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Abstract: A local model-based method for fault detection and diagnosis (FDD) in large-scale
interconnected network systems is introduced, using models in a dynamic network framework.
To this end, model validation methods are developed for validating single modules in a dynamic
network, which are generalized from the classical auto- and cross-correlation tests for open- and
closed-loop systems. Invalidation of the model can indicate the detection of a fault in the system.
A fault diagnosis algorithm is developed that includes fault isolation and optimal placement
of external excitation signals. Numerical illustrations demonstrate the method’s capability to
detect a fault in a local module and isolate it within the entire network system.
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1. INTRODUCTION

Modern large-scale interconnected network systems, such
as power grids, distributed control systems, and communi-
cation networks, are essential in various areas of daily life.
In recent years, there has been a growing interest in de-
veloping data-driven modeling for those network systems
within the field of system identification, employing the dy-
namic network framework, see e.g. Gonçalves and Warnick
(2008); Van den Hof et al. (2013); Gevers et al. (2019). A
dynamic network model describes the input–output be-
havior between each pair of observed signals in a network
system, as well as its spatial interconnection structure,
referred to as the network topology. This dynamic net-
work framework provides a comprehensive perspective for
understanding and analyzing network systems and facil-
itates the development of advanced fault detection and
diagnosis (FDD) techniques. This research focuses on the
development of FDD methods for local systems that are
interconnected in large-scale network systems (Khorasgani
et al. (2015); Dowdeswell et al. (2020)).
While identification methods for full networks or local
(sub)systems in a dynamic network have been introduced
(Materassi and Salapaka (2012); Van den Hof et al. (2013);
Dankers et al. (2016); Weerts et al. (2018); Gevers et al.
(2019); Ramaswamy et al. (2022); Fonken et al. (2022)),
tools for model validation and subsequent model-based
FDD methods are mostly lacking. Model-based FDD is
typically based on the concept of model invalidation: if
the collected data invalidates an existing accurate model,
it can indicate potential faults, possibly with information
for further diagnosis (Gertler (1998)). It is this principle
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that we are going to address for subsystems in an intercon-
nected dynamic network. Firstly, we are going to analyse
which classical model (in)validation tests are appropriate
for use in a dynamic network setting, and which diagnostic
conclusions can be derived from each of them. This con-
cerns autocorrelation tests of model residuals, and cross-
correlation tests with either measured node signals and
external excitation signals. Secondly, appropriate combi-
nations of tests will be selected to detect and diagnose
faults in particular modules.

In our approach, we will decompose the network into
multi-input-single-output (MISO) subnetworks for which
model validation tools based on residual analysis will be
analyzed, while taking account of their embedding in a
larger network. The typical situation for dynamic networks
is that validation tests provide information on a set of
modules so that the tests will need to be combined appro-
priately to arrive at statements on single modules.
After presenting the network setup in Section 2, we
will present basic correlation tests to be used as model
(in)validation tests in the dynamic network framework.
Sections 4 and 5 describe how to use the model validation
tests for FDD respectively. Numerical illustrations of the
developed FDD procedure with a 3-node network model
are collected in Section 6.

2. NETWORK SETUP

2.1 MISO subnetwork setup

Following the setup as in Van den Hof et al. (2013), a
dynamic network model is built up of L node signals
wj(t), j ∈ L with L = [1, L] the index set of all node
signals. Each node signal wj can be written as:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t), (1)
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where q−1 is the delay operator, i.e. q−1u(t) = u(t− 1);

• G0
jk(z) is a strictly proper rational transfer function,

representing a direct causal connection from wk to
wj ;

• Nj is the set of indices of node signals wk, k ̸= j,
for which G0

jk ̸= 0, referred to as the in-neighbors of
node wj ;

• vj is a process noise, where the vector process v =

[v1 · · · vL]⊤ is modeled as a stationary stochastic pro-
cess, according to v(t) = H0(q)e0(t), H0 ∈ RL×p(z),
a proper and stable transfer function matrix with

p ≤ L and e := [e1 · · · ep]⊤ a vector white noise
process with var(ei) = σ2

i . In this paper, we make
the particular assumption that each node is directly
influenced by only one innovation source, i.e. each
column of H0(q) has only one nonzero entry. This
encompasses the situation of full-rank uncorrelated
disturbance (p = L, H0 diagonal), as well as the
situation of reduced-rank disturbance (p < L), see
e.g. Weerts et al. (2018);

• rj is an external excitation signal that is quasi-
stationary and can be manipulated by users and is
assumed to be independent of the disturbance vj .

Further, we assume that the network is well-posed and
stable (Van den Hof et al., 2013), that all node signals
wj are measured, and that all e signals are white noise
processes with zero mean and finite fourth-order moments,
according to Söderström and Stoica (1989) Lemma B.3.

2.2 Topology information

To characterize the network interconnection structure
(topology), we utilize a directed graph that captures both
the locations and causal directions of interconnections in
the network. This graph can be mathematically repre-
sented by binary (adjacency) matrices TG ∈ RL×L and
TH ∈ RL×p, according to:

TG(j, i) = 0, if G0
ji ≡ 0; TG(j, i) = 1, elsewhere,

TH(j, i) = 0, if H0
ji ≡ 0; TH(j, i) = 1, elsewhere.

In this study, TG is assumed to be available, while TH
may be known or unknown. To streamline the utilization
of information of the TG and TH , we further introduce the
subsequent set definitions.

Definition 1. In the graph of the network, we define the
following sets of node indices for each node wi:

• Ci: the set of node indices k, including i, for which
either a directed path exists from wk to wi, or from wi

to wk with k ̸= i, or both wk and wi have a path from
the same innovation source. The set Ci encompasses
all node signals that are correlated with wi;

• Ji: the set of node indices k, including i, for which a
directed path exists from wi to wk. Notably, set Ji is
a subset of Ci by definition, i.e. Ji ⊂ Ci;

• Vj : the set of node indices k, for which a path exists
from the innovation source e of wj .

Considering the MISO subnetwork with the output node
w5 in Fig. 1, we have N5 = {1, 2, 3, 4} and V5 = {3, 4, 5}.
For the in-neighbor nodes, we have C1 = {1, 2, 3, 5},

J1 = {1, 3, 5}, C2 = J2 = {1, 2, 3, 5}, C3 = {1, 2, 3, 4, 5},
J3 = {3, 5}, C4 = J4 = {3, 4, 5}.

w1 w2 w5 w4

w3

G0
12 G0

52 G0
54

G0
34G0

53

G0
51

H0
42

e2

H0
52

G0
35H0

11

e1

H0
21

H0
31

Fig. 1. An example dynamic network with five nodes.

2.3 One-step-ahead prediction error

The model validation technique in this study is based on
the analysis of the prediction error on the output node
wj(t) of the target MISO subnetwork, which is generated
from the one-step-ahead predictor ŵj(t | t− 1) defined in
Van den Hof et al. (2013). We consider a data-generating
system denoted by (G0(q), H0(q)) and a specific model

(Ĝ(q), Ĥ(q)), with the output prediction error:

ε̂j(t) = Ĥj(q)
−1[wj(t)−

∑
k∈Nj

Ĝjk(q)wk(t)− rj(t)]. (2)

When substituting data from the data-generating system,
this leads to the residual signal:

ε̂j(t) = Ĥj(q)
−1(

∑
k∈Nj

∆Ĝjk(q)wk(t) +H0
j (q)ej(t)︸ ︷︷ ︸

v̂j(t)

),
(3)

with ∆Gjk(q, θ) = G0
jk(q) − Ĝjk(q). The signal v̂j(t) is a

reconstruction of the disturbance vj(t), provided that the
model is correct.

3. LOCAL SUBNETWORK MODEL VALIDATION

The objective of the MISO subnetwork model validation is
to determine whether the MISO model {ĜjNj

(q), Ĥj(q)}
can explain the measured data set {wNj

(t), wj(t)}, po-
tentially together with external input data rk(t), of the
current system {G0(q), H0(q)}.
Typical residual tests in open-loop and closed-loop identi-
fication involve the autocorrelation function of the residual
ε(t) and its crosscorrelation with some given measured
signals. In the network situation, we consider three types
of correlation functions

• Rε̂j (τ) := Ē ε̂j(t)ε̂j(t− τ),

• Rε̂juk
(τ) := Ē ε̂j(t)uk(t− τ),

• Rv̂juk
(τ) := Ē v̂j(t)uk(t− τ),

with E := limN→∞
1
N

∑N−1
t=0 E and E the expectation

operator. uk(t) can be either a node signal wk(t), or an
external signal rk(t). The following two null hypotheses
form the test objectives of the correlation tests in the
context of the dynamic network framework:

• Hypothesis Ha: The residual ε̂j(t) is a realization of a
zero mean white noise process with variance σ2

ej .

Copyright © 2024 the authors. Accepted by IFAC for
publication under a
Creative Commons License CC-BY-NC-ND.

396



• Hypothesis Hb: The residual ε̂j(t) (or the predicted
perturbation v̂j(t)) is independent of past input uk.

The validity of Ha and Hb can be checked using tests on
the sample estimates of the three correlation functions.

Autocorrelation test Considering the residual {ε̂j(t)}N ,
if Ha is true, it follows from a variant of the central
limit theorem (Ljung, 1999) that the following distribution
holds:

1√
N

N∑
t=1

ε̂j(t)

 ε̂j(t− 1)
...

ε̂j(t−M)

 ∼ As N
(
0, σ2

ej · I
)
, (4)

where M represents the considered number of time lags.
For the time lag τ ∈ [1,M ], the τ :th row of this vector is√
NR̂N

ε̂j
(τ), where R̂N

ε̂j
(τ) is the estimated autocorrelation

function defined as R̂N
ε̂j
(τ) := 1

N

∑N
t=1 ε̂j(t)ε̂j(t− τ).

The asymptotic normal distribution in (4) implies that the
statistic Qa(N,M) defined as (Ljung (1999)):

Qa(N,M) =
N(

R̂N
ε̂j
(0)

)2

M∑
τ=1

(
R̂N

ε̂j (τ)
)2

, (5)

will have an asymptotic χ2-distribution:

Qa(N,M) ∼ As χ2(M). (6)

Consequently, hypothesis Ha can be tested using the
asymptotic distribution in (6). Given a residual signal
ε̂j(t), the autocorrelation test for Ha is:{

if Qa(N,M) ≤ cχ(α,M), then accept Ha;
otherwise, reject Ha with a risk equal to α,

(7)

where cχ (α,M) corresponds to the 1−α quantile of the χ2-
distribution withM degrees of freedom, i.e. for x ∼ χ2 (M)
it follows that Pr (x ≤ cχ (α,M)) = α.

Cross-correlation test Considering the residual {ε̂j(t)}N
(or predicted disturbance {v̂j(t)}N ), if Hb is true, the

statistic R̂N
ε̂juk

defined as R̂N
ε̂juk

=

1

N

 uk(1) uk(2) · · · · · · uk(N)
. . . · · · · · ·

...
uk(1) · · · uk (N −M + 1)


︸ ︷︷ ︸

Puk

·

 ε̂j (1)
...

ε̂j (N)


︸ ︷︷ ︸

ε̂j

,

(8)
asymptotically converges to a zero-mean Gaussian distri-
bution (Ljung (1999)):

R̂N
ε̂juk

∼ As N (0, P ) , with P =
1

N2
Puk

Λε̂jP
⊤
uk
, (9)

with the residual auto-covariance matrix Λε̂j = E
[
ε̂j ε̂

⊤
j

]
and the upper triangular matrix Puk

as defined in (8).

Douma et al. (2008) have shown that the statistic R̂N
ε̂juk

will asymptotically converge to a χ2 distribution with M
degrees of freedom when scaled and squared:

Qb(N,M) :=
[
R̂N

ε̂juk

]⊤
P−1

[
R̂N

ε̂juk

]
∼ As χ2(M). (10)

Then given a residual ε̂j(t) (or v̂j(t)) and an input signal
uk(t), the cross-correlation test procedure for Hb is the
same as (7) by replacing Qa(N,M) with Qb(N,M). If

the noise model Ĥj(q) is not available, v̂j(t) can be used
instead of ε̂j(t) for the cross-correlation test.

In the dynamic network framework, the result of the
correlation test is usually influenced by multiple esti-
mated transfer functions, mainly because the residual ε̂j(t)
and the predicted noise v̂j(t) are generated from all the

ĜjNj
(q) functions within a chosen MISO subnetwork. To

specify the possible validation outcomes of a particular
test, we introduce the concept of a target module set.

Definition 2. The target module set of a correlation test
is defined as the set of all module transfer functions
Gjk(q) that can be validated by this test. Dependent on
whether one signal m(t) or two signals m(t) and n(t) are
used in the test, the corresponding target module set is
denoted as Sm or Smn. If the correlation test is passed, all
modules within Sm (or Smn) are assumed to be validated;
consequently, the failed test implies the presence of at least
one invalidated module within the target module set Sm

(or Smn).

For specifying the target module sets for each of the
correlation tests, we will need to distinguish between three
categories of prior noise information:

(a) H0
j (q) is available a priori;

(b) Only the topology TH is available;
(c) No prior knowledge on H0

j (q) or TH is available.

We will now specify the target module sets for the different
correlations tests and for the different categories of prior
noise information.

Proposition 1. The autocorrelation test using ε̂j(t) is ap-
plicable only with the noise information under situation
(a). The target module set for the autocorrelation test is
given by Sε̂j = {Gjk | k ∈ Nj}.

The autocorrelation test verifies whether ε̂j(t) can be
regarded as white noise, which holds if and only if an
accurate noise model Ĥj is available and ∆Gjk(q, θ) =
0,∀k ∈ Nj in (3).

Proposition 2. The cross-correlation test using ε̂j(t) (or
v̂j(t)) and wi can be applied with the noise information in
situations (a) and (b). In situation (a), all node signals wi

for i ∈ Nj can be used to conduct the test; In situation
(b), node signals wi for i ∈ Nj \Vj can be used to conduct
the test. In both situations, the target module set of this
test is given by Sε̂jwi

= Sv̂jwi
= {Gjk | k ∈ Nj ∩ Ci}.

Given an accurate noise model, the correlation between ε̂j
and wi is induced only by ∆Gjk(q, θ) ̸= 0 in (3), where
wk has correlation to wi. Without the noise model, v̂j is
correlated wi, i ∈ Vj even with all ∆Gjk(q, θ) = 0, making
such node signals unavailable to conduct the test.

Proposition 3. The cross-correlation test using ε̂j(t) (or
v̂j(t) and ri can be used with the noise information under
all situations (a), (b) and (c). The target module set of
this test is given by Sε̂jri = Sv̂jri = {Gjk | k ∈ Nj ∩ Ji}.

For an excitation signal ri independent of the disturbance,
any correlation between ε̂j and ri will be induced by
∆Gjk(q, θ) ̸= 0 in (3), where ri has a path to Gjk.
The full proof of the above propositions is available in
Shi (2023). The applicable scenarios and target module
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Table 1. Target module sets for different correlation tests and prior noise information categories.

Tests

Target module sets Noise information
(a) H0

j (q) & TH (b) TH (c) None

Autocorrelation test with ε̂j Sε̂j , ∀j ∅ ∅

Cross-correlation test with ε̂j (or v̂j) and wi Sε̂jwi
, i ∈ Nj Sv̂jwi

, i ∈ Nj \ Vj ∅

Cross-correlation test with ε̂j (or v̂j) and ri Sε̂jri , i ∈ Nj Sv̂jri , i ∈ Nj Sv̂jri , i ∈ Nj

sets of three types of tests are summarized in Table 1.
Additionally, we indicate tests that use signals already
present in the data-generating system (wk or any existing
rk) as passive tests. Active tests involve r signals that need
to be added to the data-generating system. All passive and
active tests listed in Table 1 are regarded as applicable
tests.

4. LOCAL FAULT DETECTION

In this section, we focus on detecting a fault in a
MISO subnetwork with the output node wj using model
(in)validation techniques. A fault is characterized by a
change of dynamics in any of the transfer functions
{G0

jk(q)}, k ∈ Nj , and can include a transfer function

becoming disconnected (= 0). Since the faulty module

G0
jk(q) diverges from the healthy model Ĝjk(q), it can be

detected using the correlation tests presented in Section 3.

During fault detection (FD), it is presumed that the aim
is to detect a potential fault within the target MISO
subnetwork. For simplicity, we define the set of all modules
in this subnetwork as U , where U = {Gjk|k ∈ Nj}. It
is not necessary to employ all tests listed in Table 1 for
FD, instead, the objective is to choose the fewest tests
from Table 1 such that their combined target module sets
encompass set U . If any of the selected tests fails, we can
conclude that a fault has been detected within the target
MISO subnetwork. The selection of correlation tests for
FD is based on the following proposition:

Proposition 4. For correlation tests in the dynamic net-
work framework, it always holds that Sε̂jri ⊆ Sε̂jwi ⊆ Sε̂j .

Proof: According to Definition 1, Ji ⊆ Ci. Therefore,
(Nj ∩Ji) ⊆ (Nj ∩ Ci) ⊆ Nj . Consequently, {Gjk|k ∈ Nj ∩
Ji} ⊆ {Gjk|k ∈ Nj ∩ Ci} ⊆ {Gjk|k ∈ Nj}. ■

Proposition 4 indicates that the target modulus sets for the
three types of correlation tests listed in Table 1 gradually
decrease in size. Consequently, for each category of prior
noise information, it is important to prioritize the tests in
the diagonal blocks of Table 1 when selecting the test(s)
for FD, since their target module sets can include the most
modules within the set U .

5. LOCAL FAULT DIAGNOSIS

Upon detecting a fault in the target subnetwork, the
subsequent step for fault diagnosis is to identify its root
cause, which is to locate the specific faulty module. The
process to determine the location of a detected fault is
defined as fault isolation (FI) (Isermann (2006)). The FI
task within the target subnetwork can also be addressed
by the correlation test. Each correlation test has its own
target module set, and the modules in each set can vary.

To facilitate the description of all these target module sets,
we introduce the following definition:

Definition 3. Given a target subnetwork with output node
wj , and a selected category of prior noise information, then
the set Sj is defined as the set of target module sets of all
applicable tests.

To illustrate, the set Sj collects all target module sets in
a pre-chosen column of Table 1. According to Definition
2, the tests corresponding to the target module sets
containing the faulty module will fail, while the tests
corresponding to the target module sets not containing
the faulty module will pass. This allows us to locate the
detected faults in the target module set of a failed test or
even on a specific module by combining the results from
different tests.

Example 1. For the network shown in Fig. 1, there is a
detected fault in the MISO subnetwork with the output
node w5. Given the prior noise information under situation
(b), set S5 contains the following target module sets:

1. Sv̂5w1
= {G5k|k ∈ N5 ∩ C1} = {G51, G52, G53},

2. Sv̂5r1 = {G5k|k ∈ N5 ∩ J1} = {G51, G53},
3. Sv̂5w2

= {G5k|k ∈ N5 ∩ C2} = {G51, G52, G53},
4. Sv̂5r2 = {G5k|k ∈ N5 ∩ J2} = {G51, G52, G53},

Assuming that there is only one fault in this target
subnetwork, we can try to isolate the fault on a certain
module by combining the applicable tests. If the fault is
on G0

52, the first test will fail and the second test will pass.
Given that their target module sets follow Sv̂5w1

\ Sv̂5r1 ,
the test results will indicate that the fault location is on
G52. If the fault is on G0

53, the first and second tests will
fail at the same time. Given that Sε̂5w1

∩ Sε̂5r3 = {G53},
the test results indicate that the fault location is on G53.

As can be seen from Example 1, smaller module sets can
be obtained by performing set operations such as taking
the intersection or difference of different target module
sets. These smaller sets contain fewer modules or even one
module after sufficient set operations. In the process of
obtaining these smaller sets, the tests corresponding to the
used target module sets will contribute to FI. The resulting
smaller set is further specified by the following definition:

Definition 4. Define a set of modules S(Gjk) as a set
that (a) is composed of any element in set Sj , or the
result of any sequence of set operations of intersection and
difference applied to elements of Sj , (b) contains module
Gjk, and (c) is of minimal cardinality.

Note that S(Gjk) may be non-unique. If S(Gjk) only
contains module Gjk, a fault occurring on module Gjk

can be isolated; if set S(Gjk) contains other modules
apart from Gjk, a fault occurring on module Gjk can
only be isolated in the range of set S(Gjk). This analysis
procedure can also indicate the contributing correlation
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tests for FI, i.e. the tests that are used to obtain S(Gjk)
can guarantee to isolate a fault within the range of S(Gjk).
Since the analysis on S(Gjk) fully relies on setSj , it can be
done before the data-collecting experiment. The following
strategy will be followed to generate set S(Gjk) for each
Gjk in set U :

1. The algorithm starts by initializing S(Gjk) for each Gjk

in set U to be U , i.e. S(Gjk) = U ;
2. For each pair of sets Spq, Smn in Sj , compute their

intersection Spq ∩ Smn or difference Spq \ Smn in one
loop. Mark the result as a module set Snew;

3. For the resulting set Snew that satisfies Snew ̸= ∅ or
Snew /∈ Sj , add Snew to Sj ;

4. For each module Gjk ∈ Snew, if the size of Snew is
smaller than S(Gjk), update S(Gjk) to be Snew;

5. Record the correlation tests corresponding to the sets
used to obtain the new S(Gjk) for module Gjk;

6. Loop from step 2 to step 5 till no smaller sets Snew can
be obtained.

Step 5 of the above algorithm records all the contributing
correlation tests for FI. If the contributing tests include
active tests, the additionally required r signals need to be
allocated to the system before collecting data.

6. NUMERICAL ILLUSTRATION

A numerical illustration of the proposed FDD procedure
is provided. The data-generating network depicted in Fig.
2 is used. Disturbances v1, v2, v3 on each node originate
from independent innovation sources, detailed as:[

v1
v2
v3

]
=

H0
11 0 0
0 H0

22 0
0 0 H0

33

[
e1
e2
e3

]
, (11)

where V ar(e1) = 0.1, V ar(e2) = 0.2, V ar(e3) = 0.3. A
potential fault is considered to occur on module G0

12 when

it changes to a faulty module Gf
12. Specifications regarding

the module transfer functions and noise models can be
found in the appendix. FD and FI are conducted for three
scenarios, each with different levels of noise information
under situations (a), (b), and (c) as illustrated in Table
1. Both FD and FI consist of two phases: the correlation
test selection and the data-collecting experiments, which
will be illustrated sequentially. Based on Definition 1,
we have the node index sets N1 = {2, 3}, V1 = {1},
C2 = J2 = {1, 2, 3}, C3 = {1, 2, 3}, J3 = {1, 3}, which
are used to determine the target module sets of all tests.

G0
32 G0

13

G0
31

G0
12

w2 w3 w1

v2

v3

v1r3r2

Fig. 2. Example of a 3-node network, the target MISO
subnetwork is marked in blue. The potential faulty
module G12 is marked in red. The excitation r2 and
r3 (red) are not originally presented in the data-
generating system but can be added for FD and FI.

Fault detection The task of FD is to detect if there is a
fault in U = {G12, G13}. During the test selection phase,
the autocorrelation test using residual ε̂1 is chosen for
situation (a) since its target module set Sε̂1 = {G1k|k ∈
N1} = {G12, G13} can already cover set U without re-
lying on excitation signals. For situation (b), the cross-
correlation test using v̂1 and w2 with the target module
set Sv̂1w2 = {G1k|k ∈ N1∩C2} = {G12, G13} is selected for
the same reason as in situation (a). An alternative could
be another cross-correlation test employing v̂1 and w3,
given that Sv̂1w3 = {G1k|k ∈ N1 ∩ C3} = {G12, G13}. For
situation (c), the cross-correlation test that uses v̂1 and r2
is chosen since Sv̂1r2 = {G1k|k ∈ N1∩J2} = {G12, G13} =
U . This is an active test given that r2 is absent from the
data-generating network (see Fig. 2). Therefore before the
subsequent data-collecting phase, r2 is added to the system
for situation (c) as a white noise signal, characterized by
V ar(r2) = 5.
During the data-collecting phase, the selected tests for FD
are employed for each situation. The simulation runs with
a total data length of N = 10000. Initially, the module
G0

12 is configured to a healthy state, and it transitions

to the faulty state Gf
12 after N = 5001. Test levels are

computed at intervals of 500 steps with the collected data.
Each time before N ≤ 5000 when computing the test
level, all measured data is used; after N > 5000, the
test level is computed only based on the newest 5000
data point. The test result of situation (a) is given in
Fig. 3, while situations (b) and (c) show similar results.
The data-collecting experiment incorporated 100 Monte
Carlo simulations, the center of each sample point in Fig.
3 denotes the mean value of 100 simulations, while the
vertical line indicates its standard deviation.
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Fig. 3. Detect a fault with the validation tests in the target
MISO subnetwork as in Fig. 2 for noise information
(a) with test level Qε̂1 (black) against the confidence
threshold with α = 0.95 (red).

As shown in Fig. 3, a fault within the local subnetwork is
accurately detected.

Fault isolation The task of FI is to determine where
the fault originated. During the test selection phase, the
sets S1 are derived, collecting all target modules listed
in Table 1 for each situation, which is the input of the
algorithm in Section 5. For FI under each situation, the
algorithm selects two tests. Test 1 is the test used for
FD with its target module set equal to U , and Test 2
is a cross-correlation test using r3 with its target module
set Sv̂1r3 = {G1k|k ∈ N1 ∩ J3} = {G13}. Because the
combination of these two tests leads to S(G12) = U \

Copyright © 2024 the authors. Accepted by IFAC for
publication under a
Creative Commons License CC-BY-NC-ND.

399



Sv̂1r3 = {G12} and S(G13) = Sv̂1r3 = {G13}. Test 2 is
an active test so r3 is added to the system before the
subsequent data-collecting phase for each situation.
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Fig. 4. Isolate a fault with the validation tests in the target
MISO subnetwork as in Fig. 2 for noise information
(a) with the test levels Qε̂1 (black) and Qε̂1r3 (blue).

For the selected tests, the data-collecting phase for FI
is conducted with length N = 5000, with test levels
being calculated every 500 steps and each time using
all measured data. The test results of situation (a) are
illustrated in Fig. 3, while situations (b) and (c) show
similar results. The result shows a rapid increase in the test
level of Test 1 (black), surpassing the confidence bound,
while the test level of Test 2 (blue) consistently stays below
the bound. This outcome indicates that Test 1 fails and
Test 2 is passed. Combining two test results, it is deduced
that the detected fault is isolated in module G12.
In the FDD procedure, the active test using r3 is required
for FI under all situations (a), (b), and (c), while the active
test using r2 is additionally required only for situation (c).
Therefore, the numerical illustration for different levels
of noise information underscores the inherent trade-off
between noise information and the number of potentially
required active tests for FDD.

7. CONCLUSION

A local model-based FDD method has been developed for
interconnected systems, which employs model invalidation
tests in a dynamic network framework. Existing auto-
and cross-correlation tests are generalized to the dynamic
network situation for local subnetwork model validation.
Based on different levels of prior noise information, avail-
able correlation test(s) can be selected for FD within a
local subnetwork. Subsequently, for the fault diagnosis,
it is demonstrated that combining results from multiple
correlation tests enables the isolation of the detected fault
more precisely, even narrowing it down to a specific mod-
ule.

Appendix A. SIMULATED NETWORK

For the numerical illustration, the following transfer func-
tions for the data-generating network as in Fig. 2 are used.

G0
13(q) =

−0.2q−1

1−1.3q−1+0.6q−2 , H0
11(q) =

1+0.52q−1

1+0.41q−1 ,

G0
31(q) =

0.39q−1

1−0.8q−1+0.2q−2 , H0
22(q) =

1+0.44q−1

1+0.35q−1 ,

G0
32(q) =

−0.3q−1

1+0.6q−1+0.2q−2 , H0
33(q) =

1+0.52q−1

1+0.45q−1 .

G0
12(q) =

0.39q−1

1−0.8q−1+0.2q−2 , Gf
12(q) =

0.312q−1

1−0.8q−1+0.2q−2
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