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Abstract— A discrete-time Linear Parameter-Varying (LPV)
model can be seen as the combination of local LTI models
together with a scheduling signal dependent function set, that
selects one of the models to describe the continuation of
the signal trajectories at every time instant. An identification
strategy of LPV models is proposed that consists of the separate
approximation of the local model set and the scheduling
functions. The local model set is represented as a linear
combination (series expansion) of Orthonormal Basis Functions
(OBFs). The expansion coefficients are dynamically dependent
(weighting) functions of the scheduling parameters (depending
on time shifted scheduling). To approximate this dependency
class with a static one (non-shifted scheduling), a feedback-
based structure of the weighting functions is introduced. The
proposed model structure is identified in a two step procedure.
First the OBFs, that guarantee the least asymptotic worst-case
modeling error for the local models, are selected through the
Fuzzy Kolmogorov c-Max approach. With the resulting OBFs,
the weighting functions are identified through a separable least-
squares algorithm. The method is demonstrated by means of
simulation examples and analyzed in terms of applicability,
convergence, and consistency of the model estimates.

Index Terms— orthonormal basis, identification, LPV.

I. INTRODUCTION

Many physical/chemical processes exhibit parameter vari-

ations due to non-stationary or nonlinear behavior or depen-

dence on external variables. For such processes, the theory of

Linear Parameter-Varying (LPV) systems offers an attractive

modeling framework [1]. LPV systems are generally de-

scribed in either a State-Space (SS) or an Input/Output (IO)

representation [2], where the signal relations are considered

to be linear just as in the Linear Time-Invariant (LTI) frame-

work, but the model parameters are assumed to be functions

of a measurable time-varying signal, the so-called scheduling

variable p : Z → P. The compact set P ⊂ R
nP denotes the

scheduling space. Due to the parameter variation, the LPV

system class can describe both time-varying and nonlinear

phenomena. Practical use of this framework is stimulated

by the fact that LPV control design is well worked out,

extending results of optimal and robust LTI control theory to

nonlinear, time-varying plants [1], [3], [4]. However, it still

remains a problem how to develop/identify LPV models of

physical processes in a systematic fashion.

Recently several methods have been proposed, aiming

at global identification of discrete-time LPV models from
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measured data [5], [6], [7], [8], [9], [10]. Most approaches

exploit the fact that an LPV system S can be viewed as a

collection of “local” models connected by scheduling depen-

dent weighting functions [1], [11]. For a constant scheduling

signal: p(k) = p̄ ∀k ∈ Z, the LPV system S is identical to

an LTI system Fp̄. Thus, the set of local models of S is given

as FP = {Fp̄}p̄∈P. The p-dependent weighting function set,

that schedules on FP, is denoted by HP =
{
hp̄ (.)

}

p̄∈P. An

efficient way of LPV system identification can lead through

the separate identification of FP and HP.

Identification of FP is commonly accomplished in a ‘sam-

pled’ sense, by a number of LTI identification experiments

of S for a set of constant scheduling signals. Then, assuming

that the scheduling functions {hp̄} have a particular structure

of dependency, for instance polynomial, an interpolation

problem is formulated on P to obtain a global approximation

of S. Recent research showed that this approach should be

handled with care [2], [11], [12]. In [2] it was shown that for

general LPV systems, each hp̄ is a function of time-shifted

versions of p (dynamic dependency). Then, if a too simple

interpolation structure of {hp̄} is chosen (static dependency,

linear dependency, etc.), the interpolation based on state-

space or IO model parametrization can result in significantly

different models [2]. An additional concern of interpolation

is that the McMillan degree of the local systems {Fp̄} may

vary for different values of p̄ ∈ P. This shows that the

choice of a model structure which can incorporate aspects

of dynamical dependency and local order changes is crucial

for this identification approach.

The Orthonormal Basis Functions (OBFs)-based models

offer such a structure with a well worked-out theory in the

context of LTI system approximation and identification [13].

These functions, that provide bases for the system space H2,

are generated by a cascaded network of stable all-pass filters,

whose poles represent the prior knowledge about the system

at hand. This approach characterizes the transfer function of

a strictly proper LTI system as

F (z) =
∞∑

i=1

wiφi (z) , (1)

where {wi}
∞
i=1 is the set of coefficients and Φ∞ = {φi}

∞
i=1

represents the sequence of OBFs. Consequently, every Fp̄ ∈
FP can be represented as a linear combination of a given

Φ∞, i.e. FP ⊂ span {Φ∞}. In practice, only a finite number

of terms is used in (1), like in Finite Impulse Response

(FIR) models. In contrast with FIR structures, the OBF
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parametrization can achieve almost zero modeling error with

a relatively small number of parameters, due to the infinite

impulse response characteristics of the basis [13]. In this

way, it is generally possible to find a finite Φn ⊂ Φ∞,

with a relatively low number of functions n ∈ N, such

that the representation error for all Fp̄ is negligible. If a

data record is used where p is a varying signal, then by

assuming any linearly parameterized functional dependence,

like polynomial, of the scheduling function on the time-

shifted versions of p, an interpolation can be formulated with

dynamical p-dependency. In this way, global identification of

general LPV systems becomes available. Furthermore, local

order changes do not affect this parametrization [11], [14].

Two problems remain to be solved with the proposed

LPV identification approach. The first is to choose an OBF

set Φn, “sufficiently rich” to describe FP. In [15] a Fuzzy-

Kolmogorov c-Max (FKcM) approach was proposed to solve

this selection problem through the fusion of Kolmogorov n-

width theory for OBFs [16] and Fuzzy c-Means clustering

[17] of sample poles of FP. This approach guarantees in an

asymptotic1 sense the least worst-case local modeling error

for FP with the resulting OBFs [15], [14].

The second problem is that – in order to enable representa-

tion of the general LPV class – the weighting functions need

rational dynamic dependence on the scheduling parameters

(for a detailed discussion see [12]). The identification of such

functions is a difficult problem, as in practical situations the

required order of time shifts is unknown. This results in an

extra freedom of the model structure. In [11] the OBFs model

structure with static dependency was considered. This struc-

ture can represent LPV-SS systems where only the {B, D}
or the {C,D} matrices of an SS realization {A,B,C, D}
depend on p in a static way, as well as LPV-IO systems

where the autoregressive part has a particular dependency

structure. In this paper, we aim at the approximation of

dynamic dependencies, using a feedback-based structure of

weighting functions with static dependency. It is shown that

this weighting structure can approximate a wide class of dy-

namical weighting functions, enabling better approximation

of most LPV systems, while retaining the merits of static

dependency.

The paper is organized as follows: Section II describes an

OBFs based model structure and its properties for LPV sys-

tem approximation; in Section III feedback based weighting

functions are introduced for the approximation of dynamic

dependencies while in Section IV identification of the pro-

posed model structure is described; in Section V applicability

of the approach is shown through an example; and in Section

VI, the main results of the paper are discussed.

II. LPV OBF MODEL STRUCTURES

As stated, OBFs based identification has attractive prop-

erties in the LTI case. To use them in the identification of

general LPV systems, we introduce a model structure, that

1In terms of m, the fuzziness parameter of the clustering algorithm. If
m → ∞, optimality is guaranteed (see [15]).
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Fig. 1. IO signal flow graph of the W-LPV OBF model described by (4),
with W = [w01 . . . wne,nb

].

consists of an OBF filter bank, connected to a weighting

function set with dynamic dependence on p. For reasons of

clarity we describe the model structure for the SISO case.

See Figure 1 for a schematic overview. In this figure the

symbol ⋄ is used to describe the evaluation of the function

W along p in a dynamic sense, as explained in more detail

later in this section. The structure has some resemblance

with nonlinear Wiener models2, important model classes

for chemical, biological, and sensor/actuator systems [18].

A fundamental difference with the classical Wiener models

is the dynamic nature of the output weighting (see [11]).

In the sequel the introduced structure is called a Wiener

LPV OBF model (W-LPV OBF) and its signal relations are

analyzed and the LPV system representation capabilities are

investigated. Let H2− (E) denote the Hardy space of strictly

proper functions, analytic on E, the exterior of the unit disk,

and squared integrable on the unit circle. In the following, we

consider the Hambo class of OBFs in H2− (E) defined as

follows [13]. Let Gb be an inner function with McMillan

degree nb > 1 and minimal balanced SS representation

{Ab, Bb, Cb,Db}. Denote by ej the jth standard basis vector

of R
nb , and let

φj(z) = eT
j (zI − Ab)

−1Bb. (2)

Then the Hambo OBFs, defined as

Φne
nb

= {φj(z)Gi
b}

i=0,··· ,ne

j=1,··· ,nb
, (3)

with ne = ∞ constitute a basis for H2− (E). Furthermore,

let R be the field of real meromorphic3 functions dependent

on variables {ζij}
j=1,...,nP

i=−nζ ,...,nζ
with nP, nζ ∈ N. Associate

each variable ζij with

ζij = qipj ,

where q denotes the forward time-shift operator and pj is

the jth element of p with P ⊆ R
nP .

Introduce the operator ⋄, such that for a given function

w ∈ R with variables {ζij}
j=1,...,nP

i=−nζ ,...,nζ
and a scheduling

signal p : Z → P:

(w ⋄ p)(k) = w
(

{pj(k + i)}
j=1,...,nP

i=−nζ ,...,nζ

)

.

In this way w can be used to represent a weighting function

with dynamic dependency on p. Then, the IO form of the

2LTI models with static output nonlinearity are called Wiener models.
3A real meromorphic function f : R

n
→ R is a function that is

differentiable except in a set of isolated points [19].
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W-LPV OBF model (Figure 1) of a SISO LPV system S is:

y =

ne∑

i=0

nb∑

j=1

(wij ⋄ p) φj(q)G
i
b(q)u

︸ ︷︷ ︸

y̆ij

. (4)

If FP ⊆ span
{
Φne

nb

}
, then every Fp̄ ∈ FP is realizable

by the W-LPV OBF model and the p-dependent transient

behavior of S is contained in {wij}. For this property,

generally infinitely many functions, ne = ∞, are required, so

using a finite number of basis functions restricts the class of

realizable LPV systems. In practice however, careful selec-

tion of the basis can ensure almost error free representation

of FP with a limited number of OBFs (see [15]).

Furthermore, if FP ⊆ span
{
Φne

nb

}
holds, then based on

[2] and [20], it can be shown that the introduced model

structures can completely represent any general LPV system

S (either IO or SS). In this way, (4) can be viewed as a

series expansion of the LPV system in terms of the LTI

bases with parameter dependent expansion coefficients. As

a series expansion, the W-LPV OBF model is also well

structured against changes of the local McMillan degree of

S. This shows that the introduced model parameterization is

not affected by problems that are common for other LPV

model parameterizations (see Section I).

III. APPROXIMATION OF DYNAMIC DEPENDENCY

The main purpose of the OBFs based model structure is

to give a flexible representation that is able to handle general

LPV systems and which is unaffected by local changes of

the system order. In order to describe any LPV system, the

weighting functions need to have dynamic dependency on

the scheduling signal p, which is an extra freedom of the

model structure. This means that in a practical identification

setting, a wrong choice of the functional dependency can

easily lead to over-parametrization or significant bias. To

overcome this problem, approximation with static depen-

dency was suggested in [11] for W-LPV OBF models, with

the drawback that this limits the class of representable LPV

systems. In this paper, we propose to still use weighting

functions with static dependency, but with the introduction

of an additional feedback loop around each basis component

with a gain incorporating also static dependency (see Figure

2). In this way, the filter bank of OBFs as a dynamical

LTI system is “reused” to provide dynamic output or input

weighting functions that can approximate the required class

of dependency for W-LPV OBF models. The introduction

of feedback-based weighting leads to a new model structure

given in Figure 2, which we call Wiener Feedback (WF) LPV

models.

Denote the input and output of each basis function in Φne
nb

by ŭij and y̆ij satisfying:

y̆ij = φj(q)G
i
b(q)ŭij . (5)

Let RnP
denote the field of real meromorphic functions with

variables
{
ζ0j

}nP

j=1
where each variable ζ0j is associated

with the jth element of p (without time-shift). So for w ∈
RnP

the notation w ⋄ p represents a weighting function with

W(p)

p(k)

y(k)

Static 

weighting

OBF

filter bank

φ 01

φ n n
e b

y01(k)
u(k)

V(p)

Static 
weighting

p(k)

+

+

yn n(k)
be

un n (k)
be

u01(k)

Fig. 2. IO signal flow graph of W-LPV OBF models with feedback based
static weighting functions V and W .

static dependency on p. To distinguish static from dynamic

dependency, we denote by w(p) the evaluation of a static

w ∈ RnP
along the scheduling trajectory p. Then for the

approximation of a SISO LPV system S, the WF-LPV OBF

model is given as

ŭij = u − vij (p) y̆ij , (6a)

y =

ne∑

i=0

nb∑

j=1

wij (p) y̆ij , (6b)

where each ŭij and y̆ij satisfies (5) additionally. Let

{Aij , Bij , Cij} be a minimal balanced SS realization of

φjG
i
b and introduce Ab = diag(A01, . . . , Anenb

) and define

Bb, and Cb accordingly. Denote W (p) = diag(w01(p), . . . ,
wnenb

(p)) and V (p) accordingly and let Eb = [1 . . . 1].
Then, the SS equivalent of (5) and (6a-b) is given as

qxb = [Ab − BbV (p)Cb)]xb + BbE
T
b u, (7a)

y = W (p)Cbxb. (7b)

Again, if FP ⊆ span
{
Φne

nb

}
, then every Fp̄ ∈ FP is realiz-

able by the WF-LPV model and the p-dependent transient

behavior of S is approximated by {wij , vij}. The following

theorem has a main importance:

Theorem 3.1: For any uniformly stable WF-LPV OBF

model, with OBF set Φne
nb

and static weighting functions

wij , vij ∈ RnP
, there exists a W-LPV OBF model associated

with dynamic weighting functions, such that both models are

equivalent in the IO sense.

See [12] for a proof of this theorem. The converse of

Theorem 3.1 does not hold in general. Hence, a WF-LPV

OBF model can generally only approximate an LPV system

S. However it is able to approximate the dynamic weighting

function class of the W-LPV equivalent representation of

S, through its feedback-based static weighting functions

wij , vij ∈ RnP
. Clearly such an approximation is more

adequate than a static approximation without feedback (each

vij = 0) which was applied in [11]. Equations (7a-b)
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imply that the WF-LPV structure can approximate parameter

dependence in the A matrix as well as parameter dependence

in the autoregressive part, see (6a-b), of LPV-SS and LPV-

IO models. It has wider representation capabilities than

the W-LPV OBF model structure with static dependency,

which is a special case of the WF-LPV structure. However,

this improved representation capability comes at a price,

namely that due to the feedback, stability of the model is

not internally guaranteed like in the W-LPV case. This also

yields that the equivalent W-LPV OBF model in terms of

Theorem 3.1 does not necessarily have the same basis. These

aspects, as we will see, can be crucial in identification of

LPV systems with the WF-LPV OBF structure.

IV. LPV IDENTIFICATION

In the following, an approach is proposed for identification

using the WF-LPV OBF model structure. As mentioned in

Section I, a key problem of OBFs based identification is

the choice of the basis functions Φne
nb

. For completeness,

first a practically applicable basis selection mechanism based

on [15] is briefly discussed. Then, assuming that a set of

basis functions is given, the WF-LPV identification approach

based on a separable least squares algorithm is presented.

A. OBF selection

Assume that a set of scheduling points P = {p̄i}
Np

i=1 ⊂ P

is given for a uniformly stable S, where it is expected

that FP =
{
Fp̄i

}Np

i=1
contains representative samples of the

dynamics of all systems in FP. Then the basis selection

procedure is as follows:

1) Determination of pole samples of the pole functionals

of S by LTI identification of each Fp̄ ∈ FP.

2) Determination of the optimal OBF set Φne
nb

for S based

on FKcM clustering [15]. The procedure also copes with

the uncertainty of the pole estimates.

This algorithm aims at optimality of the OBF selection

with respect to any LTI system that has its poles in the

clustered pole regions. The prior knowledge, i.e. the infor-

mation about the possible local poles of S, directly effects

the optimality of the selection.

B. Parameter estimation

Opposite to the basis selection approach, the second

step of the identification method utilizes only one data set

DNd
= {y (k) , u (k) , p (k)}

Nd−1
k=0 which is collected from

S with varying scheduling and it is assumed to be PE4 for

S. Assume a linearly parameterized functional dependence

of W (p) and V (p), for instance that each wij and vij

is a polynomial of the elements of p. To overcome the

nonlinear optimization problem associated with the parallel

estimation of the whole parameter set, the approach utilizes

a separable least squares optimization scheme [22]. In each

iteration cycle of this scheme, one set of the parameters

is fixed to enable a linear-regression-based estimation of

4PE stands for Persistently Exciting signals. Conditions are hard to be
drawn for general LPV systems and they are subject of research. See [21].

the other set. This results in a steepest descend algorithm

which is guaranteed to converge to a saddle point or a local

minimum, depending on the initial values of the parameters.

The procedure is given in detail as follows:

3) Parameterize each wij and vij of (6a-b) as

wij (p) =
∑nw

l=0 rwijlψ
w

l (p) , (8a)

vij (p) =
∑nv

l=0 rvijlψ
v

l (p) , (8b)

where {rvijl} and {rwijl} are real coefficients and

ψw

l , ψ
v

l ∈ RnP
are functional dependencies chosen by

the user with ψw

0 = ψv

0 = 1.

4) Choose an initial set of values for {rvijl}.

5) Use the data to compute ŭ = [ŭij ]
i=0,...,ne

j=1...nb
and y̆ =

[y̆ij ]
i=0,...,ne

j=1...nb
via (5) and (6a) with respect to the OBF

set Φne
nb

resulting in Step 2.

6) Estimate the parameter set {rwijl} by linear regression

with respect to fixed {rvijl}. This is done by defining

the regressors as

γT (k) = y̆ (k) ⊗ ψw (p (k)) , (9)

with ⊗ denoting the Kronecker tensor product and

with ψw = [ψw

0 . . . ψw

nw
]. Collect the data

into ΓNd
= [γ (0) . . . γ (Nd − 1)]

T
and YNd

=
[y (0) . . . y (Nd − 1)]

T
. Organize the parameters to be

estimated as Θw = [rw010 . . . rw01nr
. . . rwnenbnw

]T . Then

to minimize the prediction error criterion:

VNd
(Θw, DNd

) = 1
Nd

‖YNd
− ΓNd

Θw‖
2
2 , (10)

the analytic solution is

Θ̆w =
[

1
Nd

ΓT
Nd

ΓNd

]−1 [
1

Nd
ΓT

Nd
YNz

]

. (11)

7) Fix {rwijl} at the values obtained in Θ̆w and optimize the

other parameters {rvijl} in the following iterative way.

In each iteration step we calculate an update for each

element of Θv

ij = [rvij0 . . . rvijnv
] in parallel and choose

that element which gives the best improvement on the

prediction error of the model:

a) For each φij

(
= φjG

i
b

)
, compute

ỹij = 1
wij(p)

[

y −
ne∑

k=0,k 6=i

nb∑

l=1,l 6=j

wkl(p)y̆kl

]

.

If wij(p(k)) = 0 for some k, then do not consider

those time instants in the further procedure.

b) Collect each ỹij into Ỹ
(ij)
Nd

and u into UNd
sim-

ilarly to YNd
. Let Hij be the lower triangular

Toeplitz matrix of the Markov parameters as-

sociated with {Aij , Bij , Cij}. Define γT
ij (k) =

y̆ij (k) ⊗ ψv (p (k)) and collect it into Γ
(ij)
Nd

. Then

based on (7a-b) it holds that

Ỹ
(ij)
Nd

= HijUNd
− HijΓ

(ij)
Nd

Θv

ij + εij , (12)

where εij is the error term. Then estimation of Θv

ij

can be formulated as a linear regression, similarly
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Fig. 3. Typical convergence plot of the prediction error for the iterative
WF-LPV identification algorithm.

as in Step 6, with regressor HijΓ
(ij)
Nd

and data

HijUNd
− Ỹ

(ij)
Nd

.

c) For each element of Θv

ij compute the prediction

error of the model with only that element updated.

Choose the element which renders the smallest

error and only update the value of this element.

d) If the resulting prediction error did converge, stop,

else goto Step 7a.

8) If the prediction error also converged with respect to

both {rwijl} and {rvijl}, then stop, else goto 6.

Similar to the optimization schemes of LTI ARMAX or Box-

Jenkins models, the global optimum can only be obtained

by starting the iterative search from different initial values

and comparing the results [23]. A further problem may arise

when the resulting model estimate is unstable even if S
is uniformly stable. This phenomenon is due to the fact

that the feedback weighting is tuned on a particular, finite

scheduling trajectory (DNd
). As this feedback tuning can be

thought of as reoptimization of the basis with respect to DNd
,

the finite data length and the excitation capabilities of the

input and scheduling signals directly effect the estimation.

Consequently also consistency of the model estimates is

not guaranteed. However, as illustrated in Section V, the

proposed method quickly converges in practice and provides

a reliable estimate of LPV systems.

V. EXAMPLE

In this section, applicability of the introduced model

structure is illustrated. Comparison is also made with the

static weighting function based Wiener type of OBF model

structure without feedback, introduced in [11]. An asymptot-

ically stable LPV system S is considered, in LPV-IO form:

5∑

l=0

al (p (k)) y (k − l) = b1 (p (k))u (k − 1)

where p : Z → [0.6, 0.8] and a0 (p) = 0.58 − 0.1p,

a1 (p) = − 511
860 − 48

215p2 + 0.3(cos(p) − sin (p)), a2 (p) =
61
110 − 0.2 sin (p), a3 (p) = − 23

85 + 0.2 sin (p), a4 (p) =
12
125−0.1 sin (p), a5 (p) = −0.003, b1 (p) = cos(p). It can be

shown (see [15]), that the dynamic changes of S are quite

heavy between different constant scheduling points. Using

sample poles of FP associated with P = {0.2 + kα}
10
k=0 and

α = 0.04, the FKcM algorithm with fuzzyness m = 25
resulted in a OBF set Φ0

7 with poles:

{0.183, 0.147 ± 0.28i, 0.434 ± 0.322i, 0.352 ± 0.478i} .
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(a) multisine validation
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(b) uniform noise + multisine validation

Fig. 4. Typical validation results of identified WF-LPV OBF (dotted
red) and W-LPV OBF (dashed blue) models in the SNR=20dB case. The
response of the true system is given by solid green.

Identification of S was accomplished 100 times in 4

different noise settings with both model structures. The data

was generated by excitation of (u, p) based on uniform

noise (U(−0.5, 0.5),U(0.65, 0.75)) superimposed on ran-

dom multisines (3 sines with random phase and frequency

and with overall amplitude of 0.5 and 0.05). For each data

record, identification was accomplished in a noiseless setting

and also with additive white output noise with variance

σ2 = 0.01, 0.1, and 0.5. The resulting Signal to Noise Ratio

(SNR) was 35 dB, 20 dB, and 10 dB, while the relative

noise amplitude was 7%, 25%, and 54% in average for the

three noise cases. For the σ2 = 0.5 case Nd = 1000, and

in the other cases Nd = 500 sample long data records

were used. The functional dependence on p was chosen

to be polynomial for both W and V and the feedback

weights were initialized at zero. It was found that the

optimal order for these polynomial parameterizations is 2

for W and 3 for V with these basis functions. The method

converged in an average of 14 iterations for the 4 × 100
runs. A typical convergence plot is given in Figure 3 and the

outputs of the resulting estimates are shown in Figure 4. In

Table I, the (in)validation results are shown for deterministic

multisine (u, p) with random frequencies and phases and

also for uniform noise superimposed on random multisine,

similarly generated like the excitation in the data records.

As expected, both approaches identified the system with
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Validation by multisine Validation by uniform noise + multisine
MSE (dB) BFT (%) VAF (%) MSE (dB) BFT (%) VAF (%)

SNR W WF W WF W WF W WF W WF W WF

no noise -18.23 -31.32 85.39 94.04 97.84 99.55 -34.96 -39.75 90.04 92.40 99.00 99.42
35 dB -18.21 -31.30 85.38 93.64 97.82 99.53 -34.77 -39.17 89.92 92.15 98.99 99.39
20 dB -17.81 -21.60 85.17 89.30 97.75 98.52 -32.75 -35.01 88.69 90.06 98.71 99.00
10 dB -20.68 -22.60 86.27 88.44 98.47 98.98 -31.81 -32.38 87.73 88.15 98.19 98.59

TABLE I

VALIDATION RESULTS OF 100 IDENTIFICATION EXPERIMENTS WITH THE WIENER (W) AND THE WIENER FEEDBACK (WF) MODEL STRUCTURES.

adequate MSE5, BFT6, and VAF7 even in case of extremely

heavy output noise, which underlines the effectiveness of the

dual identification philosophy. For all measures, validation

signals, and noise cases, the WF-LPV OBF model provided

better estimates than the pure static dependency based W-

LPV model estimate. This clearly shows the improvement

in the approximation capability. Additional extension of Φ7

with ne = 1, 2, . . . did not improve the results as Φ7 is well

chosen with respect to S, i.e. the local modeling error is

negligible due to the FKcM [15]. Even in the SNR= 10dB

case, the model estimates proved to be accurate, showing

that the proposed identification scheme is applicable even in

harsh white noise conditions.

VI. CONCLUSION

In this paper, a feedback-based static weighting function

structure was proposed for the approximation of the dynamic

weighting functions of W-LPV representations of LPV sys-

tems. It was shown that such a weighting function structure

provides good approximations for dynamic dependencies, by

incorporating only a linear static parametrization over the

scheduling. Identification of the proposed model structure

was solved through a separable least squares approach.

Through an example, it was justified that the proposed

identification method provides fast and numerically stable

model estimates even in case of strong output additive white

noise. The presented approach provides an alternative for

LPV system identification where the produced models give

a close approximation of the original system and the method

overcomes problems of interpolation, representation of state-

space and IO models, and locally changing McMillan degree.
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