
^ ° 3 Feasibility Prototyping 

3.3 A Matlab-Based Dynamic T E M Simulator 

Arturo Tejada, Arjan J . den Dekker and Paul M J van den Hof 

Delf t Center for Systems and Control, Delf t University of Technology, The Netherlands 

The Need for a Dynamical Simulator 

Next generation transmission electron microscopes (TEMs) will become auto­
mated measurement tools rather than image generating devices. They will be 
specifically designed to extract information from specimens, like particle size 
distiibution, chemical composition and structural information. Therefore, future 
electron microscope designs should take into account electro-mechanical 
requirements and particularly the sensing and actuation requirements needed to 
implement the feedback or feed forward control loops necessary for automation. 
They must also consider the coordination between the constituent parts, so that 
automated procedures may be executed. 

A software-based simulator would be a helpful and cost-effective tool to study 
different design alternatives, providing insight into what to design and how to 
design it. It needs to take into account the dynamical properties of the components 
of interest and allow easy testing of different closed-loop control ideas. Such a 
simulator should be capable of recording the temporal responses of components. 
Also, in the ideal case, it will simulate the video stream that the microscope would 
generate under the observed component responses. Eventually, the simulator 
should provide insight into the way current components and processes can be 
re-utilised or reconfigured to aid in the automation process. 

Implementing such a simulator requires an understanding of how the different 
internal components interact when setting paiticular variables of interest. For 
instance, the amount of defocus is set by the cuirent applied to the objective lens, 
perturbed by the position of the specimen in space which, in tum, is determined by 
the specimen holder and measured from images [1, 2]. In addition, it requires an 
understanding of the components' temporal (i.e. dynamic) properties, e.g. their 
reaction speed, and knowledge of their temporal sequencing, i.e. the order/timing 
of component operations. 

Implementing such a simulator for a TEM was started using Matlab's Simulink 
tools. Its architecture and capabilities are summarised next. 

Simulator Architecture and Capabilities 

The first step towards developing the simulator was to provide a model of the 
functionalities of cuirent TEM components and their relations from the point of 
view of a control engineer. Figure 3.12 shows an example of such a model. 

3.3 A Matlab-Based Dynamic T E M Simulator 39 

holder 

umi 

m c c l i a i i k s 

L-iinlrollcr 

Fig. 3.12 Functionalities of current T E M components f rom a control engineering perspective 

The boxes indicate components or processes whose dynamical models must be 
identified from first physical principles or through experiments [1]. For some of 
these boxes the models are known, or have been identified (see Sects. 7.2 and 7.3). 

Note that as long as these models are not yet available, for simulation purposes 
and testing the unknown models can be replaced by a sensible default behaviour, 
e.g. a constant gain. 

Additionally Fig. 3.12 shows a two-tier control structure. The lower tier con­
tains an array of local controllers in charge of regulating individual components or 
processes. The higher tier contains a high-level supervisor in charge of temporal 
and sequential coordination of the different components. It is also responsible for 
trade-offs between accuracy and performance, etc. The main difference between 
the supervisor and the local controllers is that the former generally displays finite 
dynamics. That is, in general it cannot be described by a differential or a difference 
equation. Instead, its dynamics are described by an automaton (see [6] and the next 
subsection). Finally, note that Fig. 3.12 also shows processes that are not easily 
described by either differential equations or automatons. These include, for 
instance, the image formation process, which is a statistical, time-varying counting 
process [3], and the image processing algorithms needed to estimate parameters of 
interest from images. 

The second step towards the simulator development is to peifom a timing 
analysis. Note from the above discussion that some components operate contin­
uously over time (e.g. the objective lens). Others operate only when they are 
triggered by an event (e.g. the image processing algorithm is executed only when 
an image is available). Operation of the first type of components is simulated by 
time-discretizing the differential equations that model their behaviour, using a 
small time step related to the component's dynamics, relevant from a system's 
perspective [4]. On the other hand, operations of event driven components are 
generated by the high-level supervisor whose associated automaton in turn triggers 



3 Feasibility Prototyping 

E1SIMTEM10 

D IS a a - ..'. : • - ^1 S tb B » » IB H 

Fig. 3.13 Simulink implementation of the T E M dynamic simulator 

the execution of function blocks. The function blocks themselves are used to 
execute complex Matlab code, such as image analysis, without affecting the 
simulation time (see [5] for details). 

Once the dynamical models are discretised and the structure of the supervisor's 
automaton specified, the simulator can be directly implemented in Matlab's 
Simulink, as shown in Fig. 3.13. The simulated components have been intercon­
nected following the architecture given in Fig. 3.12. This illustrates the simulation 
of current TEMs, allowing validation of the components and the cuiTent system 
behaviour. Adding the supervisor and advanced control algorithms (see Sects. 6.2, 
6.3 and 7.3) allows the use of the simulator in forward engineering, to provide 
early validation of new concepts and implementations. The functionalities cur­
rently available in this simulator include [7]: live display of TEM intemal signals 
(e.g. defocus, specimen position, etc.); 'live' image stream; online adjustment of 
magnification, defocus, beam tilt, specimen position, camera integration time, 
image rate, gun voltage, and camera pixel size; offline adjustment of image size; 
online defocus measurements; active coupling of the specimen's topography with 
the defocus level; and online defocus control. 

Note that the temporal coordination between the continuously operating com­
ponents and the event-driven component requires special attention. Although this 
coordination can be attained using ad-hoc methods and good engineering intuition, 
it is better to use systematic methods such as those in [6] to avoid developing a 
difficult-to-troubleshoot simulation. The next subsection provides some insight on 
these issues. 

3.3 A Matlab-Based Dynamic T E M Simulator 41 

On the Coordination of Continuous and Event-Driven Dynamics 

The events that trigger the response of event-driven components are issued by the 
high-level supervisor, which is in tum modelled by an automaton. The simplest 
automaton model is a finite state machine (FSM). Note that there is no timing 
information associated with an FSM. In practice, however, the input values do 
appear at particular times. I f the time step used to time-discretise the differential 
equations is small enough (see previous subsection), it can be assumed with small 
approximation error that the input values appear at integer multiples of the 
time step. This allows one to treat an FSM as a very specific type of discrete-time 
system whose state changes every 'tick' of a clock (with a period equal to the 
time step) and to implement it in Simulink." 

Note that FSMs can also be used to aid in the temporal coordination of com­
ponents, since they can divide the clock rate or provide counting mechanisms to 
trigger certain actions only after a certain number of clock periods (see e.g., [9]). 

Finally, as stated in the previous subsection, some processes in a TEM cannot 
be easily modelled via differential equations, automata or FSMs. For instance, the 
image formation process involves counting electrons, each of which has an 
associated equation of motion that depends continuously on the microscope's 
time-varying optical parameters. The flight time of each electron is in the nano­
second order, which is about 1 million times shorter than the time scale of the main 
TEM components. Furthermore a large number of electrons is needed to form an 
image. 

It is obvious that concurrently simulating the dynamics of the image formation 
process and those of the main TEM components is not a sensible way to go. The 
solution to this problem is to simulate these processes offline. For instance, 
to simulate the image formation processes the values of the optical parameters 
during a period of interest are provided to the off-line simulation, including the 
period of interest (e.g. 10 time steps). This data is then used by the function block 
to simulate and aggregate different image slices (one per time step), by approxi­
mating the optical parameters' variation with piece wise constant functions and 
using statistical image models (see [1, 3]). Note that, from the point of view of the 
simulator, the image slices are created offline in zero time (the Matlab function 
block consumes zero simulation time). Thus, the total image simulation time is 
equal to the period of interest (10 time steps in this example). In case additional 
delays are required (e.g. to simulate the CCD camera read-out time), they can be 
easily added to the simulator. 

^ Details on how to transform a direct graph into a discrete-time L T I system in Simulink can be 

found in 181. 


