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SUMMARY
It is well-known that history matching of reservoir models with production measurements is an ill-posed
problem, e.g. different choices for the history matching parameters may lead to equally good history
matches. We analyzed this problem using the system-theoretical concept of structural identifiability. This
allows us to analytically calculate a so-called information matrix. From the information matrix we can
determine an identifiable parameterization with a significantly reduced number of parameters.
We apply structural identifiability analysis to single-phase reservoir simulation models and obtain
identifiable parameterizations. Next, we use the parameterization in minimizing an objective function that
is defined as the mismatch between pressure measurements and model outputs. We also apply the
structural identifiability analysis to an object-based parameterization describing channels and barriers in
the reservoir.
We use the iterative procedure to determine for reservoir models with 2025 grid block permeability values
a structurally identifiable parameterization of only 13 identifiable parameters. Next, we demonstrate that
the parameterization leads to perfect history matches without the use of a prior model in the objective
function. We also demonstrate the use of the identifiable object-based parameterization, leading to
geologically more realistic history matches.



Introduction
It is well known that parameter estimation of reservoir simulation models using measured pro-
duction data (i.e. ‘history matching’) is generally an ill-posed problem, see e.g. Gavalas et al.
(1976) and Tavassoli et al. (2004). This is particularly true if it is attempted to estimate indi-
vidual grid block parameters such as permeability or porosity values, which may lead to a very
large number (105 to 106) of unknown parameters which can only be estimated with a large vari-
ance. Another challenging aspect in history matching is theneed to retain geological realism
while updating the parameter values. One way to overcome theill-posedness of the parameter
estimation problem is by constraining the solution space for the model parameters through the
addition of regularization terms to the objective function. Another way is to reparameterize the
parameter space, where the number of parameters is stronglyreduced, while at the same time
it may be possible to better maintain geological realism. Reparameterization techniques previ-
ously applied in reservoir engineering include zonation (e.g. Jacquard and Jain (1965), Grimstad
et al. (2003)), grad zones (Bissell et al. (1994), Brun et al.(2004)), spectral decomposition and
subspace methods (Shah et al. (1978), Reynolds et al. (1996)), principle component analysis
(Sarma et al. (2007)), and discrete cosine transform (Jafarpour and McLaughlin (2007)). In this
paper we will obtain a parameterization from structural identifiability analysis. The notion of
structural identifiability was first stated by Bellman and Åström (1970). State-space model pa-
rameterizations have been analyzed by Glover and Willems (1974), Grewal and Glover (1976)
and Walter (1987). A test for local structural identifiability of high-order state-space models has
been proposed in Dötsch and Van den Hof (1996). In Van Doren etal. (2008) this test has been
adapted and used to determine an identifiable parameterization of the permeability field of a
reservoir simulation model. In this paper we will determinea identifiable parameterization and
subsequently use it to estimate the grid block permeabilityin a single-phase reservoir model.
We will also apply the structural identifiability analysis to an object-based parameterization de-
scribing channels and barriers in the reservoir.
First we will briefly describe structural identifiability and how we can use the notion of struc-
tural identifiability to determine an identifiable parameterization in terms of model parameters.
In section 3 we introduce a parameterization that is capableof modeling channels and barriers
in a reservoir grid, where the number of parameters is strongly reduced and geological realism
is preserved after updating. In section 4 we use an iterativeprocedure to estimate the grid block
permeability parameters with the identifiable parameterization resulting from the structural iden-
tifiability analysis. We also estimate the geological parameters of the channel parameterization.

Structural identifiability
Consider a linear, time-invariant, discrete time, state-space model structure, parameterized inθ:

x(k + 1) = A(θ)x(k) + B(θ)u(k) (1)

y(k) = C(θ)x(k), (2)

wherex(k) ∈ R
n, u(k) ∈ R

m, y(k) ∈ R
p, andθ ∈ R

q. In this paper we use the local structural
identifiability formulation of Glover and Willems (1974):

Definition: An input/output model structureG : Θ → G with Θ ⊂ R
q andG ⊂ R(z)p×m

is called locally structural identifiable inθ⋆ ∈ Θ if for all θ1,θ2 in the neighborhood ofθ⋆ it
holds that

{G(z,θ1) = G(z,θ2)} ⇒ θ1 = θ2.

In words: in the neighborhood ofθ⋆ there are no two models with distinct parameters which
have the same input-output behavior. Note thatG(q,θ) can be written as:

G(q,θ) =
∞
∑

k=1

M(k,θ)q−k, (3)
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whereM(k,θ) = C(θ)Ak−1(θ)B(θ) are the Markov parameters. Based on (3) we can argue
that equality of the modelsG(q,θ1) andG(q,θ2) is related to equality of the Markov parame-
ters ofG(q,θ1) andG(q,θ2). In this analysis the Markov parameters are organized row-wise
−→
M(k, θ) := [M1∗(k,θ), ...,Mp∗(k,θ)] , whereMj∗(k,θ) denotes thej-th row of Markov pa-

rameterM(k,θ), and are subsequently gathered in the map
−→
S r : Θ ⊂ R

q → R
pmr defined

by:
−→
S r(θ) := [

−→
M(1,θ)

−→
M(2,θ) . . .

−→
M(r,θ) ] ∈ R

1×pmr. (4)

As shown in Van Doren et al. (2008), the model structure is locally identifiable inθ⋆ if, for

sufficiently larger, rank

(

∂
−→

S r(θ)
∂θ

)

= q in θ = θ⋆.

Using the notational conventions stated before, the information matrixIr for a multi-input multi-
output system is defined as

Ir :=
∂
−→
S r

∂θ

∂
−→
S T

r

∂θT

∣

∣

∣

∣

∣

θ⋆

=

r
∑

i=1

p
∑

j=1

(

∂Mj∗(i)

∂θ

∂MT
j∗(i)

∂θT

)

∣

∣

∣

∣

∣

∣

θ⋆

(5)

with dimensionsq × q, and where∂Mj∗(i)
∂θ

is given by

∂Mj∗(k,θ)

∂θ
=

∂Cj∗(θ)Ak−1(θ)B(θ)

∂θ
=

∂Cj∗

∂θ
Ak−1B +

(

Iq ⊗ Cj∗A
k−1
) ∂B

∂θ
+

k−1
∑

l=1

(

Iq ⊗ Cj∗A
l−1
) ∂A

∂θ
Ak−1−lB.

(6)

This expression can be calculated exactly given the state-space matrices and the analytical
derivatives of the state-space matrices with respect toθ. At the moment this analysis has been
applied to reservoir models up to6, 400 grid blocks. Analysis of reservoir models with more
grid blocks leads to memory problems on a laptop with 1Gb of RAM memory. After calculating
Ir with (5) its rank is evaluated. The rank ofIr is denoted asl := rank (Ir) and provides an
estimate of the number of linearly independent rows or columns inIr. Here we use a singular
value decomposition (SVD) to determine the numerical rank (Golub and Van Loan (1996)). Let

Ir =
[

U1 U2

]

[

Σ1 0
0 0

] [

VT
1

VT
2

]

, (7)

be the SVD ofIr, whereU1, U2, V1 andV2 are unitary andΣ1 = diag(σ1, . . . , σl) with
σ1 ≥ · · · ≥ σl ≫ σl+1 ≥ . . . ≥ σq. The singular valuesσl+1, . . . σq ≥ 0 are regarded
as negligible. Numerical determination of the matrix rankl requires a criterion for deciding
when a singular valueσi should be treated as zero. In the example the choice is made that
σl+1

σ1
< 1 × 10−5.

From (7) it can be seen that the columns ofU1 provide an orthogonal basis of the column
space ofIr. The columns ofU1 are regarded as directions in the parameter space that are
structurally identifiable and serve as a mapping from high-dimensional parameter spaceθ to a
low-dimensional parameter spaceρ = UT

1 θ. In case we choose the parameter to be estimated
to be the permeability in each grid block, each column ofU1 with lengthq can be projected
on theN grid blocks of the reservoir model. This can be done because each parameter value
in θ corresponds to one grid block (q = N ). Consequently, each column ofU1 can also be
interpreted as a spatial pattern, expressing the sensitivity of the Markov parameters w.r.t. the
permeability vector. The columns ofU2 provide an orthogonal basis of the null space ofIr.
The columns ofU2 are regarded as directions in the parameter space that are structurally not
identifiable. In other words, the information in the input-output datau,y does not hold any
information about the parameter directions given byU2.
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Geological parameterization
As described in section 1, desired features of history matching are that geological realism is
preserved, and that the number of unknown parameters is not too large in order to avoid ill-
posedness. A possible solution to realize these features isto choose a parameterization in terms
of a limited number of geological objects (e.g. meandering channels) such that an update in the
parameters results in a geologically realistic permeability field. Estimating channel parameters
with production data has been considered by e.g. Rahon et al.(1998), Bi et al. (1999) and Phan
and Horne (2002). The latter uses a deterministic method, where the mapping between the 14
channel parameters and the 3-dimensional permeability field is unique.
In the 2-dimensional modeling applied in our paper we assumethat the channels are straight and
have a uniform permeability distribution. Also the permeability of the background is uniform.
These assumptions are motivated by the fact that we wanted toreduce the number of parameters
and only wanted to model those features of the reservoir thatare relevant for prediction and
control. Additionally, we reasoned that the flow behavior ina channel with a slight curvature
would be approximately equal to the flow behavior in a straight channel with a slightly lower
permeability.

permeability [log m2]
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Figure 1: Example of permeability field generated with the channel and barrier modeling
method. The parameters are given in Table 1.

The channels in our modeling method are modeled with the morphological structuring element
strel as available in the Image Processing Toolbox of Matlab. Eachchannel is described by
six parameters: orientation, position in x direction, position in y direction, length, width and
channel permeability. An additional parameter describes the permeability of the background
permeability of the reservoir model. This means that the permeability field with two channels
in Figure 1 is described by13 parameters. The values of the channel parameters are given in
Table 1, where the longest channel is defined as channel 1. If channels intersect with each other,
then the younger channel replaces the older channel. The channels are generated on a fine-scale
grid, and then upscaled to the simulation grid size using thearithmetic mean. For the example
depicted at Figure 1 we have chosen420×420 grid blocks of10×10m2 each, and subsequently
upscaled to21 × 21 grid blocks of200 × 200m2.
With the structural identifiability analysis as described in the previous section it is possible to
calculate an information matrix of the geological parameters

Ir,ch =
∂
−→
S r

∂θch

∂
−→
S T

r

∂θT
ch

∣

∣

∣

∣

∣

θ⋆
ch

. (8)

In essence we simply apply the chain rule∂
−→

S r

∂θch
= ∂

−→

S r

∂θgb

∂θgb

∂θch
, whereθgb is the grid block per-

meability. The term∂θgb

∂θch
is simply calculated using finite differences where each geological

parameter is perturbed in positive and negative direction on the fine-scale grid. The step size
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Symbol Meaning Value Unit
13
∑

i=1

|U(i)|Σ(i, i)

θgeo1 orientation channel 1 45 [°] 79.3 × 1010

θgeo2 orientation channel 2 90 [°] 10.3 × 1010

θgeo3 position x channel 1 200 [m] 31.7 × 1010

θgeo4 position x channel 2 90 [m] 4.57 × 1010

θgeo5 position y channel 1 1000 [m] 2.62 × 1010

θgeo6 position y channel 2 150 [m] 8.24 × 1010

θgeo7 width channel 1 600 [m] 60.9 × 1010

θgeo8 width channel 2 200 [m] 24.7 × 1010

θgeo9 length channel 1 4400 [m] 14.9 × 1010

θgeo10 length channel 2 3000 [m] 2.34 × 1010

θgeo11 permeability channel 1 1000 [mD] 148 × 1010

θgeo12 permeability channel 2 1000 [mD] 36.4 × 1010

θgeo13 permeability background 100 [mD] 136 × 1010

Table 1: Channel parameters of the permeability field in Figure 1.

of the perturbation is10−5 times the absolute value of the parameter in question. Before this
calculation the parameters are scaled so that the parameters are all roughly of the same magni-
tude. For the specific example with13 geological parameters given in Figure 1, we obtain, after
upscaling, the plot in Figure 2. When we calculate the singular vectors and singular values of (8)
we see the correlation between the parameters. This greatlyadds to the insight in the reservoir
behavior and the history matching process, since it is now possible to see which parameters are
correlated before one actually starts the updating process, and which parameters are structurally
not identifiable.

dθ
gb

 /d θ
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 /d θ
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Figure 2: Each column of∂θgb

∂θch
is projected onto the reservoir grid. Parameterθch1, . . . , θch13

are denoted in Table 1.

Application
In this analysis we use a two-dimensional model, that contains only one fluid. The resulting
model is linear in the states, but non-linear in the parameters. A five-point finite difference
discretization in space and an implicit discretization in time yield the following state-space
ordinary differential equation in discrete time

p (k + 1) = A (θ)p (k) + Bu (k) , p (0) = p0 (9)

y (k) = Cp (k) , (10)

wherek ∈ Z denotes discrete time. The state variablesp ∈ R
n
+ denote fluid pressures in

each grid block. The number of states is equal to the number ofgrid blocks. The input vari-
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Figure 3: Permeability field used to generate measurementsȳk where the rectangles indicate the
well positions (left), singular values of (5) (middle) and first30 singular values of (5) (right).
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Figure 4: Projected singular vectors corresponding to first12 singular values of (5) using the
permeability field depicted in Figure 3.

ablesu ∈ R
m denote control settings such as injection or production rates or pressures in grid

blocks containing wells. The output variablesy ∈ R
p denote measured pressures in grid blocks

containing wells.A(θ) ∈ R
n×n is a penta-diagonal matrix with entries that are a function of

grid block volume, fluid density, compressibility, fluid viscosity, porosity in each grid block,
and permeability in each grid block. We choose not to use a well inflow model, and therefore
B ∈ R

n×m is a sparse matrix containing ones in entries correspondingto a grid block contain-
ing a well. MatrixC ∈ R

p×n is also sparse containing ones in entries corresponding to agrid
block containing a well. At the boundaries no-flow conditions are assumed.
We propose to analyze the structural identifiability of permeability and determine an identifiable
parameterization as outlined in section 2. We re-parameterize the permeability ask = U1ρ and
estimate parametersρ = arg min

ρ
V (U1ρ). The objective functionV (U1ρ) is defined as

V (U1ρ) :=
n
∑

k=1

(ȳk − yk(U1ρ))T (ȳk − yk(U1ρ)) , (11)

whereȳk denotes the measurements at time stepk. The advantage of this formulation is that
only those (combinations of) grid block permeabilities areupdated that are relevant for the
input-output behavior. In Figure 3 the permeability field isdepicted that is used to generate
ȳk. We define this permeability as the real field. It is a21× 21 reservoir grid penetrated by five
wells, whose positions are indicated by the rectangles in Figure 3. We determine an identifiable
parameterization using equations (5) and (7). The corresponding singular values are plotted in
Figure 3. The singular vectors corresponding to the12 largest singular values are projected onto

11th European Conference on the Mathematics of Oil Recovery — Bergen, Norway,
8 - 11 September 2008



the reservoir grid and are depicted in Figure 4.
To estimate the permeability of the real field we start with anhomogeneous initial guessθinit =
5 × 10−13m2 as depicted at the middle of Figure 5. The corresponding value of the objective
function isV (θinit) = 6.76. Based onθinit and using (5) and (7), we calculateU1 keeping only
the first12 columns. We add an extra column toU1 containing ones in every entry to account for
an overall increase or decrease in permeability. Note that we have not used the true parameter
value in our calculations. Subsequently, we use a gradient-based optimization procedure (e.g.
the MATLAB functionlsqnonlin) to minimize the objective function given in (11). Perfect
measurements̄y1, . . . , ȳ200 are generated by simulating (9,10) withθ = θinit, an initial state
of p0 = 100 × 105Pa, and a manipulated inputu0, . . . , u199. The input is a pseudorandom,
binary signal and is persistently exciting, i.e. contains enough frequencies to obtain informative
measurements.
Since the identifiable parameterization partly depends on the permeability field we use an iter-
ative procedure. If the value of the objective function given in (11) is not decreasing anymore
(i.e. a local minimum is found) we determine a new identifiable parameterization. With the new
set of basis functions we minimizeV further. In this example the estimate has converged after
3 iterations to the permeability field depicted at the right ofFigure 5. The value of the objective
function has decreased toV = 3.0× 10−4. The input-output behavior of this permeability field
is similar to the behavior of the real permeability field. Apparently, the grid blocks with wells
in the low and medium permeability field, together with the grid blocks in a slightly larger area
around the well in the high permeable area, are structurallyidentifiable. The permeability values
in the other grid blocks are in the structurally not identifiable directions and do not matter for
the input-output behavior.
The estimated permeability field could be different when another set of initial parameter values
were chosen to start the numerical search for a minimum of (11). There is always a risk that
the numerical minimization gets stuck in a local minimum, and therefore it is advisable to try
several different initial parameter values. Furthermore,although the objective function is small
and the reservoir model is history matched, the primary purpose of the model is prediction and
decision making. With the estimated permeability field the decision of e.g. deciding where a
new well should be drilled can not be made adequately based onthis estimated permeability
field. Apparently, the information content in the measurements in not sufficient and the estimate
is largely dominated by the initial parameter values.
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Figure 5: Real permeability field (left), initial permeability field (middle) and estimated perme-
ability field (right) obtained with the identifiable parameterization.

In the second example we use the geological parameterization. We choose a real permeability
field as depicted at the left in Figure 6, which is parameterized by13 parameters. The well
configuration is identical to the one in the previous example. We calculate for this permeability
field with (8) and (7) the singular vectorsU ∈ R

13×13 and singular valuesΣ ∈ R
13×13. Equally

as in the previous example, the singular vectors can be interpreted as combinations of channel
parameters. The values of

∑13
i=1 |U(i)|Σ(i, i) denote a measure of how identifiable a specific
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parameter is, and are denoted in Table 1. We conclude for thispermeability field that the per-
meability of channel 1 and background permeability are bestidentifiable, and that the length of
channel 2 and positiony of channel 1 are least identifiable.
To estimate the channel parameters and resulting permeability field we start with initial pa-
rameter values resulting in a permeability field as depictedat the middle of Figure 6. The
corresponding value of the objective functionV = 0.06. With the same persistently exciting
inputs we estimate the13 channel parameters. This results after convergence in the permeabil-
ity field depicted at the right of Figure 6. The value of the objective function has decreased to
V = 3.0 × 10−4. However, the permeability field is different from the real permeability field.
The advantages of the channel parameterization is that it results after estimating the parameters
in a geologically more realistic permeability field and thatthe number of parameters that need
to be estimated is small. However, a disadvantage is that some channel parameters are difficult
to identify, as is shown by the SVD of (8). Another difficulty with the channel parameterization
is that it is not very flexible: if for example the permeability field does not contain channels,
the procedure of estimating channel parameters will not converge or converge to a different
estimate. Examples of more flexible parameterizations are e.g. the discrete cosine transform
parameterization, that originates from the image compression community and has been used in
history matching in the work of Jafarpour and McLaughlin (2007).
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Figure 6: Real permeability field (left), initial permeability field (middle) and estimated perme-
ability field (right) obtained with the channel parameterization.

Conclusions

In this paper a best identifiable, reduced-dimensional parameterization is constructed using
structural identifiability analysis, which is applied to reservoir simulation models. In the original
parameter space this leads to basis functions or spatial patterns, which have been used to esti-
mate the permeability from production measurements. In addition. the structural identifiability
of an object-based channel and barrier modeling method has been analyzed. The correspond-
ing geological parameters have been estimated, where the parameters quickly converged to a
geological realistically looking permeability field.
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