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Abstract— A global and a local identification approach are
developed for approximation of Linear Parameter-Varying
(LPV) systems. The utilized model structure is a linear combi-
nation of globally fixed (scheduling-independent) Orthonormal
Basis Functions (OBFs) with scheduling-parameter dependent
weights. Whether the weighting is applied on the input or on
the output side of the OBFs, the resulting models have different
modeling capabilities. The local identification approach of these
structures is based on the interpolation of locally identified
LTI models on the scheduling domain where the local models
are composed from a fixed set of OBFs. The global approach
utilizes a priori chosen functional dependence of the parameter-
varying weighting of a fixed set of OBFs to deliver global model
estimation from measured I/O data. Selection of the OBFs that
guarantee the least worst-case modeling error for the local
behaviors in an asymptotic sense, is accomplished through the
Fuzzy Kolmogorov c-Max approach. The proposed methods
are analyzed in terms of applicability and consistency of the
estimates.

Index Terms— orthonormal basis, identification, LPV.

I. INTRODUCTION

Recently, Linear Parameter-Varying (LPV) system theory

has received much attention [1], as many physical systems

and real-life control problems exhibit parameter variations

due to non-stationary or nonlinear behavior or dependence on

external variables, such as space coordinates. Accurate mod-

eling of such systems is in general a complex task, involving

the use of non-linear partial differential equations, leading

to models with many parameters and high computational

complexity. Moreover, there is a common need for accurate

and efficient control of the relevant process variables of these

systems.

For processes with mild non-linearities or dependence on

external variables, the LPV theory offers an attractive mod-

eling framework. LPV systems are generally described in

either a State-Space (SS) or an Input/Output (I/O) represen-

tation [2], where the parameters are smooth and continuous

functions of a time varying ’scheduling’ parameter vector

p(k) : Z → P, that schedules between local behaviors

of the system. The compact set P ⊂ Rnp denotes the

np−dimensional scheduling parameter domain. Practical use

of the LPV framework is stimulated by the fact that control

design for LPV systems, by using Linear Time Invariant

(LTI) control theory via gain scheduling [1] or by LPV

synthesis techniques like µ-synthesis [3] or optimal control
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[4], is well worked out, proved by a wide array of applied

LPV control solutions to aerospace systems [5], induction

motors [6], or CD players [7]. However, it still remains a

problem how to identify LPV models in a systematic fashion.

Recently, several global LPV identification methods have

appeared, estimating a model from measured data. This

comprises methods based on subspace techniques [8], [9],

[10], basis functions [11], Linear Matrix Inequalities (LMI’s)

based optimization [12], simple Least Means Square (LMS)

approaches [13], [14], stochastic framework based methods

[15], and on parameter estimation based gradient searches

[16], [17]. However, in practical use of these methods

commonly unaddressed problems occur, highly compromis-

ing the development of efficient controllers. One of these

problems is related to the utilized model structures. Basically,

all of the LPV identification methods can be categorized by

that the obtained models are either SS or I/O operator based.

In [2], the following fundamental problem was exposed:

Problem 1: (Equivalence classes) Equivalence classes1 of

LPV-I/O and LPV-SS systems with static (without memory)

dependency on p are disjunct. ¤

Therefore, SS identification methods are never capable to

fully identify an LPV system if it has an underlying LPV-I/O

structure (being true vice-versa), unless dynamic dependency

is introduced on p (dependency on past and future values

of p) which is out of the scope of all existing methods.

Additional problems are also present:

Problem 2: (Complexity) LPV identification techniques

often produce models in their specific domain with high

complexity or with substantial computational load. ¤

Because most control design methods require low-order

models, it is a challenge to develop efficient methods for LPV

system identification that yield models with limited complex-

ity and with feasible computational load. An additional point

of concern is minimality of the resulting models:

Problem 3: (Varying degree) The McMillan degree of the

local LTI systems representing the global LPV model for

constant p, may vary. ¤

This problem especially results in difficulties when the

identification approach is based on interpolation of fixed-

order local models like the approach of [18].

One way to overcome these problems is to utilize a flexible

model structure which can represent a given LPV system S
globally on P, even if S has an SS or I/O structure and

1The equivalence class of a LPV system (SS or I/O) is defined as the set
of all minimal LPV realizations which have the same I/O behavior and are
completely dependent on the same minimal length scheduling vector.
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it can also deal with the local order changes of S. To be

able to deduce this flexible structure, we recollect the well

known fact that an LPV system S can always be viewed as

a collection of ”local” behaviors FP = {Fp̄}p̄∈P, where S
is identical to the LTI system Fp̄ for constant scheduling:

p(k) = p̄ ∈ P, ∀k ∈ Z, and parameter dependent weighting

functions WP = {wp̄ (.)} p̄∈P that schedule between these

local behaviors [1].

Now this principle can be used in the following way: As

FP corresponds to a subset of the LTI system space, therefore

every Fp̄ ∈ FP can be represented as a linear combination

of the orthogonal basis of the LTI system space, denoted by

Φ∞ =
{
φj

}∞

j=1
. In practice, it is always possible to find a

finite Φn ⊂ Φ∞, n ∈ N, such that the representation error for

∀Fp̄ is negligible. Then Φn and their associated weighting

functions provide an efficient representation of S. Due to

the local equivalence of LPV-I/O and LPV-SS systems, such

representation can be used for modeling each type of LPV

system. Then, assuming that Φn is given, identification of

S reduces to the estimation of the p-dependent scheduling

weights Wn = {wj (.)}n
j=1 associated with Φn. This can

be accomplished either by interpolating the samples of Wn

related to local estimates of S at different constant scheduling

(local approach) or by parameterizing Wn by assuming a

functional dependence, like polynomial on p, and fitting the

resulting weight parameters such that the I/O behavior of the

model closely matches the behavior of S (global approach).

The problem that remains to be solved is to characterize

the set Φn and give a practical method to optimally choose it.

For stable LTI systems, rational Orthogonal Basis Functions

(OBFs) provide bases for the system space, resulting in a

well worked-out theory of system approximation and identifi-

cation [19]. Here, an essential challenge is to derive a set of n

OBFs, ’sufficiently rich’ to describe the different dynamics of

S for each constant p̄. Recently a Fuzzy-Kolmogorov c-Max

(FKcM) approach [11] has been proposed to solve the basis

selection problem through the fusion of the Kolmogorov n-

width theory for OBFs [20] and Fuzzy c-Means clustering

[21] of observed sample system poles, guaranteeing in an

asymptotic2 sense the least worst-case local modeling error

for FP with the resulting basis [11].

In this paper, we aim to extend LTI OBFs based identifi-

cation to the LPV case in order to deal with Problems 1-3

and give a practically applicable LPV identification method

that produces simple but efficient models for control design.

The paper is organized as follows: Section II introduces the

description and properties of OBFs and their advantages in

LTI system approximation; Section III describes LPV OBF

structures and their properties in LPV system approximation;

in Section IV a local and a global approach are introduced

for the estimation of LPV OBF models and also the main

properties of these methods are presented; in Section V, the

applicability of the introduced approaches is shown through

examples; and finally in Section VI, the main results of the

2Asymptoticity is in terms of m, the fuzziness, of the FKcM clustering
algorithm. If m → ∞, optimality is guaranteed (see [11]).

paper are discussed.

II. ORTHONORMAL BASIS FUNCTIONS

Because of space limitations only the case of real rational

(finite-dimensional) discrete-time, SISO transfer functions is

considered. For details see [19], [22], [23]. Let G0 = 1 and

{Gi}
∞
i=1 be a sequence of inner functions (i.e. stable transfer

functions with Gi(z)Gi(
1
z ) = 1), and let {Ai, Bi, Ci,Di} be

balanced SS representations of Gi. Let {ξ1, ξ2, . . .} denote

the collection of all poles of the inner functions G1, G2, · · · .

Under the (completeness) condition that
∑∞

i=1(1 − |ξi|) =
∞, the scalar elements of the sequence of vector functions

Vn(z) = (zI − An)−1Bn

n−1∏

i=0

Gi(z), (1)

constitute a basis for H2− (E), the Hardy space of functions,

which are 0 for z = ∞, analytic on E, the exterior of the

unit disk D, and square integrable on the unit circle T with

norm ‖.‖H2
. These functions (1) are often referred to as the

Takenaka-Malmquist functions. The special cases when all

Gi are equal, i.e. Gi(z) = Gb(z) for ∀i > 0, where Gb has

McMillan degree nb > 0, are known as Hambo functions

or generalized orthonormal basis functions (GOBFs) for

arbitrary nb, 2-parameter Kautz functions for nb = 2, and

as Laguerre functions for nb = 1. Note that for these

cases the completeness condition is always fulfilled. In the

remainder we will only consider the set of Hambo functions.

Let Gb be an inner function with McMillan degree nb > 0
and balanced SS representation {Ab, Bb, Cb,Db}. Define

V1(z) = (zI − Ab)
−1Bb and φj = [V1]j , j ∈ Inb

1 , where

It
s = {s, s + 1, · · · , t} ⊂ Z is the index set. The Hambo basis

then consists of the functions Φ∞
nb

= {φj(z)Gi
b}

i=0,··· ,∞
j=1,··· ,nb

.

An important aspect of these bases is that the inner function

Gb is, modulo the sign, completely determined by its poles

{ξ1, · · · , ξnb
} = Ξnb

:

Gb(z) = ±
nb∏

j=1

1 − zξ∗j

z − ξj

, (2)

and it is immediate that the function V1 has the same poles.

Any F ∈ H2− (E) can be written as

F (z) =
∞∑

i=0

nb∑

j=1

wijφj(z)Gi
b(z), (3)

and it can be shown that the rate of convergence of this series

is bounded by maxk |Gb(λ
−1
k )|, where {λk} are the poles of

F . In the best case, where the poles of F are the same (with

multiplicity) as the poles of Gb, only the terms with i = 0
in (3) are non-zero.

Identification of any F ∈ H2− (E) based on a predefined

finite set of OBFs Φne
nb

with ne ∈ N, is performed as

a linear regression with respect to the basis coefficients

W = [wij ]
i=0,··· ,ne

j=1,··· ,nb
due to the linear parametrization of

(3). Orthogonality of Φne
nb

also improves numerical efficiency.

However, selection of the basis set has a major impact on

the outcome of the identification process as the distance
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Fig. 1. I/O signal flow graph of the W-LPV OBF model described by (4).
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Fig. 2. I/O signal flow graph of nonlinear Wiener models.

between basis poles and the original system poles determines

the convergence rate of the coefficients, meaning that with

a better basis a better approximation can be achieved with

less parameters, resulting in reduced variance of the model

estimate. For more details about the basis selection problem

and its solutions see [11], [19]. Identification via OBFs has

valuable properties as non-asymptotic variance bounds of

the estimates are computable through reproducing kernels

and also the identified models have no bias with respect to

uncorrelated input noise which is explained by the Output

Error (OE) like structure of the OBF parameterization [19].

III. LPV OBF MODEL STRUCTURES

As mentioned previously, OBFs based identification has

attractive properties in the LTI case. To utilize these prop-

erties for overcoming Problem 1-3, two model parameter-

izations with different system realization capabilities are

introduced. As will be shown, the model structures have

close resemblance with nonlinear Wiener (NW) and non-

linear Hammerstein (NH) models3, important model classes

for chemical, biological, and sensor/actuator systems [24].

The consequences of this similarity and the LPV system

representation capabilities of the introduced structures will

also be analyzed.

Let Φne
nb

be a set of ng = (ne + 1) nb OBFs in H2− (E).
Denote

[
Ab Bb

Cb Db

]

∈

[
Rng×ng Rng×1

R1×ng R

]

,

the balanced SS realization of Gne+1
b , where Gb is the inner

function of Φ0
nb

. Then the OBFs based LPV models of a

SISO LPV system S are introduced as:

3An LTI model with static nonlinearity on its output is called a Wiener
model (see Figure 2) while an LTI model with static nonlinearity on its
input is called a Hammerstein model (see Figure 4).
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1) Wiener LPV OBF model (W-LPV OBF)

yb (k) =

ne∑

i=0

nb∑

j=1

wij (p (k)) φj(q)G
i
b(q)u (k)

︸ ︷︷ ︸

y̆ij(k)

, (4)

is called the I/O form of the W-LPV OBF model of S
denoted by RY

I/O(S, p, Φne
nb

) and represented in Figure

1. Here q denotes the forward time shift operator. The

SS equivalent of (4), RY
SS(S, p, Φne

nb
) is defined as

xb (k + 1) = Abxb (k) + Bbu (k) , (5)

yb (k) = W (p (k))xb (k) , (6)

where xb = [y̆01, . . . , y̆nenb
]
T

and W (p) =
[w01 (p) , . . . , wnenb

(p)].
2) Hammerstein LPV OBF model (H-LPV OBF)

yb (k) =

ne∑

i=0

nb∑

j=1

φj(q)G
i
b(q)wij (p (k)) u (k)

︸ ︷︷ ︸

ŭij(k)

, (7)

is called the I/O form of the H-LPV OBF model of S denoted

by RU
I/O(S, p, Φne

nb
) and represented in Figure 3. The SS

equivalent of (7), RU
SS(S, p, Φne

nb
) is

xb (k + 1) = Abxb (k) + WT (p (k)) u (k) , (8)

yb (k) = Cbxb (k) , (9)

where WT (p)u = [ŭ01, . . . ŭnenb
]
T

.

The following properties of the introduced model struc-

tures are important:

If FP ⊂ Span
{
Φne

nb

}
, then every Fp̄ ∈ FP is realizable by

the W-LPV and H-LPV OBF models and the p-dependent

transient behavior of S is imposed into W (p). For this

property, infinitely many basis functions, (ne + 1)nb = ∞
are required in the general case, which implies that using

a finite number of basis functions will restrict the class of

realizable LPV systems. However it can be showed that in
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practice, careful selection of the basis ensures almost error

free representation of FP with only a few OBFs (see [11]).

In (4) and (7), each weighting function wij(.) was de-

fined with static dependency on p (dependency only on

p (k)). However if each wij(.) weighting function would

have dynamic dependency on p (dependency on p (k − nx),
. . ., p (k + nx) where nx is the order of S) and FP ⊂
Span

{
Φne

nb

}
holds, then based on [2] and [25], it can be

shown4, that the introduced model structures can completely

represent any general LPV system S (either I/O or SS) giving

a possibility to deal with Problem 1. In case of static p-

dependency, the class of representable LPV systems shrinks

to SS systems with p-dependence only in the C or in the B

system matrices and I/O systems with p-dependence only in

the b (input) parameters. For other LPV systems it is possi-

ble to derive worst case upperbounds of the representation

error in case of FP ⊂ Span
{
Φne

nb

}
, however due to space

restriction, this rather lengthly analysis is omitted.

When FP * Span
{
Φne

nb

}
, so perfect representation of

each local behavior is not available, increasing ne will

enlarge Span
{
Φne

nb

}
and lower the representation error of the

local behaviors, however the number of associated weighting

functions also grows. Moreover, the complexity of W (p)
increases with each basis extension, therefore estimation of

such models becomes more difficult [26]. In case of W (p)
with static p-dependency and negligible local representation

error of the Φne
nb

OBF set with respect to each Fp̄, increasing

ne will only result in over-parametrization as the modeling

error is dominated by the missing non-static p-dependency

of the weighting functions.

The introduced models contribute a linear parametrization

of S, as only the p-dependent weights W (p) are unknown,

which can be estimated through simple linear regression (see

Section IV). This property reduces the computational burden

(Problem 2). Moreover, as dependency on p only shows up

in the C or B matrices of these structures (see (6) and (8)),

therefore optimal control design greatly simplifies for the

introduced model structures.

W-LPV and H-LPV OBF structures can simply represent

changes of the local McMillan degree of S as in such cases

the related basis weights locally drop to zero. This concludes

that the introduced model parameterizations are not affected

by Problem 3.

By comparing NW and NH models (Figure 2 and 4) to

the introduced structures, it is immediate that the W-LPV and

H-LPV OBF models are similar to them. However, there are

fundamental differences:

• In the NW and NH case, the static nonlinearity is acting

on the output/input of the LTI system. In the W-LPV

and H-LPV case, the nonlinearity is entering through

p, which can be any function of external (strict LPV

systems) and internal (quasi-LPV systems) variables

alike. Assuming that p is equal to u or y, the NW

& NH models result as a special case of W-LPV

4A proof of this remark can be derived through the p-dependent equiva-
lence transformation of LPV-SS and I/O models [2].

and H-LPV. This can be illustrated by the following

example: Given a NW system with LTI transfer function

F (q) and weighting w(y) = sin(y). Then rewriting

the nonlinearity as5 sinc (p) · y where p = y and

also F (q) as the linear combination of basis functions,

the W-LPV OBF structure results with W (p) =
[w01 sinc (p) , . . . wnenb

sinc (p)].
• LTI parts of W-LPV and H-LPV are SIMO and MISO

systems as opposed to the SISO LTI part of NW and

NH models6.

IV. LPV IDENTIFICATION WITH FIXED OBFS

In the following two methods are proposed for LPV

system identification based on the model structures of the

previous section. As mentioned in Section I, a key problem

of OBFs based identification is how to efficiently choose

the basis functions Φne
nb

. For completeness, first a practically

applicable basis selection mechanism based on [11] is briefly

discussed, then assuming that a set of basis functions is

given, the two identification approaches are presented.

A. OBF selection

Assume that a set of constant scheduling points PNp
=

{p̄i}
Np

i=1 ⊂ P, Np ∈ N is given for S, where it is expected

that FPNp
= {Fp̄i

}Np

i=1 give representative samples of the

dynamics of all systems in FP, meaning that typical and

worst-case behaviors are also contained. Then the basis

selection procedure is as follows:

1) Determination of pole samples of the pole functionals

of S by LTI identification of each Fp̄ ∈ FPNp
with

any black-box model structure.

2) Determination of the optimal OBF set Φne
nb

for S
based on FKcM clustering of the sample poles. The

procedure also copes with the uncertainty of the pole

estimates (see [28]).

The selection algorithm aims at optimality of the OBF

selection with respect to any LTI system that has its poles in

the clustered pole regions. The prior knowledge, the available

information about the possible local poles (pole functionals)

of S, directly effects the optimality of the selection.

B. Local approach

The local approach aims at the identification of S with

H-LPV and W-LPV OBF models, by identifying a number

of local LTI behaviors of S based on measurements with

constant scheduling. The local LTI estimates are identified as

linear combinations of a given Φne
nb

. The coefficients of these

linear combinations with respect to each local case give the

samples of the global W (p) function of the model structure,

which is constructed by interpolation of the samples. The

procedure is given in detail as follows:

Assume that a set of constant scheduling points PNf
=

{p̄l}
Nf

l=1 ⊂ P, Nf ∈ N is given for S, where it is expected

5The function sinc is defined as sinc (x) =
{ x

sin(x)
x

if x=0
if x6=0

.

6Originally both Wiener and Hammerstein proposed their models with
SIMO and MISO LTI parts, but because of the difficulty of the problem,
the LTI part was simplified to be SISO [24], [27].
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that P is well covered7, meaning that maxi minj 6=i |p̄i − p̄j |,

i, j ∈ INf

1 is small enough. Assume also that measured data

records Z p̄
Nz

= {y (k) , u (k) , p̄}Nz−1
k=0 with length Nz ∈ N

are available for each local model Fp̄ ∈ FPNf
. Then the

identification of S is solved as:

3a) LTI identification of each Fp̄ ∈ FPNf
by linear re-

gression based on Φne
nb

and Z p̄
Nz

, resulting in a set of

estimated weight coefficients {vijl}
ne,nb,Nf

i=0,j=1,l=1, where

{vijl}
ne,nb

i=0,j=1 describes the weight coefficients of Φne
nb

with respect to Fp̄l
with p̄l ∈ PNf

.

4a) Interpolation of the local OBF coefficients {vijl} over

the constant scheduling points of PNf
, such that the

resulting weighting functions wij (p (k)) satisfies that

wij (p̄l) = vijl for ∀p̄l ∈ PNf
and ∀i, j ∈ Ine

0 × Inb

1 .

In general, any interpolation technique can be utilized to

approximate the wij (p) functions, however most commonly

polynomial or Chebyshev interpolation [29] provides ade-

quate results.

C. Global approach

Opposite to the local approach, the global approach uti-

lizes only one data set which is collected from S with varying

scheduling. Then by choosing a functional dependence of

W (p), like assuming that each wij (p) is a linear combination

of polynomial basis with a given order, the estimation of

W (p) can be written as a linear regression with respect to

the coefficients of the functional dependence. The procedure

is given in detail as follows:

Assume that measured I/O data of S as ZNz
=

{y (k) , u (k) , p (k)}Nz−1
k=0 is available and PE8 for S. Then

in the W-LPV case, the global approximation of S is solved

as:

3b) Generation of y̆ (k) = [y̆ij (k)]i=0,...,ne

j=1...nb
by computing

the state evolution of

xb (k + 1) = Abxb (k) + Bbu (k) , (10)

with respect to {u (k)}Nz−1
k=0 where y̆ (k) = xb (k)

and {Ab, Bb, Cb,Db} is the SS realization of the inner

function generating Φne
nb

.

4b) Parameterize each weighting function wij of (4) as

wij (p (k)) =
∑nψ

l=0 rijlψl (p (k)), where ψ (p) =
[ψl (p)]

nψ

l=0 is a arbitrary set of continuous functions

over P with ψ0 (p) ≡ 1.

5b) Based on ZNz
, estimate the parameter set

{rijl}
ne,nb,nψ

i=0,j=1,l=1 by linear regression. Define the

regressors as

ϕT (k) = y̆ (k) ⊗ ψ (p (k)) , (11)

with ⊗ denoting the Kronecker tensor product and

collect the data into ΘNz
= [ϕ (0) , . . . , ϕ (Nz − 1)]

T

and YNz
= [y (0) , . . . , y (Nz − 1)]

T
. Moreover, pa-

rameters to be estimated are organized into a column

7Required for successful interpolation by most methods.
8PE stands for Persistently Exciting signals. Conditions on PE signals are

hard to be drawn for general LPV systems and they are subject of research.
However, a recent result for LPV-I/O systems is given in [13].

vector Ψ
nψ
ng =

[
r010, . . . , r01nr

, . . . , rnenbnψ

]T
. Then

to minimize the prediction error criterion function

VNz

(
Ψ

nψ
ng ,ZNz

)
=

1

Nz

∣
∣YNz − ΘNz

Ψ
nψ
ng

∣
∣ , (12)

the analytic solution is (see [27])

Ψ̆
nψ
ng =

[
1

Nz
ΘT

Nz
ΘNz

]−1 [
1

Nz
ΘT

Nz
YNz

]

. (13)

In the H-LPV case the identification procedure is similar.

However, the formulation of the regressor is accomplished

differently, leading through the calculation of the parameter-

varying Hankel matrix of the model:

Y b
Nz

=








0 0 . . .

CbW (p (0)) 0 . . .

CbAbW (p (0)) CbW (p (1))
...

...
. . .








UNz

where Y b
Nz

is the stacked output vector of the H-LPV OBF

structure. By simple rearrangement it follows that

Y b
Nz

=








0 0 . . .

CbIu (0) 0 . . .

CbAbIu (0) CbIu (1)
...

...
. . .








︸ ︷︷ ︸

Hb
Nz






W (p (0))
W (p (1))

...






Now define h (k) = [hij (k)]i=0,...,ne

j=1...nb
as the state evolution

of

h (k + 1) = AT
b h (k) + CT

b δ (k) , (14)

where δ (k) is the Kronecker delta function, i.e. an im-

pulse input at k = 0, and h (0) = 0. Now h (k)
will be used to calculate the columns of the previously

derived transition matrix Hb
Nz

. By combining each col-

umn of Hb
Nz

in a Kronecker product with the functions

ψ (p), the parameters {rijl} to be estimated are separated,

giving the regressor matrix as ΘNz
= [H̆0, . . . , H̆nψ

]

with H̆l =
∑Nz−1

k=0 (qkH)u (k) ψl (p (k)) and H =
[h (0) , . . . , h (Nz − 1)]T .

The procedure can be extended to estimate a direct

feedthrough term by enriching the OBF set with Φ̃ne
nb

=
Φne

nb
∩ 1.

D. Properties

It can be showed that under minor conditions, the param-

eter estimates of the introduced identification approaches are

consistent, i.e. if Nz → ∞, then {vijl} and {rijl} converge

with probability 1 to their optimal value (optimal model

inside the model class with respect to S). Assume that in

measurements ZNz
and Z p̄

Nz
, the noise is uncorrelated to u.

Then, for the local method, consistency of the estimated LTI

models and therefore {vijl} is well known [19], [27]. This

implies the consistency of the weighting function estimates

based on the local parameters, if Nf → ∞ and the parameter

dependencies of S on p are Lipschitz continuous. Further-

more in the global case, ΘNz
depends only on u and p and
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thus it is uncorrelated with the noise. Assume that u and p are

PE for S, then based on the OE structure of the estimation,

it is well known [27], that under these conditions the least

squares estimate of Ψ
nψ
ng is strongly consistent, even in the

presence of colored noise. Furthermore, the linear regression

also imposes a weak condition on u and p being PE, namely

that ΘNz
must be invertible and Nz ≥ ng(nψ +1). However,

this condition does not guarantee that P and the transient

dynamics between the local behaviors are well explored [13].

In practice, initial conditions are often needed to take

into account during identification due to slow dynamics of

the system or high costs of long measurements. Therefore,

estimation of the initial conditions is important in these cases.

The LTI theory of OBFs provides estimation of initial con-

ditions of the local behaviors [19] for the local H-LPV case,

therefore we only consider the global case. In the global H-

LPV case, Y̆ b
Nz

= [Cbxb (0) , CbAbxb (0) , . . .]
T

+Y b
Nz

where

Y̆ b
Nz

is the output of RU
SS(S, p, Φne

nb
) with initial condition

xb (0). Then, by extending Ψ
nψ
ng with xb (0) and including

[
CT

b , AT
b CT

b , . . .
]T

into ΘNz
, estimation of xb (0) becomes

available through linear regression. In the W-LPV case,

estimation of xb (0) is solvable through linear regression

based alternating optimization, which is sensitive to noise

and local minima of the criterion function.

A further property is that only the global method is

applicable to a quasi-LPV system as for such systems, p

cannot be held constant. Furthermore, the presented results

are also extendable to the MIMO case with more exten-

sive book keeping, which is not presented due to space

restrictions. Note that multidimensional p only results in a

multidimensional interpolation (local case) or in the need

of multidimensional ψ (p) (global case), therefore the global

method is practically applicable even if nx < np.

Benefiting from the attractive properties of OBFs, some

methods of Fuzzy-Laguerre networks [30] and NH and NW

type of identification [31], [32] have also been developed by

various authors for nonlinear systems. They differ from the

approaches of this paper in the following:

• W- and H-LPV OBF structures are developed for LPV

systems, with NH and NW systems as special cases.

• The OBFs, the backbone of the model structures, are

optimized for S and not given a priori as in [30], [31].

• The parameterization of the presented model structures

are directed towards W , which concludes that no sep-

arate parametrization of the LTI part and the nonlinear

part is needed as in [31] or no fuzzy inference of

estimated fuzzy rules is needed as in [30]. Furthermore,

opposite to [31], no inversion of y is needed through

static nonlinearity in the Hammerstein case.

V. EXAMPLES

In this section, applicability of the previously introduced

identification methods for approximation of general LPV

systems is shown in 3 different examples.

Example 4: (C variant LPV-SS system) As a first example

model case MSE9 BTF10 VAF11

W-LPV S1
loc.
glob.

1.8 · 10−5

6.5 · 10−4
99.76%
98.57%

99.99%
98.98%

H-LPV S2
loc.
glob.

1.6 · 10−5

7.3 · 10−4
99.75%
98.33%

99.99%
99.97%

W-LPV S3
loc.
glob.

0.1254
0.0572

75.85%
83.69%

94.17%
97.34%

H-LPV S3
loc.
glob.

0.3099
0.0973

62.03%
78.72%

85.59%
95.48%

TABLE I

VALIDATION RESULTS OF THE IDENTIFIED MODELS IN THE EXAMPLES.

define a LPV system S1, with RSS (S1, p) equal to

[
AS1

BS1

CS1 (p) 0

]

=







0.3 0.2 0.4
−0.1 0.2 0.2
0.4 −0.1 0.5

1
1
1

2p −p2 sin (p) 0







and P1 = [−1, 1]. Using the poles of AS1 to generate Φ3,

the resulting OBFs are complete with respect to FP1 of S1.

Based on the derived OBF set Φ3, global identification of

S1 with the W-LPV OBF structure was carried out. The

identification procedure utilized a Nz = 500 sample long

data record with uniform noise u, p ∈ U(−1, 1) and with

additive output white noise ve ∈ N (0, 0.5). Using the same

conditions in the local case, Z p̄
Nz

date records were collected

with P11 = {−1 + kτ1}
10
k=0 and τ1 = 0.2. The associated

11 local estimates of RSS (S1, p) were produced by the n4sid

sub-space identification algorithm of the Matlab ID-toolbox

[33]. Then the resulting models were interpolated through

their weighting coefficients. In both methods, 2nd-order

polynomial based interpolation was used in the estimation

of W (p). In Figure 5 and in the first row of Table I, the

(in)validation results of the model estimates are shown for

different realizations of u, p ∈ U(−1, 1) than used during

the identification. As expected, both approaches identified

the system with adequate MSE9, BFT10, and VAF11. The

global approach produced a slightly worse result than the

local approach which is explained by the much larger amount

of data (11 · Nz) available in the local case.

Example 5: (B variant LPV-SS system) As a second ex-

ample, define a LPV system S2, with RSS (S2, p) equal to

the transpose of RSS (S1, p):
[

AT
S1

CT
S1

(p)

BT
S1

0

]

.

Note that RSS (S1, p) 6= RSS (S2, p) in terms of I/O

behavior. The OBF set Φ3 of Example 4 is still complete

with respect to FP2 of S2. In this case, S2 was identified

with a H-LPV OBF structure based on Φ3. By using the same

setting of data sequences and local model estimates as in the

9Mean Square Error, the expected value of the squared estimation error

[27]. MSE = 1
Nz

∑Nz−1
k=0 (y (k) − yb (k))2.

10Best Fit percentage, the percentage of the output variation that is

explained by the model [33]. BFT = 100% · max
(

1 −
‖y−yb‖2
‖y−ȳ‖2

, 0
)

where ȳ is the mean of y.
11Variance Accounted For percentage [10] is defined as VAF = 100% ·

max
(

1 −
var(y−yb)

var(y)
, 0

)

and computed on noise free y.
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0 5 10 15 20 25
−10

0

10
System output

0 5 10 15 20 25
−0.1

0

0.1
Output error

Fig. 5. Comparison of the identified models of S1 by their responses for
u, p ∈ U(−1, 1). RSS (S1, p) (solid green), W-LPV OBF local (dashed
blue), W-LPV OBF global (dotted red).

0 5 10 15 20 25
−5

0

5
System output

0 5 10 15 20 25
−0.1

0

0.1
Output error

Fig. 6. Comparison of the identified models of S2 by their responses for
u, p ∈ U(−1, 1). RSS (S2, p) (solid green), H-LPV OBF local (dashed
blue), H-LPV OBF global (dotted red).

previous example both for identification and (in)validation,

the produced results are shown in Figure 6 and in the second

row of Table I. As expected, both approaches identified the

system adequately.

Example 6: (LPV-I/O system with NL dependency) As a

third example, an asymptotically stable LPV system S3 is

considered, in a LPV-I/O form:

a0 (p (k)) y (k) = b1 (p (k)) u (k − 1)−
5∑

l=1

al (p (k)) y (k − l)

where p : Z → [0.6, 0.8] and a0 (p) = 0.58 − 0.1p,

a1 (p) = − 511
860 − 48

215p2 + 0.3(cos(p) − sin (p)), a2 (p) =
61
110 − 0.2 sin (p), a3 (p) = − 23

85 + 0.2 sin (p), a4 (p) =
12
125−0.1 sin (p), a5 (p) = −0.003, b1 (p) = cos(p). It can be

shown (see [34]) that the dynamic changes of S3 are quite

heavy between different constant scheduling points. Using

P11 = {0.2 + kτ3}
10
k=0 and τ3 = 0.04, the FKcM algorithm

with fuzzyness m = 25 resulted in a OBF set Φ7 with poles:

{0.183, 0.147 ± 0.28i, 0.434 ± 0.322i, 0.352 ± 0.478i} .

Identification of S3 with both methods and structures was

based on the same setting of data sequences and conditions as

in the previous examples except p ∈ U(0.6, 0.8). Calculation

time was a few seconds on a Pentium 4, 2.8 GHz PC.

In Figure 7 and in Table I, the (in)validation results are

shown for different realizations of u, p than used during the

identification. As it was expected, the W-LPV and H-LPV

0 5 10 15 20 25
−5

0

5
System output

0 5 10 15 20 25
−0.5

0

0.5
Output error

Fig. 7. Comparison of the identified models of S3 by their responses for
u ∈ U(−1, 1) and p ∈ U(0.6, 0.8). RI/O (S3, p) (solid green), W-LPV
OBF global (dotted red), H-LPV OBF global (dashed blue).

0 5 10 15 20 25
−5

0

5
System output

0 5 10 15 20 25
−2

0

2
Output error

Fig. 8. Comparison of the identified models of S3 by their responses for
u ∈ U(−1, 1) and p ∈ U(0.6, 0.8). RI/O (S3, p) (solid green), W-LPV
OBF local (dotted red), H-LPV OBF local (dashed blue).

OBF structures could not cope fully with the variations in

the {al}
5
l=0 parameters, however the global W-LPV identi-

fication provided quite acceptable results for such a heavily

nonlinear system. The explanation12 why the H-LPV OBF

structure gave a worse result is that dependence of {al}
5
l=0

on p can be partly incorporated into the static dependence

of W in the W-LPV case, while in the H-LPV case, W with

static dependence is independent of the variations of {al}
5
l=0.

In this example global methods are prevailed, because they

were able to capture the transient dynamics of the system

between local points of P, while in the local case, the 11
local behavior were not enough for correct interpolation. By

using Nf > 11, the local method quickly improves. Note,

that in the asymptotic sense, both the local methods and

global methods converge to the same optimal model with

respect to S3 in the utilized model class. Extension of Φ7

with ne = 1, 2, . . . did not improve the results as Φ7 is

well chosen with respect to S3, i.e. the local modeling error

is negligible due to the FKcM [34]. Therefore, the error in

Table I is mainly governed by the modeling error of the

proposed structures with respect to the transient dynamics.

Using higher order polynomials in ψ (p) produces a 2-

5% percentage increase in the results of Table I, but in

order to achieve full representation with the W-LPV case,

incorporation of dependency on p (k − 1) , . . . , p (k − 5) is

12Proved by analysis of the representation properties which is omitted
due to space restrictions.
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needed (see [2]). Note, that the validation with uniform noise

signals in both u and p is a very heavy expectation towards

the produced model, therefore usually much lighter signals

(ramp, sinusoid) are used for this purpose in the literature

like in [12], [35].

VI. CONCLUSION

In this paper two methods of global and local identification

were proposed for LPV systems to deal with the common

problems of LPV identification (Problem 1-3). The methods

are utilizing model structures that are composed from glob-

ally fixed OBFs on P (linear part) and p-dependent weighting

functions (parameter-varying part). These model structures

are only able to represent a subclass of general LPV-I/O and

LPV-SS systems due to the assumed static dependence of W

on p. However, close approximation of general LPV systems

is possible due to the representation capabilities of the OBFs

with respect to every local behavior. It was also shown that

both the global and local identification methods presented

here, provide fast, numerically stable and consistent model

estimates even in case of colored noise if it is uncorrelated to

u. The produced models also ease the control design phase

as the system states are orthonormal signals and variation

only in C or B greatly simplifies the LPV control synthesis.

In conclusion, the presented methods provide alternatives

of LPV system identification where the produced models are

reliable, provide close approximation of the original system

and are easily utilizable for control.
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