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Abstract 

Ensemble Optimization (EnOpt) is a rapidly emerging method for reservoir model based production optimization. EnOpt uses 
an ensemble of controls to approximate the gradient of the objective function with respect to the controls. Current 
implementations of EnOpt use a Gaussian ensemble with a constant standard deviation, i.e. a diagonal covariance matrix with 
entries that remain constant during the optimization process. The Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) is a gradient-free optimization method, developed in the ‘machine learning’ community, which also uses an ensemble of 
controls but with a covariance matrix that is continually updated during the optimization process. It has shown to be an 
efficient method for several difficult small dimension optimization problems and has recently been applied in the petroleum 
industry for well location and production optimization. In this study we investigated the scope to improve the computational 
efficiency of EnOpt through the use of covariance adaptation (CMA-EnOpt). We optimized water flooding of a multi-layer 
sector model containing multiple sealing and non-sealing faults. The controls used were inflow control valve settings at pre-
defined time intervals for injectors and producers with undiscounted net present value as the objective function. We compared 
EnOpt and CMA-EnOpt starting from identical covariance matrices. We achieved slightly higher (0.7%-1.8%) objective 
function values and modest speed-ups with CMA-EnOpt compared to EnOpt, depending on choice of user-defined parameters 
in both algorithms. However, the major benefit of CMA-EnOpt is its robustness with respect to the initial choice of the 
covariance matrix. A poor choice of the initial matrix can be detrimental to EnOpt, whereas the CMA-EnOpt performance is 
near-independent of the initial choice. 

Introduction 

Several studies have shown that there is considerable scope to improve the economic life-cycle performance of oil fields 
through the use of formal optimization methods in conjunction with reservoir simulation models. A very efficient way to 
perform such model-based life-cycle optimization is with the aid of gradient-based methods where the gradient is obtained 
through an adjoint technique. For an overview of this approach and a large number of references we refer to the review paper 
by Jansen (2011). The adjoint method is computationally very efficient, but, unfortunately, it is an intrusive method, requiring 
access to the simulator source code as well as extensive implementation efforts. Because it is practically impossible to access 
commercial simulator source codes for implementation of the adjoint there is a need for alternative methods for model-based 
production optimization in which the simulator is treated as a black-box. 

One such method, Ensemble Optimization (EnOpt), has been shown to achieve good results for a variety of different 
reservoir models, a drawback being its lower computational efficiency and accuracy compared to the adjoint method. In EnOpt 
the gradient of the objective function with respect to the vector of control variables is approximated by evaluating the objective 
function values for an ensemble of control vectors, chosen from a multi-Gaussian random distribution with known mean and 
covariance matrix, and then using a least-squares approach. Predecessors to the EnOpt method were proposed by Lorentzen et 
al. (2006) and Nwaozo (2006), whereafter Chen (2008) and Chen et al. (2009) gave systematic descriptions of the method as 
mostly used today. Thereafter, several publications addressed applications and computational aspects of the method; see e.g. 
Masoor et al. (2009), Chen and Oliver (2010), Su and Oliver (2010), Leeuwenburgh et al. (2010), and Chen and Oliver (2012). 
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As an alternative to exact or approximate gradient-based optimization methods one can revert to gradient-free methods 
such as genetic algorithms or evolutionary strategies as developed in the ‘machine-learning’ community. One of the latter, 
called the Covariance Matrix Adapted-Evolutionary Strategy (CMA-ES), has recently been used for well placement 
optimization by Ding (2008) and Bouzarkouna et al. (2011), a well control problem by Schulze-Riegert et al. (2011), and a 
smart well optimization problem by Pajonk et al. (2011). CMA-ES, developed by Hansen and co-workers starts from a random 
sample of control vectors with known statistics (mean and covariance matrix), computes the corresponding objective function 
values, selects the ‘best’ results, adapts the statistics for control vector sampling, and repeats the procedure until a converged 
objective function value is reached; see Hansen and Ostermeier (1996), Hansen and Ostermeier (2001), and Hansen (2006). 
The main idea is to systematically adapt the variance of the control vector sample in directions that have proven to be 
successful.  

In this paper we propose an improvement to the EnOpt introduced by Chen (2008), hereafter referred to as standard EnOpt. 
In standard EnOpt a constant diagonal covariance matrix is used throughout the optimization. We propose to use standard 
EnOpt in combination with covariance adaptation, a modification that we will refer to as Covariance Matrix Adapted EnOpt 
(CMA-EnOpt). In the remainder of this paper we will first provide an overview of CMA-EnOpt, followed by its application to 
a synthetic 3D reservoir model. A comparison of the results to those obtained with standard EnOpt will illustrate the 
computational advantages of CMA-EnOpt for model-based production optimization. 

Theory 

In this section we give a brief overview of the theoretical basis of CMA-EnOpt. We first define our objective function 
followed by an overview of standard EnOpt and the proposed modification. We apply the usual expression for Net Present 
Value (NPV) as objective function J: 
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where ,o kq is the oil production rate in bbl/day, ,wp kq is the water production rate in bbl/day, ,wi kq  is the water injection rate in 
bbl/day, ro is the price of oil produced in $/bbl, wpr  is the price of water produced in $/bbl, wir  is the price of water injected in 
$/bbl, kt is the difference between consecutive time steps in days, b is the discount factor expressed as a fraction per year, tk is 
the cumulative time in days corresponding to time step k, and t  is the reference time for discounting (365 days).  

Ensemble Optimization (EnOpt)  

Standard EnOpt uses an ensemble of control vectors to approximate the gradient of the objective function J with respect to 
the (average) control vector. A single control vector is defined as 

 1 2 ,
T

Nu u uu      (2) 

where N is the number of control variables (e.g. bottom hole pressures, well rates or valve settings) which can be rather large. 
Thus u is a ‘super vector’ with a number of elements N that may be as large as the number of control time steps times the 
number of control variables per time step. In standard EnOpt an ensemble {u1, u2, …, uM} is chosen as multivariate Gaussian 
distributed with a predefined distribution mean u  and a predefined distribution covariance matrix C . During the iterative 
optimization process, u  is updated until convergence, whereas C  is kept fixed. To estimate the gradients, a mean-shifted 
ensemble matrix is defined as 
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is the ensemble mean (i.e. the sample mean which is estimator of the distribution mean u ). Similarly, a mean shifted objective 
function vector is defined as  

 1 2 ,
T
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where values Ji correspond to the simulated response to control vectors ui, and where 
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If we would have an overdetermined case, i.e. for M > N, the approximate gradient with respect to the controls could be 
obtained as a least squares solution: 

 1( )  ,T Tg U U U j  (3) 

where in a practical implementation we would solve a linear system of equations for g rather than compute the inverse. For the 
derivation of equation (3), see any introductory linear algebra textbook, e.g. Strang (2006). Equation (3) can also be expressed 
as  

 1 ,uu uJg C C  (4) 

where 
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are ensemble (sample) covariance and cross-covariance matrices respectively (Chen, 2008, and Chen and Oliver, 2009). 
Normally, however, we have an underdetermined case, i.e. M < N. This implies that the matrix product TU U  is rank deficient 
such that we cannot directly compute its inverse or solve the associated system of equations. Instead we can compute the 
Moore-Penrose pseudo inverse using a singular value decomposition (SVD); see e.g. Strang (2006). Alternatively, Chen 
(2008) and Chen and Oliver (2009) propose to simply use 

 ' uJ uug C C g   (5) 

instead of g, i.e. they approximate the gradient by the ensemble cross covariance uJC . Moreover, they propose to use a second 
premultiplication with uuC  as a preconditioning step which leads to 

 '' .uu uJ uu uug C C C C g   (6) 

Both expressions (5) and (6) can be interpreted as modified (approximate) gradients. In our study we applied equation (3) with 
an SVD. 

Update rules 

The approximate gradient g  from equation (3) can be used in any gradient-based optimization algorithm. In our study we 
used a simple steepest ascent scheme according to 

 1 ,  u u g      (7) 

where the superscript ℓ is the iteration counter, and αℓ is a step length in the direction of the gradient. We determined αℓ with 
the aid of an inexact line search and the Arjimo conditions (Nocedal and Wright, 2006). In more sophisticated optimization 
algorithms an improved update direction (i.e. one different from g) is determined by employing optimization methods that 
make use of the second derivatives of J with respect to u, i.e. of the Hessian matrix, or, more commonly, of approximations to 
the Hessian. In particular, so called quasi-Newton methods use gradient information of subsequent iterates to construct an 
approximate Hessian H . The corresponding update rule then becomes 

   11 ,
  u u H g       (8) 

where the definition of H  depends on the particular variety of quasi-Newton method applied; see e.g. Nocedal and Wright 
(2006) or Luenberger and Ye (2010) for further details. Note that, as usual, in an actual implementation computing the inverse 
is avoided. The gradient is the direction of a tangent (hyper) plane in a point touching the objective function, while the Hessian 
gives curvature information in that point, i.e. it defines a convex quadratic function. The basic idea underlying the various 
quasi-Newton methods is that the curvature information contained in the approximate Hessian is gradually increased by 
subsequent inclusion of gradient information from previous iterations. Although we do not use a quasi-Newton algorithm in 
the optimization examples in our study, the concept of using information from subsequent iterates to improve the estimate of 
the curvature of the objective function is an important aspect of CMA-ES, and thus also of CMA-EnOpt. Moreover, we note 
that the use of the preconditioner uuC  in equation (5) plays a similar role as the preconditioner H-1 in equation (8). Indeed it 
can be shown that for any point on a convex quadratic objective function the covariance matrix is equal (upto a scaling factor) 
to the inverse Hessian. For more general objective functions the equality is an approximation. 
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Covariance Matrix Adaptation (CMA) 

CMA-ES is a stochastic iterative optimization method in which the covariance matrix is updated at every iteration such 
that its largest principal direction, i.e. the eigenvector corresponding to its largest eigenvalue, is (approximately) re-aligned in 
the direction of the maximal increase of the objective function. CMA-ES uses two types of updates for the covariance matrix 
as briefly explained below. For a detailed overview we refer to Hansen (2006, 2011). 

Rank-Mu Update  

The motivation behind a rank-mu update is to use information within one single iteration (i.e. one ensemble of random 
control vectors {u1, u2, …, uM}ℓ and their corresponding objective function values {J1, J2, …, JM}ℓ ) through selecting the 
’best’ μ members (i.e. those corresponding to the μ highest objective function values) out of the M ensemble members: 

  1
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where 0 1c   is a learning rate, and where the control vectors u1, u2, …, u have been ranked such that for their 
corresponding objective function values it holds that 

 1 2 1 .MJ J J J J         

Equation (7) is called a rank-mu update because the matrix product TU U   is, at most, of rank . Note that we use the 
distribution mean u  instead of the ensemble mean u . It can be shown that, as a result, for  = M and 1c  , 1

uu
C  is an 

unbiased estimator of the distribution covariance 1C (Hansen, 2006). The choice of the learning rate c  is crucial to the 
success of the optimization. Low values (close to zero) lead to slow learning whilst high values (close to one) may lead to 
degeneration of the covariance matrix. The choice of μ is user dependent; in this study we used 4M  .	

Rank-One Update 

In equation (9) the covariance matrix update is determined using the best objective function values within one single 
iteration. It is also possible to update the covariance matrix by using information from subsequent iterates, in the same fashion 
as updating the Hessian in quasi-Newton methods. The necessary expression, derived in Hansen (2006), is given by 

  1 1 1
1 1(1 ) ,

T

uu uuc c    C C p p      (10) 

where c1 is the learning rate and p is the ‘evolution path’, which is a function of iterates u in earlier steps. For the exact 
definition of p, see Hansen (2006). Because the outer product of two vectors results in a matrix of rank one, expression (10) is 
referred to as a rank-one update. The rank-one update has been shown to be particulary powerfull when using small ensemble 
sizes (Hansen, 2006). Combining equations (9) and (10) one obtains the update rule 

  1 1 1
1 1

rank-one  update
rank-μ  update

1
(1 ) .

TT
uu uuc c c c  
      C C U U p p      




 (11) 

Equation (11) utilizes information within one iteration as well as information from successive iterations. Hansen (2011) 
suggests that the former is more important when using a larger ensemble and the latter in smaller ensembles. Several variations 
to equation (11) have been proposed; see e.g. (Arnold and Hansen, 2010). In particular, in our study we employed a slightly 
simplified version where only the diagonal elements of the covariance matrix are updated. 

Covariance Matrix Adapted-EnOpt (CMA-EnOpt) 

In standard EnOpt a constant distribution covariance matrix C  is used which is typically chosen as a diagonal covariance 
matrix with equal diagonal elements 2 . The value of the standard deviation   can have a major influence on the quality of 
the approximate gradient and therefore on the performance of the optimization algorithm. However there is no well defined 
method to choose this value. Thus we propose to use the covariance adaption strategy described above to gradually improve 
the distribution covariance matrix in the the EnOpt method, leading to a Covariance Matrix Adapted-EnOpt method (CMA-
EnOpt). 

Algorithm 

1. Set 0 . Choose an initial control vector 0u . 

2. Stochastically generate an ensemble of controls around 0u  with a user defined diagonal covariance matrix 2C I . 

3. Run a reservoir simulation for every member of the ensemble and calculate the corresponding objective function 
values using equation (1). 

4. If converged or if maximum allowed number of iterations reached, stop. Else, continue. 
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5. Compute the EnOpt gradient g  using equation (3). 

6. Perform an incomplete line search to determine    and compute the updated control vector 1u  using equation (7). 

7. Compute the updated (diagonal elements of the) covariance matrix 1
uu
C  using equation (11). 

8. Regenerate an ensemble of controls around 1u  with the updated covariance matrix 1
uu
C . 

9. Set 1   . Return to step 3. 

3D Synthetic Reservoir Model  

Advances in technology have led to an increase in the application of downhole chokes or inflow control valves (ICVs) to 
regulate flow rates and maintain pressure in the reservoir. We consider a control problem where ICV settings of injection and 
production wells in a 3D synthetic reservoir model are manipulated to optimize waterflooding over the producing life of the 
reservoir which is 15 years, or 5470 days. The model, illustrated in Fig. 1, consists of 25 × 32 × 5 = 4000 grid blocks. The 
approximate size of the grid blocks is 110 × 90 × 20 m, representing an area of 2.5 × 3.5 × 0.1 km. The geological structure 
consists of connected uplifted/offset blocks. The reservoir is produced using an inverted five-spot well pattern, i.e. four 
producers at the edges of the grid with an injector in the centre of the grid. The reservoir is divided into five layers having 
different horizontal permeabilities, but the permeability in each individual layer is constant. There is a sealing fault on the 
North-Western side of the block, close to producer 1. The initial average reservoir pressure is 200 bars. Table 1 lists the 
geological and fluid properties used to describe the model.  
 

TABLE 1: GEOLOGICAL AND FLOW PROPERTIES OF THE SYNTHETIC RESERVOIR MODEL 

Property Values Units 

Porosity 0.2 -- 

Permeability- (layer 1 – layer 5) 100-300-50-600-100 mD 

Reservoir pressure 200 bar at 1950 m 

Density of oil 800 kg/m3 

Density of water 1000 kg/m3 

Temperature 77 °C 

Oil compressibility 4e-5 1/bar 

Water compressibility 4e-5 1/bar 

Viscosity of oil 2 cP at 1 bar 
Viscosity of water 0.5 cP at 1 bar 

 
The wells penetrate all five layers with an ICV in every layer resulting in a total of 25 controls per time step. The producing 
life of the reservoir is divided into 15 time intervals of one year (365 days) each, which results in a total of 375 controls which 
are to be optimized. Water is injected at a constant pressure of 300 bars and the production wells are operated at a minimum 
pressure of 15 bars. A Corey model with exponents equal to 2 for both oil and water is used for the relative permeabilities 
where the connate water saturation is 0.2, the residual oil saturation is 0.3 and the end point relative permeabilities to oil and 
water are 0.8 and 0.4 respectively. No capillary pressures are included. The reservoir rock is incompressible. We used a 
commercial fully implicit finite difference black oil simulator (Eclipse, 2011). 

 
Fig. 1: Reservoir model. The colors indicate the initial water saturation. 
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Comparison between standard EnOpt and CMA-EnOpt 

We performed several comparisons between standard EnOpt and CMA-EnOpt to optimize the ICV settings with the aim to 
maximize NPV as defined in equation (1). We used an oil price ro = 130 $/m3, water production costs rwp = 25 $/m3, and water 
injection costs rwi = 6 $/m3. The discount rate b was set to 0 i.e. we used undiscounted NPV. Well productivity index (PI) 
multipliers were used to model the ICVs in the simulator with bounds of 1×10-4 and 1. The starting point for the optimization 
was an initial control vector having values equal to 1. Thus all the ICVs/chokes were fully open as a starting strategy. The the 
initial value of   was equal to 0.1 and we used a fixed ensemble size of 50 samples. Random control values outside the range 
1×10-4 – 1 were simply reset to their bounds. The optimization was allowed to run for 80 iterations which usually resulted in a 
near horizontal (i.e. nearly converged) objective function graph; see Fig. 2. We used various settings of the initial distribution 
covariance matrix (i.e. of the standard deviation ) required to generate the initial ensemble, leading to different optimization 
results, see Fig. 2. The best standard EnOpt run resulted in an objective function value of 8.95×109 $ while the best CMA-
EnOpt run achieved a slightly higher value of 9.01 $, i.e. 0.7% higher. An illustration of the corresponding ICV settings for 
one of the wells is presented in Fig.3. 

 
Fig. 2: Comparison of optimization performance for different initial covariance matrices.  

 
Fig. 3: Optimal control settings for ICV 4 as computed by CMA-EnOpt (black) and EnOpt (red).  

10 20 30 40 50 60 70 80
8

8.2

8.4

8.6

8.8

9

9.2
x 10

9

Iteration

U
n

d
is

co
u

n
te

d
 N

P
V

 (
U

S
$

)

 

 

EnOpt-sigma=1
EnOpt-sigma=0.1
EnOpt-sigma=0.01
CMA-EnOpt-sigma=0.1
CMA-EnOpt-sigma=1

2737.5 5475

0.5

1

IC
V

4

Days

INJ
2737.5 5475

0.5

1

IC
V

4

Days

PROD 1

2737.5 5475

0.5

1

IC
V

4

Days

PROD 2

2737.5 5475

0.5

1

IC
V

4

Days

PROD 3

2737.5 5475

0.5

1

IC
V

4

Days

PROD 4

 

 

CMA-EnOpt
EnOpt



SPE 163657  7 

Improved Robustness 

Exact gradient-based methods are inherently local methods (unless forced to take non-optimal steps) while most gradient-
free methods have been shown to possess more global search characteristics. In the EnOpt method the choice of the initial 
distribution covariance matrix is very important: large variances results in a more global search strategy and small variances a 
more local one. We tested CMA-EnOpt and standard EnOpt with different initial starting values for the standard deviation . 
Fig. 2 illustrates that the choice of the initial covariance matrix has a significant impact on the performance of standard EnOpt, 
because the matrix remains constant throughout the optimization. When using a large value of  for EnOpt (green line), the 
algorithm achieves poor results, but also for a very small value of  (light blue line) EnOpt does not perform well, as opposed 
to its performance for an intermediate value of  (blue line). For CMA-EnOpt (red and black lines) the initial starting 
covariance matrices have little impact on the final objective function values and both runs achieve better results than EnOpt. 
When starting with a smaller value of , CMA-EnOpt achieves a slightly higher objective function value than when starting 
with an identity covariance matrix ( = 1). This examples shows that CMA-EnOpt performs slightly better than standard 
EnOpt with an an optimized distribution covariance matrix. However CMA-EnOpt performs much better than standard EnOpt 
with a poor initial guess for the covariance. More than computational gains, the strength of CMA-EnOpt therefore appears to 
be its robustness with respect to initial choices of the covariance matrix. 

Learning Rates  

CMA-EnOpt contains several parameters that require user defined values, in particular the learning rates c and c1. Hansen 
(2011) discusses strategies to determine these rates based on the dimension of the problem. However his test cases are of a 
relatively small dimension, whereas production optimization problems typically have hundreds to thousands of control 
variables. Fig. 4 illustrates that if we choose the learning rates too small, the advantage of CMA-EnOpt over standard EnOpt is 
negligible if any. Higher learning rates have shown to achieve significantly better results as shown in Fig. 4. These results 
were obtained when we only updated the diagonal elements of the covariance matrix. Hansen (2011) reports that if the full 
covariance matrix is updated, high learning rates can have a detrimental impact on the optimization because they may lead to 
covariance matrix degeneration.  

Fig. 5 illustrates standard deviations  for two control variables (i.e. the corresponding square root diagonal values of the 
distribution covariance matrix) for different learning rates. The high learning rate case (red lines) reflects an 80-20 update rule 
with c = 0.12 and c1 = 0.08. In this case 20% new information is incorporated into the covariance matrix every iteration. We 
observe from Fig. 5 that different control variables have different optimal standard deviations. The slow learning rates, based 
on the recommendations for small-size problems as described in Hansen (2011) and Hansen (2006), reflect a 99.5-0.5 update 
rule i.e. only 0.5% new information is incorporated into the updated covariance matrix at each iteration. This leads to 
negligible changes in the standard deviation (black line, overlapped by the blue line). In this case CMA-EnOpt behaves just 
like standard EnOpt with a fixed standard deviation (blue line). Apparently, learning rates have a significant impact on the 
performance of the optimization algorithm. 

 
Fig. 4: Comparison of the effect of different learning rates on the optimization. 
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Fig. 5: Illustration of impact of learning rate on the success of the optimization. 

Discussion 

We performed an initial investigation into the potential benefits of CMA-EnOpt over standard EnOpt. An obvious next 
step would be the comparion of both methods with a CMA-ES, i.e. with the evolutionary strategy that formed the basis for the 
covariance matrix adaptation strategy in CMA-EnOpt. Initial comparisons, not reported in this paper, indicate that the CMA-
ES results are inferior (in terms of computational efficiency) to those of the two EnOpt varieties. I.e. explicitly using 
(approximate) gradient information seems to pay off. However, further numerical comparisons are required to evaluate the 
strength and weaknesses of the three methods. 

Conclusions 

 A comparison between CMA-EnOpt and standard EnOpt revealed slightly higher (0.7%-1.8%) objective function 
values and modest speed-ups, depending on choice of user-defined parameters in both algorithms. 

 The major benefit of CMA-EnOpt is its robustness with respect to the initial choice of the covariance matrix. A poor 
choice of the initial matrix can be detrimental to EnOpt, whereas the CMA-EnOpt performance is near-independent 
of the initial choice. 

 Learning rates are crucial for the success of CMA-EnOpt. For the high dimensional problem used in this study (375 
control variables), an 80%-20% update rule proved to be succesfull. 

Nomenclature 

 b = discount rate 
 c = learning rate 
 C  = distribution covariance matrix 
 uJC  = ensemble cross-covariance matrix 
 uuC  = ensemble covariance matrix 
 g = gradient vector 
 ℓ = iteration counter 
 H  = Hessian matrix 
 j  = vector of mean-shifted objective function values 
 J = objective function value 
 J  = mean objective function value 
 k = time step counter 
 K = total number of time steps 
 M = number of ensemble members 
 N = number of control variables 
 p = evolution path 

 q = flow rates 
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 r = price per unit volume 
 t = time 
 u = control variable 
 u = vector of control variables 
 u  = ensemble mean 
 u  = distribution mean 
 U  = matrix of ensemble mean-shifted control vectors 
 U  = matrix of distribution mean-shifted control vectors 
  = step size 
  = number of ‘best’ ensemble members 
  = reference time for discounting 

Subscripts 

 o = oil 
 w = water 
 wp = produced water 
 wi = injected water 
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