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SUMMARY

It is well-known that history matching of reservoir models with production measurements is an ill-posed
problem, e.g. different choices for the history matching parameters may lead to equally good history
matches. We analyzed this problem using the system-theoretical concept of structural identifiability. This
allows us to analytically calculate a so-called information matrix. From the information matrix we can
determine an identifiable parameterization with a significantly reduced number of parameters.

We apply structural identifiability analysis to single-phase reservoir simulation models and obtain
identifiable parameterizations. Next, we use the parameterization in minimizing an objective function that
is defined as the mismatch between pressure measurements and model outputs. We also apply the
structural identifiability analysis to an object-based parameterization describing channels and barriers in
the reservoir.

We use the iterative procedure to determine for reservoir models with 2025 grid block permeability values
a structurally identifiable parameterization of only 13 identifiable parameters. Next, we demonstrate that
the parameterization leads to perfect history matches without the use of a prior model in the objective
function. We also demonstrate the use of the identifiable object-based parameterization, leading to
geologically more realistic history matches.
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Introduction

It is well known that parameter estimation of reservoir dation models using measured pro-
duction data (i.e. ‘history matching’) is generally anptbsed problem, see e.g. Gavalas et al.
(1976) and Tavassoli et al. (2004). This is particularlyetilit is attempted to estimate indi-
vidual grid block parameters such as permeability or ptyosgilues, which may lead to a very
large number0° to 10°) of unknown parameters which can only be estimated withgelaari-
ance. Another challenging aspect in history matching isnihed to retain geological realism
while updating the parameter values. One way to overcomél{besedness of the parameter
estimation problem is by constraining the solution spacetfe model parameters through the
addition of regularization terms to the objective functiémother way is to reparameterize the
parameter space, where the number of parameters is stnadiiged, while at the same time
it may be possible to better maintain geological realismpdR@meterization techniques previ-
ously applied in reservoir engineering include zonatiog.(dacquard and Jain (1965), Grimstad
et al. (2003)), grad zones (Bissell et al. (1994), Brun ef24104)), spectral decomposition and
subspace methods (Shah et al. (1978), Reynolds et al. (1986)ciple component analysis
(Sarma et al. (2007)), and discrete cosine transform @adarand McLaughlin (2007)). In this
paper we will obtain a parameterization from structurahtifeability analysis. The notion of
structural identifiability was first stated by Bellman andréisn (1970). State-space model pa-
rameterizations have been analyzed by Glover and Wille@84)l Grewal and Glover (1976)
and Walter (1987). A test for local structural identifiatyilof high-order state-space models has
been proposed in Détsch and Van den Hof (1996). In Van Dorah §008) this test has been
adapted and used to determine an identifiable parametenizaft the permeability field of a
reservoir simulation model. In this paper we will determanelentifiable parameterization and
subsequently use it to estimate the grid block permealbility single-phase reservoir model.
We will also apply the structural identifiability analysisan object-based parameterization de-
scribing channels and barriers in the reservoir.

First we will briefly describe structural identifiability drhow we can use the notion of struc-
tural identifiability to determine an identifiable parameation in terms of model parameters.
In section 3 we introduce a parameterization that is capafbteodeling channels and barriers
in a reservoir grid, where the number of parameters is slyaegluced and geological realism
is preserved after updating. In section 4 we use an iterptiveedure to estimate the grid block
permeability parameters with the identifiable paramedtion resulting from the structural iden-
tifiability analysis. We also estimate the geological pagters of the channel parameterization.

Structural identifiability
Consider a linear, time-invariant, discrete time, stat@ee model structure, parameterizedin

x(k+1) = A(@)x(k)+B(@)u(k) 1)
y(k) = C(0)x(k), 2

wherex(k) € R™", u(k) € R™, y(k) € RP, andf € R?. In this paper we use the local structural
identifiability formulation of Glover and Willems (1974):

Definition An input/output model structur& : © — G with © C R? andG C R(z)P*™
is called locally structural identifiable i&* < © if for all 81,0 in the neighborhood of* it
holds that

{G(Z, 91) = G(Z, 92)} = 91 = 92.

In words: in the neighborhood @&* there are no two models with distinct parameters which
have the same input-output behavior. Note thé&g, 8) can be written as:

G(q,0) =Y M(k,0)q ", (3)
k=1
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whereM(k, 8) = C(0)A*~1(0)B(0) are the Markov parameters. Based on (3) we can argue
that equality of the model&(q, 8,) andG(q, 82) is related to equality of the Markov parame-
ters of G(q,0;) andG(q, 62). In this analysis the Markov parameters are organized rése-w
M(k,0) := [Mi.(k,0),...,M,,(k,0)], whereM,, (k, 8) denotes thg-th row of Markov pa-
rameterM (k, 8), and are subsequently gathered in the rE&p: O C R? — RP™ defined
by:

S.(0):=[ M(1,8) M(2,0) ... M(r,0) | € R>P™. (4)
As shown in Van Doren et al. (2008), the model structure isllgddentifiable in@* if, for
sufficiently larger, rank (85 6) ) = qin@ = 6~.

Using the notational conventions stated before, the inddion matrixZ, for a multi-input multi-

output system is defined as
OM, (i) M, (4)
Z ( T ®)

o* 1=1 j=1 9

S AST
0S,08T
00 00T

Z =

with dimensions; x ¢, and whereaMf—*() is given by

OM;,(k,8)  OC;.(0)Ak~1(6)B(6)

0 N o0
0C; oB k! oA (6)
3% A k—1 k—1 CAl-l k—1-1
A B+<I % CjA )80+Z(Iq®cj*A )%A B.

This expression can be calculated exactly given the sfateesmatrices and the analytical
derivatives of the state-space matrices with respeét tat the moment this analysis has been
applied to reservoir models up 400 grid blocks. Analysis of reservoir models with more
grid blocks leads to memory problems on a laptop with 1Gb oMRAemory. After calculating
Z, with (5) its rank is evaluated. The rank ®f is denoted as := rank (Z,) and provides an
estimate of the number of linearly independent rows or cokimZ,.. Here we use a singular
value decomposition (SVD) to determine the numerical r&#b and Van Loan (1996)). Let

T
s-to 1[% 3][¥)

be the SVD ofZ,, whereU,, Us, V; and V, are unitary and2; = diag(oy,...,0;) with

oy > - >0, > 0141 > ... > 04 The singular values;;,...0, > 0 are regarded

as negligible. Numerical determination of the matrix rdnlequires a criterion for deciding
when a singular value; should be treated as zero. In the example the choice is matle th
L < 1x 1075,

From (7) it can be seen that the columnsl®f provide an orthogonal basis of the column
space ofZ,.. The columns ofU; are regarded as directions in the parameter space that are
structurally identifiable and serve as a mapping from highethsional parameter spaéeo a
low-dimensional parameter spape= U7 6. In case we choose the parameter to be estimated
to be the permeability in each grid block, each columiigfwith lengthg can be projected

on the N grid blocks of the reservoir model. This can be done becaask parameter value

in @ corresponds to one grid bloclk & N). Consequently, each column ©f; can also be
interpreted as a spatial pattern, expressing the sehgiti¥ithe Markov parameters w.r.t. the
permeability vector. The columns &f, provide an orthogonal basis of the null spaceZpf

The columns ofU, are regarded as directions in the parameter space thatracéuslly not
identifiable. In other words, the information in the inputjout datau,y does not hold any
information about the parameter directions giventby.
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Geological parameterization

As described in section 1, desired features of history niradchre that geological realism is
preserved, and that the number of unknown parameters ioadatge in order to avoid ill-
posedness. A possible solution to realize these featutexioose a parameterization in terms
of a limited number of geological objects (e.g. meanderimgnnels) such that an update in the
parameters results in a geologically realistic permdgtikeld. Estimating channel parameters
with production data has been considered by e.g. Rahon(@98i8), Bi et al. (1999) and Phan
and Horne (2002). The latter uses a deterministic methoérevine mapping between the 14
channel parameters and the 3-dimensional permeabilityifainique.

In the 2-dimensional modeling applied in our paper we asshiatehe channels are straight and
have a uniform permeability distribution. Also the permiébof the background is uniform.
These assumptions are motivated by the fact that we wantedtce the number of parameters
and only wanted to model those features of the reservoiratatrelevant for prediction and
control. Additionally, we reasoned that the flow behavioaiohannel with a slight curvature
would be approximately equal to the flow behavior in a stragfannel with a slightly lower
permeability.

permeability [log m?]

-125
-12.6
-12.7
-12.8
-12.9
-13

Figure 1: Example of permeability field generated with tharstel and barrier modeling
method. The parameters are given in Table 1.

The channels in our modeling method are modeled with the hadogical structuring element
strel as available in the Image Processing Toolbox of Matlab. Edennel is described by
Six parameters: orientation, position in x direction, gosiin y direction, length, width and
channel permeability. An additional parameter describespermeability of the background
permeability of the reservoir model. This means that thengability field with two channels
in Figure 1 is described by3 parameters. The values of the channel parameters are given i
Table 1, where the longest channel is defined as channel Hatinels intersect with each other,
then the younger channel replaces the older channel. Tiimelzaare generated on a fine-scale
grid, and then upscaled to the simulation grid size usingatitametic mean. For the example
depicted at Figure 1 we have chos& x 420 grid blocks ofl0 x 10m? each, and subsequently
upscaled t®@1 x 21 grid blocks 0f200 x 200m?2.

With the structural identifiability analysis as describadhe previous section it is possible to
calculate an information matrix of the geological paramsete

- =
9S,0ST
rch — Jp T .
901 8%, |,.

(8)

8§T 8egb
90,, 90,,

meability. The termgg—gz is simply calculated using finite differences where eachaggcal
parameter is perturbed in positive and negative directioithe fine-scale grid. The step size

In essence we simply apply the chain r@% = , Where@, is the grid block per-
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13
Symbol | Meaning Value | Unit | Y [U(i)[2 (4, 4)

i=1
Ogeor orientation channel 1 | 45 [°] 79.3 x 101V
Ogeo2 orientation channel 2 | 90 [°] 10.3 x 100
Ogeos position x channel 1 200 [m] | 31.7 x 1010
Ogeon position x channel 2 90 [m] | 4.57 x 1010
Ogeos position y channel 1 1000 | [m] | 2.62 x 1010
0geot position y channel 2 150 | [m] | 8.24 x 109
Ogeor width channel 1 600 | [m] | 60.9 x 10'°
Ogeos | Width channel 2 200 | [m] | 24.7 x 101°
Oge09 length channel 1 4400 | [m] 14.9 x 100
f4e010 | length channel 2 3000 | [m] | 2.34 x 10'°
Ogeo11 | permeability channel 1 | 1000 | [mD] | 148 x 101°
O4eor2 | permeability channel 2 | 1000 | [mD] | 36.4 x 10
O4e013 | Permeability background 100 | [mD] | 136 x 101°

Table 1: Channel parameters of the permeability field in F&du

of the perturbation i90~° times the absolute value of the parameter in question. Befos
calculation the parameters are scaled so that the paranaeteall roughly of the same magni-
tude. For the specific example witB geological parameters given in Figure 1, we obtain, after
upscaling, the plot in Figure 2. When we calculate the siaguictors and singular values of (8)
we see the correlation between the parameters. This geeddly to the insight in the reservoir
behavior and the history matching process, since it is n@agipte to see which parameters are
correlated before one actually starts the updating proaasswhich parameters are structurally
not identifiable.

degb e, , degb e, ., degb /e, . ngb de, , degb 6y g ngb /d @ degb ey,

ché
— L | [ | i
= =

% \ .- \
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Figure 2. Each column oggg—gz is projected onto the reservoir grid. Paramékgy, ..., 0.113
are denoted in Table 1. B

Application

In this analysis we use a two-dimensional model, that costanly one fluid. The resulting
model is linear in the states, but non-linear in the paramseté five-point finite difference
discretization in space and an implicit discretization imé yield the following state-space
ordinary differential equation in discrete time

p(k+1)=A(@)p(k)+Bu(k), p(0)=po 9)
y (k) =Cp(k), (10)

wherek < Z denotes discrete time. The state varialjes R’} denote fluid pressures in
each grid block. The number of states is equal to the numbgridfblocks. The input vari-
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Figure 3: Permeability field used to generate measurenygnidiere the rectangles indicate the
well positions (left), singular values of (5) (middle) andsti30 singular values of (5) (right).
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Figure 4: Projected singular vectors corresponding to fizssingular values of (5) using the
permeability field depicted in Figure 3.

ablesu € R™ denote control settings such as injection or productioesrat pressures in grid
blocks containing wells. The output variabless RP denote measured pressures in grid blocks
containing wells.A(8) € R™*" is a penta-diagonal matrix with entries that are a functibn o
grid block volume, fluid density, compressibility, fluid eissity, porosity in each grid block,
and permeability in each grid block. We choose not to use ainfedw model, and therefore
B € R™*™ is a sparse matrix containing ones in entries correspondiaggrid block contain-
ing a well. MatrixC € RP*" is also sparse containing ones in entries correspondingtima
block containing a well. At the boundaries no-flow condisare assumed.

We propose to analyze the structural identifiability of peafnility and determine an identifiable
parameterization as outlined in section 2. We re-paraizetére permeability ak = U, p and
estimate parametefs= arg mgn V(U p). The objective functior’’ (U, p) is defined as

n

V(Uip) = (x — ¥£(U1p))" (¥ — y&(U1p)), (11)
k=1

wherey, denotes the measurements at time ¢te@he advantage of this formulation is that
only those (combinations of) grid block permeabilities aprlated that are relevant for the
input-output behavior. In Figure 3 the permeability fielddepicted that is used to generate
vi. We define this permeability as the real field. It i8lax 21 reservoir grid penetrated by five
wells, whose positions are indicated by the rectanglesdnréi3. We determine an identifiable
parameterization using equations (5) and (7). The correfipg singular values are plotted in
Figure 3. The singular vectors corresponding tolthé&argest singular values are projected onto
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the reservoir grid and are depicted in Figure 4.

To estimate the permeability of the real field we start withhamogeneous initial gue$s,;; =

5 x 10~m? as depicted at the middle of Figure 5. The correspondingevafithe objective
function isV'(6,,;;) = 6.76. Based or#;,,;; and using (5) and (7), we calculat& keeping only
the first12 columns. We add an extra columnlt containing ones in every entry to account for
an overall increase or decrease in permeability. Note tieghave not used the true parameter
value in our calculations. Subsequently, we use a grati@sed optimization procedure (e.g.
the MAaTLAB function| sgnonl i n) to minimize the objective function given in (11). Perfect
measurementg, . .., ¥200 are generated by simulating (9,10) with= 8,,;;, an initial state
of pp = 100 x 10°Pa, and a manipulated inputy, . .., u199. The input is a pseudorandom,
binary signal and is persistently exciting, i.e. containswgh frequencies to obtain informative
measurements.

Since the identifiable parameterization partly depend$erpermeability field we use an iter-
ative procedure. If the value of the objective function giwe (11) is not decreasing anymore
(i.e. alocal minimum is found) we determine a new identighrameterization. With the new
set of basis functions we minimiZé further. In this example the estimate has converged after
3 iterations to the permeability field depicted at the righEwjure 5. The value of the objective
function has decreased ¥o= 3.0 x 10~*. The input-output behavior of this permeability field
is similar to the behavior of the real permeability field. Apently, the grid blocks with wells
in the low and medium permeability field, together with thidplocks in a slightly larger area
around the well in the high permeable area, are structudsiytifiable. The permeability values
in the other grid blocks are in the structurally not idenkifeadirections and do not matter for
the input-output behavior.

The estimated permeability field could be different whentheoset of initial parameter values
were chosen to start the numerical search for a minimum of (There is always a risk that
the numerical minimization gets stuck in a local minimumd démerefore it is advisable to try
several different initial parameter values. Furthermatthough the objective function is small
and the reservoir model is history matched, the primary geegpof the model is prediction and
decision making. With the estimated permeability field tleeision of e.g. deciding where a
new well should be drilled can not be made adequately basdti®m®stimated permeability
field. Apparently, the information content in the measuretsé not sufficient and the estimate
is largely dominated by the initial parameter values.

k, k V. =6.76 k ., V=3.0e-4
real init” "init est

-11 -11 ‘ -11
r -11.5 -11.5 -11.5

-12 -12 -12

-12.5 -125 -125
[ ]
13

- -13 -13

Figure 5: Real permeability field (left), initial permeatyilfield (middle) and estimated perme-
ability field (right) obtained with the identifiable pararagtation.

In the second example we use the geological parameterizati® choose a real permeability
field as depicted at the left in Figure 6, which is paramegetriby 13 parameters. The well
configuration is identical to the one in the previous examyle calculate for this permeability
field with (8) and (7) the singular vectot$ € R'3*13 and singular valuex € R!3*13, Equally

as in the previous example, the singular vectors can bepietird as combinations of channel
parameters. The values §f£1 |U(i)|X(4,7) denote a measure of how identifiable a specific
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parameter is, and are denoted in Table 1. We conclude fopénigeability field that the per-
meability of channel 1 and background permeability are loesttifiable, and that the length of
channel 2 and positiop of channel 1 are least identifiable.

To estimate the channel parameters and resulting perritgdhald we start with initial pa-
rameter values resulting in a permeability field as depieethe middle of Figure 6. The
corresponding value of the objective functidbh= 0.06. With the same persistently exciting
inputs we estimate the3 channel parameters. This results after convergence ingtmegabil-
ity field depicted at the right of Figure 6. The value of theeaaltive function has decreased to
V = 3.0 x 10~%. However, the permeability field is different from the reatmeability field.
The advantages of the channel parameterization is thauttseafter estimating the parameters
in a geologically more realistic permeability field and tha number of parameters that need
to be estimated is small. However, a disadvantage is that stannel parameters are difficult
to identify, as is shown by the SVD of (8). Another difficultytivthe channel parameterization
is that it is not very flexible: if for example the permeabilfield does not contain channels,
the procedure of estimating channel parameters will novegye or converge to a different
estimate. Examples of more flexible parameterizations ayetbe discrete cosine transform
parameterization, that originates from the image comprrsommunity and has been used in
history matching in the work of Jafarpour and McLaughlin@2p

k ,V _=5e-33 k ., V. .=0.06 k .,V =3e-4

real’ “real init” " init est’ “est
-12 -12 -12
-12.5 -12.5 -12.5
-13 -13 -13
-135 -13.5 -13.5

Figure 6: Real permeability field (left), initial permeatyilfield (middle) and estimated perme-
ability field (right) obtained with the channel parametatian.

Conclusions

In this paper a best identifiable, reduced-dimensional materization is constructed using
structural identifiability analysis, which is applied tsegvoir simulation models. In the original
parameter space this leads to basis functions or spatigrpst which have been used to esti-
mate the permeability from production measurements. litiadd the structural identifiability
of an object-based channel and barrier modeling method é&s dnalyzed. The correspond-
ing geological parameters have been estimated, where thenpters quickly converged to a
geological realistically looking permeability field.
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