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Abstract: The problem of identifying single modules in multiple-input-single-output (MISO)
systems is considered. A novel approach to distributed identification of MISO finite impulse
response systems is presented. The distributed identification is discerned by the local estimation
of local parameters, which correspond to a module in the MISO system. The local estimators
are derived from the standard recursive least squares estimator and require limited information
exchange. By Lyapunov’s second method, sufficient conditions are derived for asymptotic
convergence of the estimators to the true parameters in the absence of disturbances, which
lead to asymptotic unbiasedness in the presence of additive output disturbances.
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1. INTRODUCTION

Prediction-error identification methods provide a powerful
tool for obtaining consistent system parameter estimates
(Ljung, 1999). However, when dealing with large scale
interconnected systems, such as the ones arising from
biology or power grids, the identification problem becomes
more challenging. Given a network of linear dynamical
systems, various prediction error methods are readily
operational for identifying these systems (Rao et al., 1984),
(Van den Hof et al., 2013).

The identification problem of such large-scale systems can
typically be separated into multiple-input-single-output
(MISO) identification problems (Rao et al., 1984), (Van
den Hof et al., 2013). More precisely, identification of a
large-scale system can be performed via the identification
of MISO building blocks, on the basis of measurements
of multiple inputs and one, possibly disturbed, output.
Figure 1 shows such a MISO building block.

Although existing prediction error methods for dynamical
networks can consistently identify local modules (single-
input-single-output (SISO) systems), they require the out-
put signal and all input signals for a MISO identification
problem to be available centrally for global parameter
estimation. Central data collection and computation of the
module estimates may not always be desirable due to com-
putational constraints or desired flexibility. A further de-
composition of the MISO identification problem into SISO
identification problems to reduce computational complex-
ity was also suggested in (Rao et al., 1984). Therein, it
was proposed to perform a decomposition of the parameter
estimation via a Gauss-Seidel like algorithm, but a proof
of convergence is absent.

Distributed estimation has caught a vast amount of at-
tention in the literature. Existing approaches can be di-
vided into two distinct classes. The first class consists
of consensus based methods, discerned by collaborative
estimation of a global (common) parameter vector that
is performed via a number of interconnected estimators
(Mateos and Giannakis, 2012), (Papusha et al., 2014). The
second class is also enabled by collaborative estimation
via interconnected estimators. Therein each estimator is,
however, concerned with the estimation of a local param-
eter vector. We refer to the results derived for parameter
estimation in static large-scale systems (Marelli and Fu,
2015) and distributed state estimation in linear dynamical
systems via moving-horizon methods (Farina et al., 2010)
and Kalman filtering (Marelli et al., 2017).

In this work, we develop a distributed solution for the
MISO prediction error identification problem (Van den Hof
et al., 2013). Due to the simplifying property of yielding
output predictors that are linear in the parameters, finite
impulse response (FIR) model structures serve as a basis
for the developed distributed identification method. The
distributed identification scheme is composed of local
recursive parameter estimators that are coupled with local
SISO modules. Intercommunication of the local estimators
is accomplished via the transmission of scalar signals
between recursions.

2. PRELIMINARIES AND PROBLEM
FORMULATION

The sets of non-negative integers and non-negative re-
als are denoted by N and R≥0, respectively. Given a ∈
N, b ∈ N such that a < b, we denote N[a:b] :=
{a, a+ 1, . . . , b− 1, b}. Let In ∈ R

n×n denote the identity
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matrix. A function α : R≥0 → R≥0 is said to belong to
class K (α ∈ K), if it is continuous, strictly increasing and
α(0) = 0. It is said to belong to class K∞ (α ∈ K∞), if
additionally α(r) → ∞ as r → ∞. For an x ∈ R

n, let ‖x‖2,
or simply ‖x‖, denote the 2-norm of x.

2.1 Concepts from Lyapunov theory

Consider the discrete-time time-varying system

x(k + 1) = f(x(k), k), (1)

where f : Rn × N → R
n, f(0, ·) = 0.

Theorem 2.1. Let W : Rn × N → R be a scalar function,
for which there exist k1, k2 ∈ K∞ and a continuous scalar
function ρ : R≥0 → R≥0 such that

k1(‖ξ‖) ≤ W (ξ, τ), ∀(ξ, τ) ∈ R
n × N, (2)

W (ξ, 0) ≤ k2(‖ξ‖), ∀ξ ∈ R
n, (3)

∆W (ξ, τ) ≤ −ρ(‖ξ‖) < 0, ∀(ξ, τ) ∈ (Rn \ {0})× N, (4)

where ∆W (ξ, τ) := W (f(ξ, τ), τ + 1) − W (ξ, τ). Then
the origin is a globally uniformly asymptotically stable
equilibrium of (1).

The above theorem is a slight variation of (Mendel, 1973,
Theorem 4-3). In Theorem 2.1, we provide a relaxation on
the upper-bound condition in (3), but the proof follows
mutatis mutandis.

Definition 2.2. A function W : Rn × N → R that satisfies
(2), (3) and (4) is called a Lyapunov function for (1).

2.2 Prediction error set-up and least squares estimator

Consider a MISO system interconnection with m inputs
and a measured output that is corrupted by a noise signal
v(t), described by

y(t) =

m∑

i=1

Gi(q)ui(t) + v(t), (5)

where v(t) = H(q)e(t), with e(t) zero-mean white noise
with standard deviation σ for all t ∈ N. System (5) can, for
example, appear as a building block in dynamic networks
analyzed in (Van den Hof et al., 2013), cf. (Van den Hof
et al., 2013, Section 2.1). An example of such a MISO
system with m inputs is shown in Figure 1.

A prediction error identification problem for identifying
Gi(q), i ∈ N[1:m], is based on (Van den Hof et al., 2013):
an output prediction

ŷ(t, θ) := Ĥ−1(q, θ)

(
m∑

i=1

Ĝi(q, θ)ui(t)

)

+ (1− Ĥ−1(q, θ))y(t),

and the prediction error, defined by

ε(t, θ) := y(t)− ŷ(t, θ),

where Ĝi(q, θ) is a model of transfer function Gi(q), i ∈
N[1:m], depending on a to-be-estimated parameter vector
θ ∈ R

n.

Due to the possible independent parametrization and
advantageous property of yielding an output prediction
ŷ(t, θ) that is linear in the parameters θ, an FIR model
structure will be employed in the sequel. Utilizing an FIR
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Fig. 1. MISO system interconnection with m ∈ N subsys-
tems.

model structure, the noise model Ĥ(q, θ) = 1 is fixed and
the plant models are

Ĝi(q, θ) = Bi(q, θ) (6)

for all i ∈ N[1:m], where

Bi(q, θ) := bi0 + bi1q
−1 + · · ·+ bini−1q

−ni+1,

with ni ∈ N the number of parameters in the polynomial
Bi(q, θ), i ∈ N[1:m] Consequently, the output prediction is

ŷ(t, θ) =
m∑

i=1

Bi(q, θ)ui(t) =
m∑

i=1

ϕ⊤
i (t)θi, (7)

with θi := col(bi0, . . . , b
i
ni−1) and

ϕ⊤
i (t) :=

(
ui(t) · · · ui(t− ni + 1)

)
,

such that the total parameter vector is θ := col(θ1, . . . , θm)
and

ϕ⊤(t) :=
(
ϕ⊤
1 (t) · · · ϕ⊤

m(t)
)
.

GivenN ∈ N available data samples of y and ϕi, i ∈ N[1:m],
let the identification criterion be minθ JLS(θ), where JLS :
R

n → R is defined by

JLS(θ) :=
1

N

N−1∑

t=0

ε2(t, θ) =
1

N
‖y − Φθ‖22,

with vector y⊤ := (y(0), . . . , y(N − 1)) and matrix Φ⊤ :=
(ϕ(0), . . . , ϕ(N − 1)). The optimal parameter estimate is
explicitly known to be (Kay, 1993)

θ̂ := argmin
θ

JLS(θ) = (Φ⊤Φ)−1Φ⊤y. (8)

The parameter estimate θ̂ is referred to as the least squares
estimator (LSE). The covariance matrix of the LSE is
Σ = σ2(Φ⊤Φ)−1 (Kay, 1993).

2.3 Recursive least squares

In practice, computing the LSE can be undesirable when
all the data y and Φ are not available at once or when (8)
is computationally intractable, for example. Instead, one
can use a recursive LSE (Kay, 1993), which updates the
LSE each time new data is available.

Let θ̂(k) denote the LSE of θ based on k+1 data samples
y(k) = (y(0) · · · y(k))⊤ and Φ(k) = (ϕ(0) · · ·ϕ(k))⊤. The
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recursive LSE reads as follows (Kay, 1993). First, compute

the “batch” estimator θ̂(k) for k ∈ N:

θ̂(k) = (Φ(k)⊤Φ(k))−1Φ(k)⊤y(k), (9)

Σ(k) = σ2(Φ(k)⊤Φ(k))−1.

When new data is available, update the estimator accord-
ing to

θ̂(k + 1) = θ̂(k)

+ α(k)Σ(k)ϕ(k + 1)(y(k + 1)− ϕ⊤(k + 1)θ̂(k)),

α(k) :=
1

σ2 + ϕ⊤(k + 1)Σ(k)ϕ(k + 1)
.

The covariance matrix of the updated LSE is

Σ(k + 1) = (I − α(k)Σ(k)ϕ(k + 1)ϕ⊤(k + 1))Σ(k). (10)

Remark 2.3. The recursive LSE and covariance matrix can
be written in a more compact form, using the prediction
error definition and the matrix inversion lemma, as

θ̂(k + 1) = θ̂(k) + α(k)Σ(k)ϕ(k + 1)ε(k + 1, θ̂(k)), (11)

Σ−1(k + 1) = Σ−1(k) +
1

σ2
ϕ(k + 1)ϕ⊤(k + 1), (12)

respectively.

Remark 2.4. One can avoid the computation of a batch
LSE (9) completely, by initialization of the recursive LSE

(11) from “scratch” with θ̂(−1) = 0 and Σ(−1) = cI, with
c ∈ R≥0 (Kay, 1993).

2.4 Problem formulation

Given the prediction error identification problem for the
MISO system described in Section 2.2, central collection
of m input signals ui and one output signal y is required 1

for the central computation of θ̂, using either the LSE (8)
or the recursive LSE (11). From a distributed point of

view, however, local module parameter estimators θ̂i for θi,
may be preferred, due to computational or communication
constraints. We will refer to the concept of distributed
identification, as the local parameter estimation for Gi

via a local identification module, with intercommunica-
tion between local identification modules. The distributed
identification concept is illustrated in Figure 2: Each sub-
system Gi, i ∈ N[1:m] is coupled with an identification
module Ii, which measures input ui and is connected to
some module B, which measures the (shared) output y.
Module B describes the communication between modules
Ii and can be seen as a communication bus. Given this
distribution, two problems arise, related to the local iden-
tification and communication. Firstly, is there an Ii that
arrives at unbiased estimates of the true parameter θ0i ?
Consequently, if the answer is affirmative, what signals
have to be shared between the identification modules Ii,
i ∈ N[1:m], i.e., what should B describe?

Since the data matrix Φ is in general non-sparse, the iden-
tification problem minθ JLS(θ) is in general non-separable.
Therefore, it is not clear how the LSE (8) can be adopted
in a distributed identification scheme. The recursive LSE,
however, can be advantageous for the distribution of the
parameter estimation. Indeed, one can exploit structures
1 We remark that if all ui’s are uncorrelated, then SISO identi-
fication (without modelling other subsystems) provides consistent
estimates. This will lead to increased variance, however.
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Fig. 2. Distributed identification scheme with identifica-
tion modules Ii, i ∈ N[1:m] and communication mod-
ule B.

for the parameter covariance matrix Σ(k), such as diagonal
or block-diagonal structures, in order to “separate” the
estimation problem w.r.t. θi, i ∈ N[1:m]. Finally, asymp-
totic unbiasedness of the developed distributed identifica-
tion procedure should be assessed, i.e., we need to verify

whether limk→∞ E θ̂i(k) → θ0i , where θ̂i(k) denotes the
proposed estimator for θ0i based on k + 1 data samples.

3. DISTRIBUTED ESTIMATION ALGORITHM

Inspired by the recursive LSE (11), we develop a dis-
tributed recursive estimator: for each i ∈ N[1:m], let the

local parameter estimator θ̂i : N → R
ni be defined recur-

sively by

θ̂i(k + 1) = θ̂i(k) (13)

+ αi(k)Σi(k)ϕi(k + 1)(y(k + 1)−
m∑

j=1

ϕj(k + 1)θ̂j(k)),

with αi : N → R and Σi : N → R
ni×ni . Comparing the

local estimator update equation (13) with the recursive
LSE (11), the matrix Σi has the interpretation of a local

covariance matrix of θ̂i. Let Σi : N → R
ni×ni be defined

recursively by

Σ−1
i (k + 1) = Σ−1

i (k) +
1

γ2
i (k)

ϕi(k + 1)ϕ⊤
i (k + 1), (14)

with γi : N → R. The scalars αi(k) and γi(k) are related
to sufficient conditions for consistency of estimator (13),
which will be provided in Section 4.

Consider the stacked vector θ̂B(k) := col(θ̂1(k), . . . , θ̂m(k)).
Let AB(k) := diag(α1(k)In1 , . . . , αm(k)Inm

) and let
ΓB(k) := diag(γ1(k)In1 , . . . , γm(k)Inm

). Define accord-
ingly

ΣB(k) := diag(Σ1(k), . . . ,Σm(k)),

ϕB(k) := diag(ϕ1(k)ϕ
⊤
1 (k), . . . , ϕm(k))ϕ⊤

m(k).

For the estimator update we can then write

θ̂B(k + 1) = θ̂B(k) +AB(k)ΣB(k)ϕ(k + 1)ε(k + 1, θ̂B(k))

with

Σ−1
B (k + 1) = Σ−1

B (k) + Γ−2
B (k)ϕB(k + 1).

The latter equations seem to resemble (11) and (12), which
describe the recursive LSE. Note, however, that the matrix
ΣB is block diagonal, while the covariance matrix Σ is
dense, in general.
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Now, let identification module Ii be described by (13) and
(14) so that

Ii:







θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕ(k + 1)ε(k + 1, θ̂B(k))

Σ−1
i (k + 1) = Σ−1

i (k) +
1

γ2
i (k)

ϕi(k + 1)ϕ⊤
i (k + 1).

Writing the distributed estimator (13) as

θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕi(k + 1)

· (y(k + 1)− ϕ⊤
i (k + 1)θ̂i(k)−

∑

j∈N[1:m]\{i}

ϕ⊤
j (k + 1)θ̂j(k)),

it becomes apparent what information exchange is re-
quired between identification modules, assuming that each
module Ii can measure input ui(t) and receive output

y(t). The local recursive estimator θ̂i(k + 1), i ∈ N[1:m],
depends on an “autonomous” part plus a contribution
from other identification modules Ij , j ∈ N[1:m] \ {i}.
The inputs from other subsystems and parameter vectors

θ̂j are not required to be known. Indeed, only the scalar

products ϕ⊤
j (k + 1)θ̂j(k) ∈ R need to be known, for all

j ∈ N[1:m] \ {i}, which we will refer to as the local pre-
dictions. The appropriate communication can be achieved
if, for example, at every time step, each Ii sends the local

prediction ϕ⊤
i (k + 1)θ̂i(k) ∈ R to all other identification

modules Ij , j ∈ N[1:m]\{i} with a corresponding definition
for B. The latter corresponds to an all-to-all communica-
tion, however, and can be inefficient for large m. One can
instead consider B to be described by the static relation

B : ε(k + 1, θ̂B(k)) = y(k + 1)−
m∑

i=1

ϕ⊤
i (k + 1)θ̂i(k)

and consider the following distributed identification pro-
cedure to improve efficiency in the communication:

For all i ∈ N[1:m], initialize Ii at k = 0 with θ̂i(0) ∈ R
ni

and 0 < Σi(0) ∈ R
ni×ni . For each time k ∈ N perform

(i) For each i ∈ N[1:m], Ii measures ui(k + 1) and sends

the local prediction ϕ⊤
i (k + 1)θ̂i(k) ∈ R to B.

(ii) B measures y(k+ 1) and returns the prediction error

ε(k + 1, θ̂B(k)) to Ii, i ∈ N[1:m].

(iii) For each i ∈ N[1:m], Ii computes θ̂i(k+1) and Σi(k+1)
by (13) and (14), respectively.

4. CONVERGENCE ANALYSIS

Now that the central and distributed estimators are up-
dated according to (11) and (13), respectively, let us
analyze the asymptotic properties of the estimators. In
this section, we will first assume perfect measurements of
the system output y(t), i.e., the noise signal v(t) = 0 for
t ∈ N, and that system (5) is in the FIR model set, i.e.,
the output of the real system y(t) can be described by
y(t) = ϕ⊤(t)θ0. We will analyze the desired convergence

θ̂ → θ0 via Lyapunov’s second method, as was done in the
analysis of gradient algorithms for deterministic parameter
estimation in (Udink ten Cate and Verbruggen, 1978) and
(Mendel, 1973).

4.1 Central recursive LSE

We will briefly pay attention to a convergence result for the
recursive LSE, to show the analogy with the convergence

result for the distributed recursive estimator in Section
4.2.

Consider the estimator error θ̃(k) := θ̂(k) − θ0 ∈ R
n. In

the absence of noise (v(t) = 0), it follows from (11) that
the recursive LSE error dynamics are described by

θ̃(k + 1) = θ̃(k)− α(k)Σ(k)ϕ(k + 1)ϕ⊤(k + 1)θ̃(k), (15)

Σ−1(k + 1) = Σ−1(k) +
1

σ2
ϕ(k + 1)ϕ⊤(k + 1). (16)

Observe that the origin is clearly an equilibrium of differ-
ence equation (15).

Convergence The following result demonstrates that the
estimation error converges to zero for the recursive LSE in
the deterministic case, i.e., when the noise v(t) = 0 for all
t ∈ N. A similar result was proven in (Udink ten Cate and
Verbruggen, 1978, Appendix B), for a least-squares like
gradient algorithm.

Proposition 4.1. Let WC : Rn × N → R be defined by

WC(ξ, τ) := ξ⊤Σ−1(τ)ξ

and let Σ(k) satisfy (16). Assume that θ̃(k) and ϕ(k + 1)
are not orthogonal for all k ∈ N. Then WC : Rn × N → R

is a Lyapunov function for (15).

Remark 4.2. When θ̃(k) and ϕ(k + 1) are orthogonal, the
error system (15) is stable, but not guaranteed to be
asymptotically stable, and convergence cannot be con-
cluded. Orthogonality can, however, always be avoided by
utilizing input signals with sufficient independent frequen-
cies (Mendel, 1973).

4.2 Distributed recursive estimator

Estimator error dynamics Consider the distributed re-
cursive estimator (13). When no noise is present in the
measured output y(t) (v(t) = 0), the distributed estimator
update (13) can be written as

θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕi(k + 1)

·





m∑

j=1

ϕ⊤
j (k + 1)θ0j −

m∑

j=1

ϕ⊤(k + 1)θ̂j(k)





where we used y(k) =
∑m

j=1 ϕ
⊤
j (k)θ

0
j . Now, define the

error vector θ̃B(k) := θ̂B(k)− θ0 ∈ R
n. We then have

θ̃B(k + 1) = θ̂B(k + 1)− θ0

= θ̂B(k)− θ0 +AB(k)ΣB(k)ϕ(k + 1)

·
m∑

j=1

ϕ⊤
j (k + 1)(θj − θ̂j(k))

= θ̃B(k)−AB(k)ΣB(k)ϕ(k + 1)ϕ⊤(k + 1)θ̃B(k)

= F (k)θ̃B(k)

with F (k) := In −AB(k)ΣB(k)ϕ(k + 1)ϕ⊤(k + 1).

Recalling the difference equation for the gain matrix
ΣB(k), we conclude that the error behavior of the dis-
tributed recursive estimator (13) is described by

θ̃B(k + 1) = F (k)θ̃B(k), (17)

Σ−1
B (k + 1) = Σ−1

B (k) + Γ−2
B (k)ϕB(k + 1), (18)

where Γ−2
B (k) = diag(γ−2

1 (k)In1 , . . . , γ
−2
m (k)Inm

).
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Convergence The following result proves the existence
of the scalar functions γi(k) for each estimator, such that
the distributed estimation error vector converges to zero
in the deterministic case.

Theorem 4.3. Let WB : Rn × N → R be defined by

WB(ξ, τ) := ξ⊤Σ−1
B (τ)ξ

and let ΣB(·) satisfy (18). For all i ∈ N[1:m], let αi = αB ,

with αB(k) := (σ2 +
∑m

j=1 ϕ
⊤
j (k + 1)ΣB(k)ϕj(k + 1))−1.

Assume that θ̃B(k) and ϕ(k + 1) are not orthogonal for
all k ∈ N. Then there exist γi, i ∈ N[1:m], such that
WB : Rn × N → R is a Lyapunov function for (17).

Proof. We will first prove that there exists k1 ∈ K∞ s.t.
WB(ξ, τ) ≥ k1(‖ξ‖) for all (ξ, τ) ∈ R

n × N, by induction.
Let ξ ∈ R

n be arbitrary and let k1(r) := λmin(Σ
−1
B (0))r2.

We claim that WB(ξ, τ) ≥ k1(‖ξ‖) for all τ ∈ N. For
the base case τ = 0 the statement is true, since we
have WB(ξ, 0) ≥ λmin(Σ

−1
B (0))‖ξ‖2 = k1(‖ξ‖). Now, let

WB(ξ, k) ≥ k1(‖ξ‖) be true for some k ∈ N. Then

WB(ξ, k + 1) = ξ⊤Σ−1
B (k + 1)ξ

= ξ⊤Σ−1
B (k)ξ + ξ⊤ Γ−2

B (k)ϕB(k + 1)
︸ ︷︷ ︸

≥0

ξ

≥ ξ⊤Σ−1
B (k)ξ ≥ k1(‖ξ‖),

thus the statement is also true for k+1. We conclude that
WB(ξ, τ) ≥ k1(‖ξ‖) for all (ξ, τ) ∈ R

n × N.

For the upperbound, let k2(r) := λmax(Σ
−1
B (0))r2. Then

WB(ξ, 0) ≤ λmax(Σ
−1
B (0))‖ξ‖2 = k2(‖ξ‖) for all ξ ∈ R

n.

Let us now analyze the one-step-difference ∆WB(k) :=

WB(θ̃B(k+1), k+1)−WB(θ̃B(k), k). Using the distributed
estimator error dynamics (17), we find

∆WB(k) = θ̃⊤B(k + 1)Σ−1
B (k + 1)θ̃B(k + 1)

− θ̃⊤B(k)Σ
−1
B (k)θ̃B(k)

= θ̃⊤B(k + 1)
(
Σ−1

B (k + 1)− Σ−1
B (k)

)
θ̃B(k + 1)

+θ̃⊤B(k + 1)Σ−1
B (k)θ̃B(k + 1)− θ̃⊤B(k)Σ

−1
B (k)θ̃B(k)

= ∆WB(k)

+ θ̃⊤B(k + 1)
(
Σ−1

B (k + 1)− Σ−1
B (k)

)
θ̃B(k + 1),

where

∆WB := θ̃⊤B(k + 1)Σ−1
B (k)θ̃B(k + 1)− θ̃⊤B(k)Σ

−1
B (k)θ̃B(k)

= θ⊤BΣ
−1
B θ̃B − 2θ̃⊤Bϕϕ

⊤ΣBABΣ
−1
B θ̃B

+ θ̃⊤Bϕϕ
⊤ΣBAB)Σ

−1
B ABΣBϕϕ

⊤θ̃B

− θ⊤BΣ
−1
B θ̃B

= θ̃⊤Bϕϕ
⊤ΣBAB)Σ

−1
B ABΣBϕϕ

⊤θ̃B

− 2θ̃⊤Bϕϕ
⊤ΣBABΣ

−1
B θ̃B.

Now, since αi = αB for all i ∈ N[1:m], we have that ∆WB

simplifies to

∆WB = α2
B θ̃

⊤
Bϕϕ

⊤ΣBϕϕ
⊤θ̃B − 2αB θ̃

⊤
Bϕϕ

⊤θ̃B

= −αB(θ̃
⊤
Bϕ)

2
(
2− αBϕ

⊤ΣBϕ
)
,

so that ∆WB is negative when

0 < αB <
2

ϕ⊤ΣBϕ
.

Since αB = (σ2 +
∑m

j=1 ϕ
⊤
j ΣBϕj)

−1, the latter condition

is satisfied, such that ∆WB < 0.

By equation (18), the one-step-difference is equal to

∆WB(k) = ∆WB + θ̃⊤B(k + 1)Γ−2
B (k)ϕB(k + 1)θ̃B(k + 1)

= ∆WB +

m∑

i=1

1

γ2
i (k)

θ̃⊤i (k + 1)ϕiϕ
⊤
i θ̃i(k + 1)

≤ ∆WB +

m∑

i=1

1

γ2
i (k)

m∑

j=1

(θ̃⊤j (k + 1)ϕj)
2,

where we used the Cauchy-Schwarz inequality. The de-
crease condition ∆WB(k) < 0 is therefore satisfied when-
ever γi(k), i ∈ N[1:m], are so large that

m∑

i=1

1

γ2
i (k)

<
|∆WB|

θ̃⊤B(k + 1)ϕB θ̃B(k + 1)

for all k ∈ N, which is equivalent to the existence of
ρ : R≥0 → R≥0 such that (4) holds (Malisoff and Mazenc,
2009). This concludes the proof.

Remark 4.4. The proof of Theorem 4.3 gives exact con-
ditions on the scalar functions γi(k). When γi(k) = γi is
chosen to be a constant, it suffices to assume that γi ∈ R

is large enough, such that ∆WB(k) < 0.

In the presence of noise, the error dynamics for the
distributed estimator are described by

θ̃B(k + 1) = F (k)θ̃B(k) +G(k)v(k + 1),

with G(k) := AB(k)ΣB(k)ϕ(k + 1). The following result
provides sufficient conditions for asymptotic unbiasedness

of the distributed estimator θ̂B.

Proposition 4.5. Let
∏k

τ=t+1 F (τ)G(t) and v(t) be statis-
tically independent for all t ∈ N. If there exists a Lyapunov

function for (17), then limk→∞ E θ̂B(k) = θ0.

Proof. We refer the reader to the proof of (Mendel, 1973,
Theorem 2-5).

5. NUMERICAL EXAMPLE

Consider the data generating system (5) with m = 20

subsystems, so that y(t) =
∑20

i=1 Bi(q)ui(t) + v(t), with
Bi(q) = bi0+ bi1q

−1+ · · ·+ bini−1q
−ni+1 and v(t) zero-mean

white Gaussian noise with standard deviation σ = 0.1.
For this illustrative example, the subsystems Gi(q) of
the data generating system are constructed in a random
fashion as follows: each subsystem has ni ∈ N unknown
parameters, which is an integer drawn from a discrete
uniform distribution U{1, 10} using the Matlab function
randi, i.e., subsystem Gi has ni ∈ N[1:10] unknown

parameters. The constant parameters bji ∈ R, j ∈ N[1:ni],
i ∈ N[1:20], are drawn from a normal distribution N (0, 1)
in Matlab using randn. The total number of to-be-
estimated parameters is n =

∑20
i=1 ni = 102.

We apply the distributed recursive estimation procedure

from Section 3. The local estimators θ̂i : N → R
n
i are

described by (13) with αi = αB, i ∈ N[1:20], as defined

in Theorem 4.3. The matrices Σi : N → R
ni×ni are

described by (14), with γi(k) = γ = 100. For comparison,
we apply a corresponding central recursive estimator, i.e.,
the recursive LSE (11) with the update for the matrix
Σ : N → R

n×n described by Σ−1(k + 1) = Σ−1(k) +
γ−2ϕ(k + 1)ϕ⊤(k + 1) instead of (12).

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 7th IFAC Workshop on Distributed Estimation
and Control in Networked Systems. Received May 4, 2018.



0 200 400 600 800 1000
-3

-2

-1

0

1

2

3

Fig. 3. Evolution of the estimation error for all parameters

[θ̂]j − [θ0]j , j ∈ N[1:102], for the central identification
of a MISO system with m = 20 subsystems.
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Fig. 4. Evolution of the estimation error for all parameters

[θ̂B]j − [θ0]j , j ∈ N[1:102], for the distributed identifi-
cation of a MISO system with m = 20 subsystems.
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Fig. 5. Estimation error for the central estimator ‖θ̃(k)‖2

(blue) and distributed estimator ‖θ̃B(k)‖2 (red) for
γ = 100.

Figure 3 and 4 show the evolution of the estimation
error over time for the central and distributed estimator,

respectively, initialized in θ̂(1) = θ̂B(1) = 0 and Σ(1) =

ΣB(1) = 100I102. The overall estimation errors ‖θ̂(k) −

θ0‖2 and ‖θ̂B(k)− θ0‖2 are shown in Figure 5 in blue and
red, respectively. We observe a lower decrease rate for the
estimation errors in the distributed identification scheme
w.r.t. the central scheme, in general, while convergence is
observed for both schemes.

6. CONCLUSIONS

We have stated a recursive estimation algorithm for the
distributed identification of MISO FIR systems, derived
from a central recursive least squares estimator. The dis-
tributed identification scheme consists of local identifi-
cation modules, which estimate a subvector of the total
parameter vector. Via Lyapunov’s second method, we have
obtained sufficient conditions for asymptotic convergence
of the estimators to the true parameters in the absence
of noise, which leads to asymptotic unbiasedness in the
presence of a white noise signal at the system’s output.
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