that the approximate gradients are48

accurate enough to enable sufficient increases in the objective function at reasonable49

computational cost. Since test simulations can be performed in parallel (assuming the50

availability of a parallel computing facility), this challenge translates into choosing the51

control perturbation set (ensemble) in such a way that the gradients can be estimated52

with minimal error.53

Various methods exist for gradient approximation. Deterministic methods include fi-54

nite differences and the simplex gradient (Custodio and Vicente, 2007), both of which55

are computationally unattractive for large numbers of controls since they require as many56

perturbation tests runs as there are controls. Stochastic approaches based on a limited57

number of random perturbations include Simultaneous Perturbation Stochastic Approx-58

imation (SPSA) (Spall, 1992) and Stochastic Noise Reaction (SNR) (Okano and Koda,59

2003), both of which are based on averaging, and Ensemble Optimization (EnOpt) (Chen,60

2008) and a modified version coined Stochastic Simplex Approximate Gradient (StoSAG)61

(Fonseca et al. (2014); Fonseca et al. (2016)), which are both based on least-squares lin-62

ear regression. Do and Reynolds (2013) discussed the relationship between some of these63

methods in a deterministic context.64

The sampling strategy (distribution) used to generate the ensemble of controls is ex-65

tremely important but has received little attention in the literature. In Fonseca et al.66

(2015a) the impact of ensemble size on the quality of the ensemble gradient was investi-67

gated for the Rosenbrock function and for an oil reservoir model. It was also shown that68

the perturbation size (the standard deviation of a multivariate Gaussian distribution) has69

a significant impact on the gradient quality. A method to adaptively adjust the perturba-70

tion size through Covariance Matrix Adaptation (CMA) was suggested by Fonseca et al.71

(2015b) and was called CMA-EnOpt. Sarma and Chen (2014) investigated the impact72
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of a quasi-random sampling method (Sobol sampling, Niederreiter (1988)) that avoids73

clustering of samples on SNR gradient estimates. They found Sobol sampling to lead to a74

faster rate of convergence relative to Gaussian sampling when applied to a deterministic75

reservoir optimization problem. The performance of Sobol sampling strategies in a robust76

optimization context was not investigated.77

Considering that the number of controls (N) for the problems of interest will nor-78

mally be much larger than the feasible number of test simulations (M) we will be dealing79

here exclusively with the underdetermined (supersaturated) case. Specifically we will ad-80

dress the question which sampling strategy for the supersaturated case leads to optimal81

performance of eapproximate gradient estimation methods within large-scale nonlinear82

optimization problems under uncertainty. We investigate three categories of sampling:83

quasi-random (low-discrepancy) sequences, stratified sampling, and sampling designs mo-84

tivated by optimality criteria. All sampling methods are applied in combination with the85

StoSAG gradient estimation method.86

In the remainder of this paper, we first provide a brief review of ensemble optimization87

for both deterministic and robust cases in Section 2, followed by a discussion of the various88

sampling strategies used in this paper (Sobol sampling, Latin Hypercube Sampling (LHS),89

UE(s2) - optimal supersaturated design) and the motivation for considering them in90

Section 3. Here we also introduce two new variants of UE(s2) - optimal supersaturated91

design. Finally in Section 4 the sampling strategies are applied in conjunction with the92

StoSAG method first to the extended Rosenbrock optimization test function (Dixon and93

Mills, 1994) and subsequently to a synthethic 3D reservoir model of realistic complexity94

(for both deterministic and robust cases) followed by a detailed analysis.95

Ensemble-based gradient estimation96

Chen (2008) proposed a stochastic gradient estimation method for use within an ensemble-97

based optimization workflow referred to as EnOpt. Modified versions for determin-98

istic and robust optimization problems were suggested by Do and Reynolds (2013)99

and Fonseca et al. (2014) respectively. A discussion of approximation errors associ-100

ated with the original and modified versions was presented by Fonseca et al. (2016).101

They also coined the acronym Stochastic Simplex Approximate Gradient (StoSAG) for102

the modified version to highlight the relationship with the Simplex gradient (Kelly,103

1999). While the Simplex gradient estimation method is a full-rank deterministic104

method, the StoSAG method is a low-rank stochastic method based on random per-105

turbations. With low-rank we mean that the estmation typically involves fewer equa-106

tions than unknowns. Consider the objective function J(u,m) of the control vector107

u = [u1, . . . , uN ]T and of model parameter vector m. Given an ensemble of control108

perturbation vectors U = [δu1 . . . δuM ]T and corresponding objective function values109

anomalies j = [J(u + δu1,m) − J(u,m), . . . , J(u + δuM ,m) − J(u,m)]T a first-order110

Taylor expansion of J around u leads to the linear system of equations111

Ug ≈ j , (1)
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from which we wish to estimate the gradient g. Here it was assumed that the objective112

function can be evaluated using a single model with known parameters m. If the model113

is considered uncertain, one may choose to define an expected objective function J(u) =114

1
M

∑M
i=1 J(u,mi) instead. It can be shown (Fonseca et al., 2016) that in this case the115

expected gradient g can be estimated by solving a single system like Eq. (1) with j116

replaced by j̃ = [J(u+ δu1,m1)− J(u,m1), . . . , J(u+ δuM ,mM)− J(u,mM)]T,117

Ug ≈ j̃ . (2)

In the following we will refer to the optimization problem corresponding to Eq. (1) as118

deterministic, and to the case corresponding to Eq. (2) as robust optimization. The normal119

equations can be formulated by pre-multiplying with UT, leading for the deterministic120

case to121

UTU g ≈ UT j . (3)

The matrix UTU has dimension N × N . Since the number of perturbations M that we122

can afford to evaluate (i.e. the number of equations) is typically less than N , the number123

of controls, the N × N matrix UTU is rank deficient and its inverse does not exist. A124

unique solution is normally obtained by imposing a minimum norm constraint and can125

be computed from the generalized pseudoinverse as126

ĝ = U †j = (UTU)†UT j . (4)

It was shown in Stordal et al. (2016) that if {zi}Mi=1 with zi = u + δui = ui is an i.i.d.
sample from the multivariate Gaussian density N (u,Cu), the ensemble gradient (4) has
the following convergence property (in the almost sure sense) for M →∞

ĝ = (UTU)†UTj = (
1

M
UTU )†

1

M

M∑
i=1

(zi − u)(J(zi)− J(u)) (5)

a.s.→ C−1u

∫
(J(z)− J(u)) (z − u) N (z|u,Cu)dz (6)

=

∫
J(z) ∇uN (z|u,Cu)dz (7)

In other words, the ensemble gradient (4) is a Monte Carlo (i.e. random sampling-based)127

approximation of a probability-weighted integral of the function values J(ui) over all128

possible values of ui. The convergence properties of such an approximation will depend129

strongly on the chosen sampling strategy (Caflisch, 1998).130

Sampling strategies131

In the context of estimation, the matrix U is known as the design matrix and the matrix132

S = (UTU ) as the information matrix. The choice for a set of samples is that for133

a particular design and can be motivated by the desired statistical properties of the134
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solution of Eq. (4). These properties generally depend on properties of the matrix S135

or, equivalently, of its inverse, known as the dispersion matrix, and lead to a number of136

optimality criteria which will be discussed later in this section. If M ≥ N and the rank of137

U is equal to or greater than N , the solution Eq. (4) is the best linear unbiased estimator138

(BLUE) and has variance proportional to S−1. In the case that M < N , which is most139

relevant here, the solution (4) is the minimum bias estimator. If M = N and the elements140

Sij = 0 for all i 6= j, the design is called orthogonal.141

Random sampling142

Random sampling (or Monte-Carlo sampling) is the conventional approach to generate143

control perturbations for ensemble-base gradient estimation. A generic approach to gen-144

erating samples is to obtain random combinations of basis vectors that are obtained by145

factorization of a perturbation covariance matrix Cu, for example by Cholesky decompo-146

sition, Cu = LTL, such that δui = L ri, where ri is a number from a pseudo-random147

sequence as can be generated by random number generators available with any computer148

code. The standard distribution used for ensemble gradient estimation is the Gaussian149

distribution, i.e. r ∝ N (0,Cu). If perturbations are uncorrelated, Cu = σ2 IN . In some150

cases, for example when the controls represent long time series discretized in short in-151

tervals (typical for the oil reservoir well control problem), a regularized solution may be152

obtained by imposing time correlation between subsequent controls. In this case Cu will153

be a block-diagonal matrix.154

Quasi Monte-Carlo sampling155

We have already seen that the ensemble gradient estimation is equivalent with a Monte-156

Carlo integration (also known as quadrature). The Quasi Monte-Carlo (QMC) method157

(Morokoff and Caflisch, 1995) is an alternative to the Monte-Carlo (MC) method for158

calculating this approximation using quasi-random (deterministic) sequences with higher159

convergence rate than obtained with (pseudo) random sequences. The improved con-160

vergence originates from the uniformity of the quasi-random sampling distribution. The161

uniformity is quantified by the discrepancy which measures the relative density of sam-162

ples in each sub-volume of the half-open unit cube. Low-discrepancy sequences have163

good uniformity properties (Caflisch, 1998) Examples of low-discrepancy quasi-random164

sequences are the Sobol, Halton and Fraure sequences. More detailed discussion of quasi-165

random sequences and their properties is provided by e.g. Niederreiter (1978). Given166

their low-discrepancy properties, which avoid clustering of samples in sub-volumes, they167

are good candidates for generating space-filling designs (Caflisch, 1998). In this work we168

will present results obtained with the Sobol sequence which tends to produce lower corre-169

lations in high dimensions than Halton sampling (Morokoff and Caflisch (1995); Cavazzuti170

(2013)). Successful application of Sobol sequences in problems of dimension 300 have171

been reported in the literature (Paskov and Traub, 1995).172
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Stratified sampling173

A number of approaches that directly address the error variance of the Monte Carlo174

estimate are discussed in Caflisch (1998). Stratification is a variance reduction technique175

that, like low-discrepancy sampling, attempts to avoid the clustering of samples. Latin176

Hypercube Sampling (LHS) (McKay et al., 1979) is perhaps the best known stratified177

sampling method that is suitable for higher dimensions and settings where M < N (Owen,178

2013). LHS divides the input (design) space equally into M strata (sub-domains), an179

arrangement known as Latin squares, and places a sample randomly in each stratum.180

McKay et al. (1979) and Owen (1997) provide theoretical reasoning to show that LHS181

can be much better than MC sampling and it cannot be much worse. However, Diego et al.182

(2016) report that LHS methods may produce clustering of samples in high dimensions.183

Figure 1 shows examples of Gaussian and Uniform (pseudo) random, quasi-random184

(Sobol), and stratified (LHS) sample distributions for a simple 2-control example and 100185

samples, that is N = 2 and M = 100. While this different from the M < N case of186

interest, the figure serves as a simple illustration of the motivation for considering sample187

distributions other than Gaussian. In order to enable comparison of the sample spread188

the standard deviation was normalized to 1 in both directions for all four distributions.189

Gaussian sampling produces relatively dense sampling around the center, as expected.190

LHS appears to produce sampling distributions that are very similar to uniform sampling,191

at least for the case M > N , with some clustering and under-sampled intervals. Sobol192

sampling can be seen to produce a uniform space filling sample distribution.193

Optimal supersaturated designs194

The theory of Design of Experiments (DOE) distinguishes saturated (M = N) and non-195

saturated (M > N) designs. It furthermore defines a number of design criteria and196

techniques to obtain designs that satisfy these criteria. Here we are interested primar-197

ily in designs for the supersaturated case based on the E(s2) criterion which defines an198

approximate orthogonality measure (Booth and Cox, 1962). An extension, the so-called199

UE(s2)-optimal supersaturated designs (Jones and Majumdar, 2014) add an effective200

design optimality criterion (D-optimality).201

For a supersaturated design, the information matrix S becomes rank deficient and202

hence its inverse does not exist. A natural approach in this case is to find a design that203

is nearly orthogonal, that is, the design in which the absolute values of the off-diagonal204

elements of the matrix S are small in some sense. Booth and Cox (1962) suggested two205

alternative approaches to obtain near-orthogonal designs. The first is to choose a design206

with minimum maxi6=j|sij| and among all such designs to choose one with the fewest sij207

that achieve this maximum. The second approach is to choose a design in which the sum208

of the squares of the off-diagonal elements is minimum, that is, a design that minimizes209

E(s2) =
2

(N − 1)(N − 2)

∑
i<j

s2ij , (8)

6

Page 6 of 21

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review Only
-2 -1 0 1 2

-2

-1

0

1

2

(a)

-2 -1 0 1 2
-2

-1

0

1

2

(b)

-2 -1 0 1 2
-2

-1

0

1

2

(c)

-2 -1 0 1 2
-2

-1

0

1

2

(d)

Figure 1: Example of 2D sample distributions with standard deviation 1. (a) Gaussian, (b)
Uniform, (c) Sobol, (d) LHS.

which is called the E(s2) criterion. A design is E(s2)-optimal if it satisfies the following210

conditions:211

1. s1j = 0 ∀j = 2, ..., N212

2. among all those designs that satisfy 1, the design should minimize E(s2) given in213

Eq. (8).214

This design is called an E(s2)-optimal, or near-orthogonal, supersaturated design. There215

are various methods for construction of E(s2)-optimal supersaturated designs (Gilmour,216

2006), but we will consider only the methods using Hadamard matrices (Lin (1993); Wu217

(1993)).218

Optimal designs are experimental designs for which the solution of the estimator satis-219

fies particular statistical optimality criteria. Generally, these statistical criteria are formu-220

lated in terms of the (generalized) variance of the solution, for example, minimum trace221

of the covariance of ĝ (A-optimality), minimum maximum eigenvalue of the covariance222

of ĝ (E-optimality), or minimum product of non-zero eigenvalues of the covariance of ĝ223

(D-optimality) (de Aguiar et al., 1995). The E(s2) design can be made more theoretically224

strong and efficient by adding such traditional design optimality criteria. UE(s2)-optimal225

design are designs for the supersaturated case that are near-orthogonal but exchange226

the first constraint above for D-optimality. UE(s2)-optimal supersaturated designs could227
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therefore be described as producing minimum bias minimum variance estimates. For de-228

tails about algorithms for their construction from Hadamard matrices we refer to Jones229

and Majumdar (2014). A brief summary of the general procedure and variants is provided230

here.231

A Hadamard matrix H ∈ RN×N is a square matrix whose columns are orthogonal to232

each other and for which holds that HHT = HTH = N IN where IN is the identity233

matrix of size N × N . It consists of elements ±1 and it is generally available for order234

N equal to 1, 2 and multiples of 4. Procedures for constructing a UE(s2)-optimal design235

matrix U ∈ RM×N with M < N from Hadamard matrices are discussed by Jones and236

Majumdar (2014), who also review modern methods to construct Hadamard matrices of237

the required orders. Four situations can be distinguished based on the remainder of N238

when divided by 4 that are referred to as T0, T1, T2 and T3. In the following, N = a(mod239

4) means a is the remainder when N is divided by 4.240

1. T0: If N = 0(mod 4), 2 ≤ M ≤ N -1. Start with a normalized Hadamard matrix of241

order N , HN . U can be formed by selection of any M rows of HN .242

2. T1: If N = 1(mod 4), 2 ≤ M ≤ N -1. Start with a normalized Hadamard matrix of243

order N -1, HN−1. Let V be a M × (N − 1) matrix formed by any M rows of HN−1244

and let φ be an (arbitrary) M × 1 vector with entries 1 or -1. U = (V ,φ).245

3. T2: If N = 2(mod 4), 2 ≤ M ≤ N -2.246

i. M is even, M = 2p. Start with a normalized Hadamard matrix of order N − 2,247

HN−2. Let U∗ be the M × (N − 2) matrix formed by any M rows of HN−2. Let248

X1 be a M × 2 matrix with each of the first p rows either (1,1) or (-1,-1) and each249

of the last p rows either (1,-1) or (-1,1). Then U = (U∗,X1).250

ii. M is odd, M = 2p+1. Start with a normalized Hadamard matrix of order N−2,251

HN−2. Let U∗ be the M × (N − 2) matrix formed by any M rows of HN−2. Let252

X2 be a M × 2 matrix with each of the first p rows either (1,1) or (-1,-1) and each253

of the last p+ 1 rows either (1,-1) or (-1,1). Then U = (U∗,X2).254

4. T3: If N = 3(mod 4), 2 ≤ M ≤ N -1. Start with a normalized Hadamard matrix of255

order N + 1, HN+1. Let U∗ be the M × (N + 1) matrix formed by any M rows of256

HN+1. Suppose the last column of U ∗ is denoted by φ and U∗ = (U ,φ). Thus U257

can be obtained.258

Given that there is some freedom in constructing the Hadamard matrices, we will259

consider three variants for constructing U denoted as M1, M2 and M3 as explained260

below.261

1. M1: This is the approach suggested by Jones and Majumdar (2014). In the con-262

struction of UE(s2) optimal designs of Types T0 to T3, it is suggested to take M263

arbitrary rows of a Hadamard matrix. By choosing the rows randomly in each iter-264

ation of the optimization, variation in the samples can be achieved without loss of265

UE(s2) optimality. Thus the method becomes stochastic.266
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2. M2: This approach is similar to Type M1 except that the row of the Hadamard267

matrix containing only values of +1 is always picked. When Type M1 is used, this268

row may not always be picked. Experiments presented below showed that in those269

instances, gradient quality was significantly reduced.The M2 variant avoids this but270

remains stochastic.271

3. M3: In this approach, the first M rows of the Hadamard matrix (including the row272

with all values equal to +1) are always selected for each iteration of the optimization.273

This variant is therefore deterministic.274

We finally note that the near-orthogonality and D-optimality of UE(s2)-optimal de-275

signs does not hold for the case N = 3(mod 4) where M > (N+5)
2

(Jones and Majumdar,276

2014). However, by choosing M properly, the design can be made D-optimal for this case277

as well.278

Numerical experiments279

Analytical toy problem280

The various sampling strategies and designs were first used for gradient estimation in a281

simple toy problem for which exact gradients can be computed analytically. We used an282

extended version of the well-known Rosenbrock benchmark function which is characterized283

in 2D by a curved valley, with a minimum at coordinates (1, 1) located in one of the two284

branches of the valley. In order to mimic the high dimensionality typically encountered285

in subsurface reservoir problems, we use the extended Rosenbrock function (Dixon and286

Mills, 1994). In addition to a large numbers of controls we want to investigate the impact287

of uncertainty in the model properties. Therefore, uncertainty is introduced to mimic the288

geological uncertainty following (Fonseca et al., 2015a),289

J(u1, ..., uN , c
j
1, c

j
2) =

N/2∑
i=1

−(sin cj2)(1−u2i−1)2− 100(cj1 u2i−u22i−1)2, for j = 1, . . . ,M ,

(9)
where (cj1, c

j
2) with j = 1, . . . , 100 are samples from N (0, I2) representing M = 100 model290

realizations, and N is the number of controls which we set here to 320. The gradient of291

Eq. (9) can be derived analytically for any set of controls.292

The iterative objective function increase during optimization is commonly character-293

ized by fast improvements during early iterations when objective function values are far294

from the optimum (the objective function curve is steep), and very slow improvement295

towards convergence (the objective function curve is nearly flat). We are interested in296

determining the quality of gradient estimates during both stages of the optimization pro-297

cess. Several trial optimization experiments were conducted with randomly distributed298

initial controls from which intermediate solutions were assigned to one of two point sets299

representing the two described stages. The quality of ensemble gradients was subsequently300
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Figure 2: Mean gradient direction error α100 at points associated with large objective func-
tion improvements for M

Nr
ratios 1, 2 and 3 and different sampling strategies using a standard

deviation σ of 0.01. The true and estimated gradients represent the expected values over
100 different model realizations.

determined at each point in the two sets. For sampling strategies involving random num-301

bers the gradient computation was repeated 100 times, after which an average angle error302

was computed by comparison with the analytical gradient direction. The standard devia-303

tion of the control perturbation magnitude was set to 0.01 in all cases. The quality of the304

estimated gradients, as quantified by the average angle error, is shown in Figs. 2 and 3.305

The angle error is estimated for different ratios M
Nr

where Nr is the number of model real-306

izations. If the ratio equals 1, we use the same number of perturbations as there are model307

realizations, while if the ratio equals for example 3, three different perturbed controls are308

applied to each model realization. Figure 2 shows the average angle error α100 for 3 ratios309

and different sampling strategies for control points associated with the steep part of the310

objective function curve while Figure 3 shows the average angle error for control points311

associated with the near-flat part of the objective function curve.312

During the initial iterations of the optimization, the Gaussian, Sobol, LHS and313

UE(s2)-M1 sampling strategies provide a similar gradient quality for a ratio of 1:1 (Fig.314

2). A slight difference is seen when the ratio is increased to 3 with UE(s2)-M1 and Sobol315

performing slightly better on average than the Gaussian and LHS strategies. For a 1:1316

ratio, UE(s2)-M2 and M3 provide the best gradient quality, with angle errors that are317

5◦ to 30◦ lower than for the other strategies. Gradient direction errors are significantly318

larger for the later stages of the optimization as seen in Fig. 3. Otherwise the results are319

more or less consistent with those for the early stage except that the differences between320

UE(s2)-optimal designs of type M2 and M3 and Gaussian, Sobol, LHS and UE(s2) -321

optimal design of type M1 are relatively smaller. In conclusion, for the high-dimensional322

Rosenbrock function with uncertainty, UE(s2)-optimal designs of type M2 and M3 pro-323
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Figure 3: Mean gradient direction error α100 at points associated with small objective
function improvements for M

Nr
ratios 1, 2 and 3 and different sampling strategies using a

standard deviation σ of 0.01. The true and estimated gradients represent the expected
values over 100 different model realizations .

vide significantly better gradients than the other sampling strategies, especially in the324

early stages of the optimization process when solutions are far from the optimum.325

Oil reservoir case326

In this section we will investigate the impact of the different sampling strategies on an327

optimization process for a small, but realistically complex, reservoir test case. The 3D328

reservoir model used in this thesis is the ’Egg’ benchmark model (Van Essen et al. (2009);329

Jansen et al. (2013)). Figure 4 shows the permeability field of one model realization and330

the position of eight injection wells (blue) and four production wells (red). The egg model331

is a channelized reservoir model with seven vertical layers and a total of 18553 active cells.332

The permeability values are not conditioned to values at the wells, and the porosity is333

assumed to be constant. The producers are operated at constant bottom hole pressure,334

while the injectors are rate-controlled between 10 and 79.5 m3/day. Production of the field335

is simulated for a period of 3600 days which is discretized into 40 control time intervals336

of 90 days. This results in a total of 40 x 8 = 320 injection rate controls. The objective337

function used in this work is the undiscounted Net Present Value (NPV), i.e. the sum of338

revenues and costs induced over the production period. We use an oil price of 126 $/m3
339

and costs of 19 $/m3 and 6 $/m3 for water production and injection respectively. The340

fully implicit black oil simulator OPM Flow is used for the model simulations and the341

objective function is computed based on the simulator output. We investigate both the342

deterministic and robust optimization cases, where the model realizations are taken from343

a set of 100 permeability realizations. Six of these realizations are shown in Fig. 5. More344

details on the model can be found in (Jansen et al., 2013).345
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Figure 4: Permeability field of an egg model of the reservoir with 8 injector wells (blue) and
4 producer wells (red)

Figure 5: Six randomly chosen model realizations, taken from (Jansen et al., 2013), char-
acterizing the uncertainty in the permeability.

Deterministic optimization346

In deterministic optimization there is no uncertainty in the model, and therefore only a347

single model realization is used in this section (i.e. Nr = 1). All optimization experiments348

are run for a fixed number of iterations (35) and use a steepest ascent update with a349

normalized gradient (that is, the norm of the gradient vector is 1) and a fixed step size of350

0.1. The convergence will thus be affected primarily by the quality of the gradient. The351

initial control vector consists of equal values of 79.5 in units of m3/day which corresponds352

to the maximum injection rate. M =100 perturbation vectors are generated to estimate353

the gradients by solving Eq. (4). Figures 6 and 7 show the objective function curves over354

all iterations for different sampling strategies with the number of perturbation vectors355

M=100 and M = 30 respectively.356

When M=100 the curves for UE(s2) designs of type M2 and M3 flatten after 14357

iterations. The curve for Sobol sampling approaches the same final objective function358

value at a slightly slower rate. These methods also produce high convergence rates and359

final objective function values when the ensemble size is very small (30). From the results360

of the Rosenbrock function it was observed that UE(s2) designs of type M1 provides361

inferior gradient quality compared to M2 and M3 at poor control points (steep section362

of the objective function curve). This is also observed in Figs. 6 and Fig. 7. The curve363

for M1 shows iteration intervals for which convergence is extremely slow, alternated by364

intervals with steep increases in the objective function. Upon inspection it was discovered365

that these intervals correspond to iterations in which the row of the Hadamard matrix366

containing only +1 values was either not included (slow improvement) or was included367
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Figure 6: NPV as a function of optimization iteration using Eq. refeq:menopt with M =
100 for different sampling strategies.
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Figure 7: NPV as a function of optimization iteration using Eq. refeq:menopt with M =
100 for different sampling strategies.
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Figure 8: Control strategy representing the injection rate of one of the injectors as a function
of time at the final iteration (35) obtained with 6 different sampling strategies and M = 100
and Nr = 1.

(fast improvement). This behaviour actually motivated the creation of the new schemes368

M2 and M3 in this paper. In general, both M2 and M3 perform slightly better than Sobol369

sampling which tends to produce objective function curves that flatten a bit earlier. Since370

the curves for Gaussian and LHS sampling have not yet flattened after 35 iterations, it is371

not possible from these results to draw conclusions about the final objective function value372

that can be reached. Given the high computational cost associated with simulating large373

and complex reservoir models, it seems not unreasonable to consider the performance of374

different methods for a limited number of iterations (or function evaluations). It appears375

that LHS does not perform better than Gaussian sampling for the number of controls376

considered in these experiments.377

The optimal control strategies for one of the injectors obtained after 35 iterations378

are shown in Fig. 8. The choice of sampling method clearly has a significant impact379

on the character of the resulting control strategy. While Sobol sampling produces a380

strategy with frequent and large changes in the injection rate, the UE(s2) designs tend to381

produce fairly smooth low-rate profiles. Highly-dynamic control strategies are generally382

undesirable from an operational point of view. Regularization of the gradients is often383

proposed as a means to produce smooth control profiles. One way to achieve this is384

by imposing correlations over time between the control perturbations, i.e. between the385

samples, through a smoothing step. The impact of this approach on the optimization386

process for different sampling methods is illustrated in Fig. 9, where a correlation length387

of 15 control intervals was applied (the total number of intervals is 40).388

Correlation clearly benefits the convergence properties for all sampling methods except389

Sobol sampling. Gaussian sampling, LHS and UE(s2) designs all produce very similar390

objective function profiles. Gaussian sampling and LHS produce the highest final objective391
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Figure 9: NPV as a function of optimization iteration using Eq. refeq:menopt with M =
100 and with smoothing of perturbations for different sampling strategies.

function values, while the values obtained for UE(s2) are nearly identical to those obtained392

without induced correlation. The convergence rate for Sobol sampling on the other hand393

has decreased notably. We conclude that this latter result must be related to the loss of394

uniformity of Sobol distributions after smoothing.395

Robust optimization396

In this section the optimization is aimed at maximizing the expected NPV as evaluated397

over 100 equiprobable realizations of the model with different permeability fields as il-398

lustrated in Fig. 5. The gradient of the expected NPV is computed directly using the399

formulation of Eq. (2) based on 100 control perturbation vectors that are paired on a400

1:1 ratio basis to the model realizations. The perturbation standard deviation, random401

seed, and initial controls are the same for all experiments and identical to those used in402

the deterministic case. The optimization process is performed for a fixed number of 25403

iterations (gradient evaluations). A lower value than used for the deterministic case was404

chosen to limit the computational cost; in the robust case 100 simulations are required405

to determine the objective function value for a proposed control update, whereas only 1406

simulation is required in a deterministic setting. The results from experiments without407

and with time correlations between controls are shown in Figs. 10 and 11 respectively.408

The results indicate that the performance of the different sampling methods in the409

robust optimization case is similar to that in the deterministic case. The main differences410

are observed if time correlation is imposed on the samples. While in the deterministic411

setting all methods except Sobol performed similarly, in the setting with model uncertainty412

UE(s2) designs of type M2 clearly perform better than all other methods. Sobol sampling413

still performs worse than all other methods. The use of time correlation leads to improved414

objective function values when Gaussian, LHS and UE(s2) sampling of type M1 is used,415
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Figure 10: NPV as a function of optimization iteration using Eq. refeq:stosag with M =
Nr = 100 for different sampling strategies.
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Figure 11: NPV as a function of optimization iteration using Eq. refeq:stosag with M =
Nr = 100 and with smoothing of perturbations for different sampling strategies.
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Figure 12: Robust control strategy representing the injection rate of one of the injectors as
a function of time at the final iteration (25) obtained with 6 different sampling strategies
and M = Nr = 100.

and to reduced objective function values when UE(s2) sampling of type M3 or Sobol416

sampling is used. The results for UE(s2)-M2 are hardly affected.417

The optimal control strategies obtained after 25 iterations are shown in Fig. 12 for418

all sampling strategies. Similar behavior can be observed as in the deterministic case.419

When using Sobol sampling, the water injection rate jumps between near-minimum and420

near-maximum values. This is close to what is known as a bang-bang strategy, which421

is an optimal strategy for certain linear problems and is characterized by solutions that422

attain only the minimum and maximum allowable control values. The solutions obtained423

with Gaussian sampling and LHS tend to vary around an intermediate average control424

value, while the UE(s2) solutions consistently suggest near-minimum injection rates. The425

solutions for this well are characteristic for those of the other wells as well, with UE(s2)-426

based injection rates mostly in the range of 10 - 30 m3/day.427

Discussion428

The optimization experiments presented here were performed with the same constant429

perturbation size. It has been observed in experiments with an different perturbation sizes430

(Fonseca et al., 2015a) that smaller perturbations may be preferred during the later stages431

of the optimization process. Ramaswamy (2017) compared the convergence with the432

different sampling methods for three fixed perturbations sizes in optimization experiments433

with the Egg reservoir model. The results suggest that the performance for UE(s2) designs434

of type M2 is much less sensitive to the perturbation size than that for Gaussian and Sobol435

sampling or LHS designs.436

Some of the considered sampling strategies, including Sobol sampling and UE(s2)437
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designs of type M3, are deterministic and therefore produce the same result each time.438

Strategies based on pseudo-random numbers (Gaussian, LHS), or on random selection of439

perturbations from a fixed set (UE(s2) designs of type M1 and M2) may produce different440

results for different random number seeds. Ramaswamy (2017) investigated the sensitivity441

of the gradient quality and convergence with respect to the initial seed and found that this442

sensitivity is very large for UE(s2) designs of type M1, but almost negligible for designs443

of type M2. This is another benefit of the UE(s2)-type M2 designs proposed here.444

Conclusions445

The standard practice of using Gaussian sampling to generate random perturbations for446

use in approximate gradient estimation procedures is compared against various alternative447

sampling strategies. The alternative strategies include two space-filling designs, namely448

Sobol sampling and LHS, based on low-discrepancy concepts as achieved by quasi-Monte449

Carlo approaches and stratification respectively. A second class of methods is based on450

the E(s2) near-orthogonality concept for supersaturated designs and D-optimal reduction451

of the generalized variance of the gradient estimate (E(s2)-optimal designs). Two new452

variants of E(s2)-optimal designs were proposed. The sampling strategies were applied to453

high-dimensional analytical test problem to evaluate their impact on the gradient quality.454

In a second example they were applied to an oil reservoir case with realistic complexity455

in terms of number of controls and uncertainty in parameter values to test their impact456

on optimization performance . The main conclusions can be summarized as follows.457

• Sobol sampling and UE(s2) designs outperform random sampling and stratified458

experimental designs in terms of gradient quality and convergence properties in all459

cases when no smoothing is performed on the samples prior to gradient estimation.460

• When samples are smoothed over time the performance of Sobol sampling strongly461

deteriorates.462

• The sampling strategy is found to have a significant impact on the character of463

the resulting control strategy. Sobol sampling tends to produce highly dynamic464

strategies, while UE(s2) designs produce fairly smooth strategies, also when no465

smoothing is explicitly applied.466

• The new UE(s2) design referred to here as M2 was observed to outperform the467

optimal supersaturated design method previously suggested (M1), as well as a third468

variant (M3), in terms of performance of the optimization and in terms of sensitivity469

to the perturbation size and initial random seed.470

• UE(s2)-optimal supersaturated designs perform well in all situations that were in-471

vestigated for both deterministic and robust cases and are therefore recommended472

for gradient approximation schemes where the number of samples is less than the473

number of unknowns.474
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