Exploiting unmeasured disturbance signals in identifiability of linear dynamic networks with partial measurement and partial excitation

Shengling Shi, Xiaodong Cheng, Paul M. J. Van den Hof

Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands (e-mail: s.shi@tue.nl, x.cheng@tue.nl, p.m.j.vandenhof@tue.nl).

Abstract: Identifiability conditions for networks of transfer functions require a sufficient number of external excitation signals, which are typically measured reference signals. In this abstract, we introduce an equivalent network model structure to address the contribution of unmeasured noises to identifiability analysis in the setting with partial excitation and partial measurement. With this model structure, unmeasured disturbance signals can be exploited as excitation sources, which leads to less conservative identifiability conditions.

1. INTRODUCTION

Due to the increasing complexity of current technological systems, the study of large-scale interconnected dynamic systems receives considerable attention. Connecting to prediction-error identification methods, the most popular modeling framework is based on a network of transfer functions introduced in (Gonçalves and Warrick, 2008; Van den Hof et al., 2013), where vertices represent the internal signals that can be measured, and directed edges denote transfer functions referred to as modules that represent the causal relations among the signals.

In this abstract we focus on network identifiability, which is a concept that is independent of a particular identification method chosen and reflects the ability to distinguish between network models in a network model set on the basis of measurement data. In the literature, there are two notions of network identifiability: global identifiability (Weerts et al., 2015, 2018) that requires models to be distinguishable from all other models in the model set; and generic identifiability (Bazanella et al., 2017; Hendrickx et al., 2019; Cheng et al., 2022; Shi et al., 2020a,c) which requires models to be distinguishable from almost all models in the model set. The concept of generic identifiability has been exploited in (Anderson et al., 2016) for multivariate autoregressive models and was first introduced in (Bazanella et al., 2017) for dynamic networks.

Identifiability conditions in the above works require a sufficient number of external excitation signals which are typically measured reference signals (Bazanella et al., 2017; Hendrickx et al., 2019; Bazanella et al., 2019). On the other hand, in (Weerts et al., 2018) it is shown that unmeasured noise signals can also serve as excitation sources for identifiability analysis, which leads to less conservative identifiability conditions than only considering reference signals. However, this result is obtained when all internal signals are measured, which is not straightforward to be extended to a more general situation where not all vertices are excited and not all vertices are measured, i.e. with partial measurement and partial excitation. Therefore, this abstract introduces a novel approach to exploit the contribution of unmeasured noises to identifiability analysis of dynamic networks. A further implementation of this result is addressed in (Shi et al., 2020b) to analyze the identifiability of dynamic networks in this setting.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Dynamic networks

The dynamic network model describes the relationship among internal signals $\mathcal{W} = \{w_1(t), \ldots , w_L(t)\}$, a vector of measured and deterministic excitation signals $r(t)$, unmeasured stationary stochastic processes $\{v_1(t), \ldots , v_L(t)\}$, which is formulated as

$$w(t) = G(q)w(t) + Rr(t) + v(t),$$

$$w_C(t) = Cw(t),$$

(1)

where $G(q)$ is a matrix of rational transfer operators with delay operator q^{-1}, i.e. $q^{-1}w_i(t) = w_i(t-1)$; C is a binary matrix which extracts all the measured internal signals in $\mathcal{C} \subseteq \mathcal{W}$ from w and stacks them into vector $w_C(t)$; R is a binary matrix that decides which internal signals are influenced by $r(t)$, i.e. each column of R has exactly one entry as 1 and the other entries as zeros, while its each row has most one entry as 1.

Let $\Phi_v(q)$ of dimension $L \times L$ denote the rational power spectral density matrix of $v(t)$ with rank $p \leq L$, and then a noise model for $v(t)$ can be introduced based on the spectral factorization of $\Phi_v(q)$ as

$$v(t) = H(q)e(t),$$

(2)
where \(e(t)\) is vector of white noises with covariance matrix \(\Lambda\) and dimension either \(L\) or \(p\) (Weerts et al., 2018; Gevers et al., 2019); \(H(q)\) is proper and stable. Combining (1) and (2) leads to a complete network model specified as a quintuple \(\mathcal{M} \triangleq (G(q), R, C, H(q), \Lambda)\), on which the following assumptions are made:

Assumption 1. It will be assumed that

(a) \(G(q)\) is proper, and its diagonal entries are zeros;

(b) \(|I - G(q)|^{-1}\) is stable;

(c) The network is well-posed in the sense that all principal minors of \(\lim_{z \to \infty} (I - G(z))\) are non-zero;

(d) \(H(q)\) is proper and stable;

(e) \(\Lambda\) is real and positive semi-definite.

Note that Assumption 1(c) ensures that every principal submatrix of \((I - G)\) has a proper inverse (Scherer, 2001), i.e. every closed-loop transfer function is proper.

In a network model, both the external signals \(x\) and the noise signals \(e\) are called external signals which are collected in the set \(X\). The entries in \(G(q)\) are referred to as modules. Let set \(Z = W \setminus C\) contain all the unmeasured internal signals, and without loss of generality, \(w\) is ordered as \(w = [w_C^T \ w_Z^T]^T\), where \(w_C\) and \(w_Z\) correspond to the measured and the unmeasured internal signals. Accordingly, \(C\) is partitioned as \(C = [I \ 0]\).

The external-to-internal mapping of (1) is

\[
w_C = C(I - G)^{-1} R x + C(I - G)^{-1} H e,
\]

and a standard open-loop identification of the above model can lead to consistent estimates of the following objects:

\[
CTR, \quad C\Phi C^T
\]

where \(T \triangleq (I - G)^{-1}, \Phi \triangleq (I - G)^{-1} H \Lambda H^T (I - G)^{-1}, \) and \(H(z)^{\ast}\) denotes \(H^T(z^{-1})\). Thus, an identifiability question arises to determine the uniqueness of modules in \(G(q)\) given the objects in (4). Note that \(CTR\) leads to a subset of rows and columns of \(T\), respectively, based on which internal signals are measured or excited.

Assumption 2. The spectrum \(C\Phi(z)C^T\) has full rank.

2.2 Model sets and identifiability

Network identifiability is defined based on a network model set whose definition is given first. For a network model \(\mathcal{M}\), its transfer operators in \(G\) and \(H\) are parametrized as rational functions of \(q\) (Ljung, 1997), and parameter vector \(\theta\) collects the coefficients of the denominator and the numerator polynomial of each transfer function, as well as the parametrized entries in the matrix \(\Lambda\). Then the parameterized model is denoted by \(M(\theta) = (G(q, \theta), R, C, H(q, \theta), \Lambda(\theta))\), where \(\theta\) belongs to a parameter space \(\Theta\) that is an open and connected subset of \(\mathbb{R}^n\), and \(M(\theta)\) is an analytic function of \(q\) and \(\theta\). This leads to a network model set \(\mathcal{M} \triangleq \{M(\theta) | \theta \in \Theta\}\), where every element in \(\mathcal{M}\) satisfies Assumption 1. Note that the dependency of transfer matrices on \(q\) and \(\theta\) is often omitted for the simplicity of notation.

Concerning network identifiability, we follow the concept of global network identifiability as defined in (Weerts et al., 2018) and also consider its generic version obtained by combining it with the concept of generic identifiability introduced in (Bazanella et al., 2017; Hendrickx et al., 2019) for a different setting. In this respect, we follow an approach that is formulated in (Shi et al., 2020a,c).

Definition 1. Given a parameterized network model set \(\mathcal{M}\), consider \(\theta_0 \in \Theta\) and the following implication:

\[
CTR(z, \theta_0)R = CTR(z, \theta_1)R \quad \Rightarrow \quad CTR(z, \theta_0)C^T = CTR(z, \theta_1)C^T
\]

for all \(\theta_1 \in \Theta\). Then module \(G_{ji}\) is generically identifiable in \(\mathcal{M}\) from \((w_C, r)\) if the (5) holds for almost all \(\theta_0 \in \Theta\).

In the above definition, the notion “almost all” excludes a subset of Lebesgue measure zero from \(\Theta\). The concept of identifiability in this definition concerns the uniqueness of a module given the first and second moment information of the measured signals. If the module is not identifiable in the model set, no identification method, that relies on the first and the second moments for estimating the module, is able to provide a unique estimate of the module.

It is worth mentioning that this work considers identifiability of network modules instead of the identifiability of their parameters. Given the unique rational transfer functions, the identifiability of their parameters is a classical topic and can be achieved by appropriate parameterization of these transfer functions (Ljung, 1997).

2.3 Problem formulation

Identifiability conditions typically require a sufficient number of \(r\) signals as excitation sources. Moreover, it is shown in (Weerts et al., 2018) that when all the internal signals are measured, i.e. \(C = I\), the spectrum matrix \(\Phi\) in (4) admits a unique spectral factor \(TH\) under mild conditions, and thus implication (5) can be equivalently simplified by considering \((TR, TH)\) in the LHS of (5) instead of \((TR, \Phi)\). Since the mapping from the noises to internal signals is also used, the noises play the same role as \(r(t)\) for identifiability analysis. However, when only a subset of internal signals is measured, the above result cannot be applied anymore as only the matrix \(\Phi C^T\) of \(\Phi\) is taken as a starting point in Definition 1. Thus, the question is how noise signals can be used as excitation sources for identifiability analysis in the current setting.

3. MAIN RESULTS

We first introduce the concept of network equivalence and then develop an equivalent network by exploiting the noise spectrum \(\Phi C^T\). With the developed model structure, unmeasured noises can be taken into account as excitation sources in the identifiability analysis.

3.1 Equivalent network for noise excitation

Identifiability concept in (5) takes the object \((CTR, \Phi C^T)\) as a starting point that reflects the first and the second moment of the measured signals. Therefore, we can define a concept of network equivalence based on the above object, by extending a similar concept in (Weerts et al., 2020).

Definition 2. Network models \(M_1 = (G_1, R_1, C_1, H_1, A_1)\) and \(M_2 = (G_2, R_2, C_2, H_2, A_2)\) are said to be (observationally) equivalent if it holds that

\[
C_1T_1(z)R_1 = C_2T_2(z)R_2, \quad \text{and} \quad C_1\Phi_1(z)C_1^T = C_2\Phi_2(z)C_2^T,
\]
where T and Φ are defined in (4).

The above concept of equivalence characterizes two network models that can be used to model the same measured processes (w_C, r), because given measured r, the stochastic processes w_C in two equivalent models have the same mean $CTRr$ and power spectrum $C\Phi C^T$. Given any network model M, it always admits an equivalent network with a simpler noise model, as shown in the result below.

Theorem 1. Any network model $M = (G, R, C, H, \Lambda)$ admits an equivalent network model as

$$
\tilde{M} \triangleq (G, R, C, [\tilde{H}^* 0]^\top, \tilde{\Lambda}),
$$

where $\tilde{H} \in \mathbb{R}(q)^{c \times c}$, with $c = |C|$, is minimum phase, monic, and $\tilde{\Lambda} \in \mathbb{R}^{c \times c}$ is positive semi-definite.

Proof. We first exploit the structure of the noise spectrum $C\Phi C^T$ of M. Based on the measured signals w_C, an immersed network model, which only represents the behavior of the measured signals, can be obtained by eliminating the unmeasured signals (Dankers et al., 2016). We first define that

$$
\tilde{G} \triangleq G_{CC} + G_{CZ}(I - G_{ZZ})^{-1}G_{ZC},
$$

and \tilde{H} similarly, where, for example, G_{CZ} represents the submatrix of G that has its rows and columns corresponding to the signals in C and Z, respectively. Then the immersed network model has the following form:

$$
w_C = \tilde{G} w_C + \tilde{H} r(t) + \tilde{H} e(t).$$

Note that $(I - \tilde{G})$ has a proper inverse because of Assumption 1(c) and consequently $(I - \tilde{G}^{-\infty})$ being full rank. This model further leads to an external-to-internal mapping:

$$
w_C = (I - \tilde{G})^{-1}\tilde{H} r(t) + (I - \tilde{G})^{-1}\tilde{H} e(t).$$

Based on (3) and (7), it can be found that

$$
C\Phi C^T = (I - \tilde{G})^{-1}\tilde{H} \Lambda \tilde{H}^* (I - \tilde{G})^{-*},
$$

where it holds that

$$
C(I - \tilde{G})^{-1}C^T = (I - \tilde{G})^{-1}.
$$

Moreover, $\tilde{H} \Lambda \tilde{H}^*$ can be re-factorized into $\tilde{H} \tilde{\Lambda} \tilde{H}^*$ (Gevers et al., 2019), which together with (8) and (9) leads to

$$
C\Phi C^T = C(I - \tilde{G})^{-1} \begin{bmatrix} \tilde{H} \\ 0 \end{bmatrix} \tilde{\Lambda} \begin{bmatrix} \tilde{H}^* \\ 0 \end{bmatrix} (I - \tilde{G})^{-*} C^T.
$$

The above equation implies that the external-to-output mapping of (6), i.e.

$$
w_C = C(I - \tilde{G})^{-1} R r + C(I - \tilde{G})^{-1} \begin{bmatrix} \tilde{H} \\ 0 \end{bmatrix} \bar{e},
$$

leads to the same object $(CTR, C\Phi C^T)$ as (3).

Based on the above result, the measured process (w_C, r) modeled by M can also be equivalently modeled by \tilde{M} in (6), which has noise-free unmeasured internal signals and a transformed noise signal \bar{e} with covariance matrix $\tilde{\Lambda}$. This noise model is simpler than the one in M. More importantly, \tilde{M} keeps the same G, R, C matrices as in M. This invariance of G is important for the identifiability analysis and the identification of network modules.

The equivalence between M and \tilde{M} is obtained due to the freedom in transforming the unmeasured internal signals and modeling the noises, since the objects in (4) only reflects the properties of the measured processes. Therefore, \tilde{M} may describe different unmeasured processes from w_Z in M due to the possible change in its stochastic properties. However, for the simplicity of notation, we still use w_Z and \bar{X} to denote the unmeasured internal signals and the external signals in \tilde{M}, respectively.

3.2 Identifiability for the equivalent network

Since a network M and its corresponding \tilde{M} are equivalent and contain the same G matrix, both of them can be used to model the same data set, i.e. the measured (w_C, r), for the identification of the modules in a dynamic network (1). In the previous section, it is discussed that \tilde{M} in (6) can potentially be a better option due to its simpler noise model. In this section, we further show that the noise model of \tilde{M} is also beneficial for the identifiability analysis.

From now on, let \mathcal{M} denote a model set obtained from the parameterization of \tilde{M} with a parameter θ, as described in Section 2.2. It can be found that under mild conditions, the power spectrum $C\Phi C^T$ of \mathcal{M} admits a unique spectral factor $T[\tilde{H}^* 0]^\top$, which implies that the identifiability concept can be simplified as follows.

Assumption 3. In network model set \mathcal{M}, $G(q, \theta)$ is parameterized to be strictly proper.

Proposition 1. For a network model set \mathcal{M} that satisfies Assumptions 2, 3 and defining

$$
T_{WX} \triangleq (I - G)^{-1} X, \quad X \triangleq [R \begin{bmatrix} \tilde{H} \\ 0 \end{bmatrix}],
$$

implication (5) for \mathcal{M} can be equivalently formulated as

$$
CT_{WX}(q, \theta_0) = CT_{WX}(q, \theta_1) \Rightarrow G_{ji}(\theta_0) = G_{ji}(\theta_1),
$$

for all $\theta_i \in \Theta$.

Proof. The proof is analogous to the proof for Proposition 1 in (Weerts et al., 2018).

The above result indicates that the mappings from both r and \bar{e} to the measured internal signals can be used for analyzing identifiability in \mathcal{M}, and thus the unmeasured noise signal \bar{e} plays the same role as the measured $r(t)$ for the identifiability analysis. In this case, we say that \bar{e} acts as excitation sources for the identifiability analysis. By contrast, when a model set of a general network model is considered, the simplification in Proposition 1 cannot be achieved, and thus identifiability of this model set involves spectrum $C\Phi C^T$ and the mapping from r to w_C, i.e. only r signals can be used as excitation signals as considered in (Hendrickx et al., 2019; Bazanella et al., 2019).

3.3 Consequence for the graphical identifiability test

Due to the advantages of \tilde{M} over a general model M, we regard the model set \mathcal{M} of \tilde{M} as the standard network model set for identifying the modules in the setting with partial measurement and partial excitation.

A graphical identifiability test is developed to show the consequence of using \mathcal{M}. Some entries in matrices $G(q, \theta), R, H(q, \theta)$ in \mathcal{M} may be fixed to zeros, which reflect the modeling assumptions of the user; and the non-zero entries in G and H are parameterized by θ.

© 2021 the authors. Accepted by IFAC for publication under a Creative Commons License CC-BY-NC-ND 266
Assumption 4. The transfer functions in \(M \) are parameterized independently.

The sparsity patterns of the network matrices in \(M \) lead to a graphical representation \(\mathcal{G} \) of \(M \), with a vertex set \(\mathcal{X} = \mathcal{X}_0 \cup \mathcal{W} \), which denotes all the external and internal signals, and the set of directed edges \(\mathcal{E} \) representing the entries that are not fixed to zero, e.g., a directed edge from \(w_i \) to \(w_j \) exists if \(G_{ji}(q, \theta) \) is not fixed to zero.

In addition, we introduce several graphical concepts. Given two vertex sets \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \), a vertex set \(\mathcal{D} \) is said to be a \(\mathcal{V}_1 \) \(\rightarrow \mathcal{V}_2 \) disconnecting set if \(\mathcal{D} \) intersects all the directed paths from \(\mathcal{V}_1 \) to \(\mathcal{V}_2 \). Two directed paths are vertex disjoint if they do not share any vertex, including the starting and ending vertices. We use \(b_{\mathcal{V}_1 \rightarrow \mathcal{V}_2} \) to denote the maximum number of vertex disjoint paths from \(\mathcal{V}_1 \) to \(\mathcal{V}_2 \).

The sparsity patterns of the network matrices in \(M \) can be computed by standard graphical algorithms without directed edges to unmeasured \(\mathcal{V}_1 \) \(\rightarrow \mathcal{V}_2 \) \(\mathcal{D} \) disconnecting set \(\mathcal{D} \subseteq \mathcal{W} \) such that

\[
\begin{align*}
(1) \ b_{\mathcal{X}_1 \rightarrow \mathcal{X}_2 \setminus \mathcal{X}_1} & = |\mathcal{D}| + 1; \\
(2) \ \{w_i, w_j\} \subseteq \mathcal{D} \subseteq \mathcal{C}.
\end{align*}
\]

Proof. This result is a direct extension of Theorem 4 in (Shi et al., 2020c) which assumes all internal signals are measured, and thus the proof is omitted.

The above result shows that when the output \(w_j \) is measured, it is sufficient to measure and excite the signals in \(\{w_i\} \cup \mathcal{D} \) instead of all the inputs of \(w_j \). Disconnecting sets can be computed by standard graphical algorithms (Schrijver, 2003). More importantly, by making use of \(M \), the excitation for \(\{w_i\} \cup \mathcal{D} \) comes from both \(r \) and unmeasured \(\hat{r} \). By contrast, we can consider only \(r \) signals when a general model set is considered.

4. CONCLUSIONS

We have developed an approach to exploit noise excitation for identifiability analysis of linear dynamic networks, in the setting with partial measurement and partial excitation. By introducing the concept of equivalent networks, a novel network model structure has been developed, based on which the unmeasured noises have been exploited as excitation sources in the identifiability analysis.

REFERENCES

