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Abstract: Adopting a dynamic network viewpoint allows one to analyze and identify subsys-
tems of a complex interconnected system. When studying a network of dynamic systems, it is
important to know if significant nonlinear behavior is present in a dynamic network under study
and where the nonlinearity is located in the network.
This work extends the Best Linear Approximation framework from the closed-loop to the
networked setting. The framework is illustrated using a practical step-by-step estimation and
analysis procedure. It is shown how nonlinear behavior can be quantified and located in a
dynamic network using this framework.
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1. INTRODUCTION

Many systems can be viewed as an interconnection of
multiple subsystems, e.g. large scale mechanical systems
consisting of many components, the electrical grid, biolog-
ical systems or industrial plants. Adopting the viewpoint of
interconnected subsystems in a systems and control frame-
work results in the so-called dynamic networks setting.

Many aspects of the identification of a linear dynamic
network have received quite some attention over the last
years, e.g. network structure detection (Goncalves and
Warnick, 2008; Materassi and Innocenti, 2010; Chiuso and
Pillonetto, 2012), identification of one or more subsystems
in the network (Chiuso and Pillonetto, 2012; Van den Hof
et al., 2013; Linder and Enqvist, 2017; Van den Hof et al.,
2018), input selection (Dankers et al., 2016), multiple
noise frameworks (Weerts et al., 2017; Van den Hof et al.,
2018). However, the identification of systems operating in
a nonlinear dynamic network has received consideringly
less attention (Yuan et al., 2011; Cooman et al., 2016; ?).

This paper focuses on the detection and quantifica-
tion of nonlinearity in dynamic networks using the Best
Linear Approximation (BLA) framework (Pintelon and
Schoukens, 2012). The results presented in the present
work are an extension of the work by (Cooman et al.,
2016). While a noiseless setting is adopted in (Cooman
et al., 2016) and full access to all signals in the dynamic
network is required, the current work adopts the frame-
work developed in (Van den Hof et al., 2013; Dankers,
2014): noise is present in the network, and only the node
signals (sum of the noisy subsystem outputs) are acces-
sible. Using this framework, the nonlinearity of a net-
worked system can be quantified and localized for a chosen
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class of input signals. The MIMO BLA (Dobrowiecki and
Schoukens, 2007b,a) and the closed-loop BLA (Pintelon
and Schoukens, 2013) framework are combined to obtain
the desired, generalizing, networked BLA framework.

A short introduction to nonlinear dynamic networks is
given in Section 2. The BLA framework is discussed next
in Section 3. A step-by-step procedure for the estimation
of the BLA of the subsystems in a dynamic network is
presented in Section 4. Finally, the developed nonlinearity
detection and quantification approach is illustrated on a
simulation example in Section 5.

2. NONLINEAR DYNAMIC NETWORKS

The dynamic networks considered here follow the same
definitions and visualization as in (Van den Hof et al.,
2013; Dankers, 2014). A dynamic network (see Figure
1) consists of a total of L nodes, representing internal
variables of the network, which are interconnected with
other nodes by (nonlinear) dynamic systems. A node
signal, denoted wi(t), is obtained as the sum of the outputs
of the incoming (nonlinear) dynamic subsystems (yij(t)
denotes the output of the subsystem connecting node j
to node i), an external reference signal ri(t), and a noise
signal vi(t):

wi(t) =

L∑
j=1, j 6=i

yij(t) + ri(t) + vi(t). (1)

Only the node signals wi(t) and the reference signals ri(t)
are known.

The node noise signal vi(t) is assumed to be independent
of the reference signals rj(t), j ∈ 1, . . . , nw and of the
other node noise signals vk(t), k ∈ 1, . . . , nw and k 6= i.
Furthermore vi(t) is assumed to be zero-mean and to have
a finite variance σ2

vi
. Note that only noise at the network

nodes are considered. No measurement noise is present in
the networked system.
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Fig. 1. An example of a nonlinear dynamic network with
3 nodes. The node signal wi(t) is obtained as the sum
of the outputs yij of the linear Gij and nonlinear Fij

subsystems connecting to it, the noise signal vi(t) and
the known reference signal ri(t).

3. BEST LINEAR APPROXIMATION

The BLA approximates the behavior of a nonlinear system
in least-squares sense using a linear time-invariant model.
This results in the following definition in the single-input-
single-output open-loop case in the presence of noise at
the output of the nonlinear system only (Pintelon and
Schoukens, 2012):

Gbla(q) = arg min
G(q)

Eu,ny

{
|ỹ(t)−G(q)ũ(t)|2

}
, (2)

ũ(t) = u(t)− Eu {u(t)} , (3)

ỹ(t) = y(t)− Eu,ny {y(t)} , (4)

where u(t) is the system input and y(t) is the noisy system
output. Eu,ny {.} denotes the expected value operator
taken w.r.t. the random variations due to the input u(t)
and the output noise ny(t). This definition of the BLA
is equivalent to the definition of the linear time-invariant
second-order equivalent model defined in (Enqvist and
Ljung, 2005) when the stability and causality restrictions
imposed there are omitted.

Throughout this paper it is assumed that the system
under study belongs to the periodic in same period out
(PISPO) class of systems (Pintelon and Schoukens, 2012).
This excludes nonlinear systems that present bifurcating
or chaotic behavior.

As depicted in Figure 2 the output of a nonlinear system
in the BLA framework is given by:

y(t) = Gbla(q)u(t) + ys(t) + ny(t). (5)

The stochastic nonlinear distortion ys(t) captures the
nonlinear behavior of the system that is not explained by
the BLA. The stochastic distortion is shown to be zero-
mean and uncorrelated with u(t), but not independent
of u(t). Note that the BLA and the stochastic nonlinear
distortion depend on the selected input excitation class.
A different linear approximation can be obtained for an
input excitation class with a different power spectrum or
probability density function.

The nonlinearity of a system, for a given input excitation
class, can be quantified by the variance of the stochas-
tic nonlinear distortion. This variance can be estimated

Fig. 2. A dynamic nonlinear system (F ) with zero-mean
(colored) additive noise ny(t) at the output only (top)
is represented as the Best Linear Approximation of
the system behavior Gbla(q) and a stochastic nonlin-
ear distortion source ys(t) (bottom).

using, for instance, the robust BLA estimation approach
(Schoukens et al., 2012).

4. ESTIMATING THE BLA IN DYNAMIC
NETWORKS

Instead of estimating the BLA of an open loop system
or a system operating in closed loop, this paper aims to
identify the BLA of the subsystems present in a nonlinear
dynamic network. This is obtained by combining the BLA
framework for systems operating in closed loop (Pintelon
and Schoukens, 2013) and the BLA framework for MIMO
systems (Dobrowiecki and Schoukens, 2007b,a).

The closed-loop BLA framework is based upon a two-stage
identification approach. Firstly, the BLA is estimated from
the references to the nodes, resulting in the estimate
Ŝbla. The disturbance-free node signal estimates ˜̄wi(t)

are constructed next, based on the BLA estimates Ŝbla.
Finally, BLA of the network modules Gbla,w is estimated
from node to node, using the node signal estimates ˜̄wi(t).

The two-stage approach avoids the introduction of a bias
on the estimates caused by correlated disturbance con-
tributions due to the presence of feedback loops in the
dynamic network. One could also use direct identification
approaches (see Van den Hof et al. (2013)) in a dynamic
network to obtain the BLA of a nonlinear module. How-
ever, the latter relies on the identification of consistent
disturbance models, which can be a challenging task due
to the presence of the extra nonlinear disturbance sources
ys.

Step 1: BLA from Reference to Nodes

The MIMO BLA from the references to the network nodes
is defined as:

Sbla(q) =

arg min
S(q)

Er,v


L∑

i=1

∣∣∣∣∣∣w̃i(t)−
L∑

j=1

Si,rj (q)r̃j(t)

∣∣∣∣∣∣
2
 , (6)

The expectation Er,v{.} is taken with respect to all possi-
ble realizations of the reference signals ri and the noise



signals vi within the considered signal class. The zero-
mean signals r̃(t) and w̃(t) are defined in the time domain
as:

r̃i(t) = ri(t)− Eri {ri(t)} , (7)

w̃i(t) = wi(t)− Er,v {wi(t)} . (8)

The MIMO BLA can be estimated using the MIMO
Robust BLA approach from all references to all nodes
(Dobrowiecki and Schoukens, 2007b,a). This results in the

estimates Ŝbla,i,rj (q) representing the BLA from reference
j to node i.

Step 2: Simulate the Nodes from the References Only

The noise-free node estimates are obtained by simulating
the network from the reference signals to the network
nodes:

˜̄wi(t) =

L∑
j=1

Sbla,i,rj (q)r̃j(t). (9)

These signals are used in the next step to obtain an
estimate of the BLA in between the nodes. In practice
˜̄wi(t) is obtained by using the estimates Ŝbla,i,rj (q) instead
of the unknown true underlying BLA Sbla,i,rj (q).

Step 3: BLA from Node to Node

The BLA of the modules that are present in the nonlinear
dynamic network is defined as:

Gbla(q) = (10)

arg min
G(q)

Er,v


L∑

i=1

∣∣∣∣∣∣ ˜̄wi(t)−r̃i(t)−
L∑

j=1, j 6=i

Gi,j(q) ˜̄wj(t)

∣∣∣∣∣∣
2
 .

The BLA is estimated using the MIMO Robust BLA
approach from node to node (Dobrowiecki and Schoukens,
2007b,a), taking into account the direct contribution com-
ing from the reference signals. The signals ˜̄wj(t) (j 6= i)
act as the input signals during the estimation, while the
signal ˜̄wi(t)− r̃i(t) acts as the output signal. This results

in the estimate Ĝbla,i,j(q) representing the BLA from node
j to node i.

Step 4: Simulate the Nodes using the Networked Frame-
work

The simulated node signals are obtained by:

˜̄̄wi(t) = r̃i(t) +

L∑
j=1, j 6=i

Gbla,i,j(q)w̃j(t). (11)

Note that the estimated node signal ˜̄̄wi(t) is obtained
using the noisy node signals w̃j(t) and the reference signal

r̃i(t). In practice ˜̄̄wi(t) is obtained by using the estimates

Ĝbla,i,j(q) instead of the unknown true underlying BLA
Gbla,i,j(q).

In the case of a purely linear dynamic network the dif-
ference between ˜̄̄wi(t) and w̃i(t) is the node noise vi(t). In
the case of a nonlinear dynamic network the difference will
also include the combined stochastic nonlinear distortion
generated by all nonlinear subsystems connecting to node
i.

Step 5: Determine Total, Nonlinear and Noise Distortion

Although the robust BLA identification approach was
used in this paper, Step 1 to Step 4 can be performed
using multiple BLA identification approaches (Pintelon
and Schoukens, 2012; Enqvist and Ljung, 2005). In this
step, it is assumed that the system was excited by M
random realizations and P periods of a chosen periodic
signal class, as is also detailed in the so-called robust BLA
estimation method (Schoukens et al., 2012; Pintelon and
Schoukens, 2012).

The measured and simulated node signals wi are split
over the multiple periods and realizations, resulting in

the signals w̃
[m,p]
i and ˜̄̄wi(t)

[m,p]
i , where p denotes the

period and m the realization. One can observe that when
a periodic signal is applied to a PISPO nonlinear system
a periodic response is observed. In other words, the non-
linear response, and by extension the stochastic nonlinear
distortion, does not change from one period to another.
However, when the input signal changes a different non-
linear response is obtained. The stochastic nonlinear dis-
tortion varies over the signal realization, but not over the
signal periods. Observe that the noise contributions vary
over both the signal periods and the signal realizations.

Define the residuals e
[m,p]
i (jω) as:

e
[m,p]
i (jω)= ˜̄̄w

[m,p]
i (jω)− w̃[m,p]

i (jω). (12)

The total distortion variance (noise + stochastic nonlinear
distortion) σ2

t (jω) is obtained by taking the variance
of the residuals over the signal realizations, while the
noise distortion variance σ2

n(jω) is obtained by taking
the variance of the residuals over the signal periods. The
nonlinear distortion variance σ2

s(jω) is obtained as the
difference between the total distortion variance and the
noise distortion variance. In the frequency domain, this
becomes:

σ2
n(jω)= 1

M
1

P−1

M∑
m=1

P∑
p=1

(
e
[m,p]
i (jω)− 1

P

P∑
p=1

e
[m,p]
i (jω)

)2

(13)

σ2
t (jω)= 1

P
1

M−1

P∑
p=1

M∑
m=1

(
e
[m,p]
i (jω)− 1

P

M∑
m=1

e
[m,p]
i (jω)

)2

(14)

σ2
s(jω)=σ2

t (jω)− σ2
n(jω), (15)

where the frequency domain signals w̃
[m,p]
i (jω) and

˜̄̄w
[m,p]
i (jω) are obtained by taking the discrete Fourier

transform of their time-domain counterparts w̃
[m,p]
i (t) and

˜̄̄w
[m,p]
i (t).

5. SIMULATION EXAMPLE

A simulation example will guide the reader through the
step-by-step procedure outlined in the previous section.

5.1 System

The structure of the simulated system is visualized in
Figure 1. The different subsystem are described next. The



linear subsystems G21, G32 and G13 are first order systems
of the form:

xij(t+ 1) = Aijxij(t) +Bijwj(t) (16)

wi(t) = Cijxij(t), (17)

where:
A21 = 0.9, B21 = 1.0, C21 = 0.5
A32 = 0.8, B32 = 0.1, C32 = 1.0
A13 = 0.3, B13 = 1.0, C13 = −0.9

(18)

The nonlinear subsystem F31 is given by:

w3(t) = tanh(w1(t− 1)). (19)

5.2 Data

The system is excited by three reference signals r1(t),
r2(t) and r3(t). These signals are all three random phase
multisine signals (Pintelon and Schoukens, 2012) exciting
all the frequencies ]0, fs/2[ with a flat amplitude spectrum.
The random phases are uniformly distributed between 0
and 2π. All reference signals are active simultaneously.
M = 15 realizations of the multisines are applied to
the system, each realization contains P = 2 steady state
periods of N = 4096 points per period. The multisine
signals have a standard deviation of 0.1.

The noise vi(t) active on the network nodes is Gaussian
white noise with a standard deviation of 0.001. For com-
parison, the resulting node signals wi(t) have a standard
deviation of 0.2424, 0.1573 and 0.2441 respectively.

5.3 Results

The MIMO BLA is estimated from reference to node
using the robust BLA estimation method. The resulting
estimates are shown in Figure 3. Note that, although all
the subsystems are of order 1 or lower, quite complex
dynamics are observed from the reference signals to the
network nodes.

Fig. 3. The estimated BLAs from reference to node (r1:
blue, r2: red, r3: orange).

The nonlinearity detection and quantification analysis is
performed in the MIMO BLA setting from the references
to the network nodes, as is shown in Figure 4. Note
that nonlinearity is detected (nonlinear distortion >>
noise distortion) on all of the network nodes, although

only one nonlinear subsystem is present in the networked
system. Therefore, the reference to node BLA setting is
not adequate to isolate the nonlinear term in the dynamic
network.

Fig. 4. The node signals and estimated noise and nonlinear
distortion obtained using the MIMO BLA framework.

The BLA is estimated in between the nodes next (Fig-
ure 5). It can be observed that the estimated BLA co-
incides with the true underlying linear modules. It is also
clear now that the node-to-node dynamics are of low order,
while a rather complex dynamic behavior was observed in
Figure 3.

Fig. 5. The estimated BLAs of the modules present in the
nonlinear dynamic network specified in Figure 1.

The nonlinearity detection and quantification analysis in
the networked BLA setting shown in Figure 6 indicate that
the nonlinear distortion is smaller than the noise distortion
on nodes 1 and 2, indicating a linear system behavior while
it is the other way around on node 3. This indicates a linear
system behavior on nodes 1 and 2 and a nonlinear system
behavior on node 3.

Although nonlinear behavior is detected on node 3, the
presented procedure does not pinpoint which of the sub-
systems is nonlinear. Indeed, it can be observed from
the BLA-equivalent of the nonlinear network shown in
Figure 7 that the stochastic nonlinear disturbance ys,31
impacts on node 3. However, with the given analysis, this



distortion could originate both from F31 or G32. Assign-
ing the observed nonlinear distortion to one or more of
the network modules requires further analysis beyond the
scope of this paper.

Fig. 6. The node signals and the estimated total, noise
and nonlinear distortion variances. One can easily
observe that only nonlinearity is detected at node 3.
This corresponds with the network structure shown
in Figure 1.

 

Fig. 7. The BLA representation of the example nonlinear
dynamic network with 3 nodes (see Figure 1). The
nonlinear subsystem F31 is replaced by its BLA and
a stochastic nonlinear distortion source ys,31 is added
to node 3.

6. CONCLUSION

This paper presented a step-by-step procedure to detect
and quantify nonlinear behavior in a dynamic network
setting. The results of the proposed approach are illus-
trated and interpreted on a simulation example. Although
nonlinearity can be detected on a node level, the presented
method cannot detect which of the subsystems connecting
to the nonlinear node(s) are nonlinear.
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