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Abstract— In data-driven modelling in dynamic networks, it
is commonly assumed that all measured node variables in the
network are noise-disturbed and that the network (vector) noise
process is full rank. However when the scale of the network
increases, this full rank assumption may not be considered as
realistic, as noises on different node signals can be strongly
correlated. In this paper it is analyzed how a prediction error
method can deal with a noise disturbance whose dimension is
strictly larger than the number of white noise signals than
is required to generate it (rank-reduced noise). Based on
maximum likelihood considerations, an appropriate prediction
error identification criterion will be derived and consistency
will be shown, while variance results will be demonstrated in
a simulation example.

I. INTRODUCTION

It is becoming more common to use dynamic networks as
a modelling tool to represent interconnected systems of in-
creasing complexity. Some examples of these interconnected
systems can be found in smart grids, social networks and
systems biology. Classical system identification literature
has focused mostly on open-loop or closed-loop controlled
systems, but over the last couple of years attention for data-
driven modelling in a more structured setting, as e.g. in
dynamic networks, has received increasing attention. Among
different non-parametric and parametric approaches [1], [2],
[3], [4], [5], a framework for the extension of prediction
error approaches to the case of dynamic networks has been
presented in [6]. In most network identification papers the
assumption is made that all measured nodes in the network
are disturbed by a stationary stochastic noise process, being
of full rank, and being uncorrelated over the different nodes.
The full rank property means that the spectral density of the
vector process has full rank, implying that each disturbance
signal is originating from an independent white noise source.
If the size of a dynamic network increases, the assumption
of having a full rank noise process becomes more and more
unrealistic. Different node signals in the network are likely to
experience noise disturbances that are highly correlated with
and possibly dependent on other node signals in its direct
neighbourhood. One could think e.g. of a network of tem-
perature measurements in a spatial area, where unmeasured
external effects (e.g. wind) affect all measured nodes in a
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strongly related way, or waves that affect different locations
of a ship. In a different modeling setting, dynamic factor
models (see e.g. [7]) have been used to deal with rank-
reduced noises, most dominantly applied in economic data
analysis. In a prediction error modelling setting the situation
of rank reduced noises has -to the authors’ best knowledge-
not yet been considered. A first step in addressing this
situation has recently been made in [8], [9], where network
identifiability has been studied for the situation that some of
the network nodes are noise-free, leading to a rank-reduced
noise process.
In the current paper we develop the theory for the handling of
a general rank-reduced (singular) noise process in a standard
open-loop identification problem. For simplicity we will treat
the situation of a one-input two-output system with an output
noise process that is driven by a single scalar white noise.
First the system set-up will be described in Section II, after
which the appropriate predictor filters will be analyzed in
Section III. In section IV a new identification criterion will
be derived and its consistency properties will be shown.
Through a simulation example in Section V experimental
results of the identification method will be illustrated, in-
cluding an illustration of the improved variance results of the
method, compared to an alternative multiple SISO approach
to the problem.

II. SYSTEM SETUP

We consider a one-input two-output system, as sketched in
Figure 1, described by

y(t) = G(q)u(t) +H(q)e(t) (1)

with G ∈ R2×1(q) a linear, time-invariant system, H ∈
R2×1(q), a rational, stable and minimum-phase transfer
function with full column rank [7], e a scalar white noise
process with variance σ2

e , and q the forward shift operator.
The system is operating in open-loop, implying that u and

Fig. 1. One input - two output system with singular output noise
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e are uncorrelated. The output noise v(t) = H(q)e(t) has
spectral density Φv(z) = H(z)σ2

eH
T (z−1) which has rank

1 over the field of rational functions. We assume that we
have ordered the output signals y1, y2 in such a way that -by
appropriately choosing σ2

e - H is normalized according to

lim
z→∞

H(z) := H∞ =

[
1
η

]
, η ∈ R. (2)

Note that e.g. in the situation when one of the outputs is
noise-free, such a reordering is necessary to make y1 the
noisy variable, which is required for (2). When defining H+

as a proper and stable left inverse of H , satisfying

H(z)+H(z) = I, (3)

then the white noise process e can be explicitly written as

e(t) = H+(q)[y(t)−G(q)u(t)]. (4)

By defining the one-step-ahead predictor ([10]) as ŷ(t|t −
1) := Ē{y(t) | yt−1, ut} with yt−1 := {y(0), y(1), · · · y(t−
1)} and ut defined accordingly, we can then construct the
expression for the innovation process.

Proposition 1: For the considered system (1) the innovation
process is determined by

y(t)− ŷ(t|t− 1) = H∞e(t) = H̃(q)[y(t)−G(q)u(t)] (5)

with

H̃(q) :=
[
I − [H(q)−H∞]H+(q)

]
∈ R2×2(q). (6)

Proof: Starting from (1) it follows that

y(t) = G(q)u(t) + [H(q)−H∞]e(t) +H∞e(t). (7)

When subsituting the expression (4) in the second term on
the righthand side, it follows that

y(t) = G(q)u(t) + [H(q)−H∞]H+(q)[y(t)−G(q)u(t)]

+H∞e(t). (8)

Taking conditional expectation then shows that the first two
terms on the righthand side form the predictor:

ŷ(t|t−1) = G(q)u(t)+[H(q)−H∞]H+(q)[y(t)−G(q)u(t)]
(9)

while the innovation process is given by

H∞e(t) =
[
I − [H(q)−H∞]H+(q)

]
[y(t)−G(q)u(t)].

Note that the left inverse H+(z) is not uniquely determined.
There are multiple filters H+(z) that satisfy (3). As a
result, the filter expressions for the predictor (9) are not
unique, while the predicted outputs are unique by definition.
Therefore the predictor filter expressions are not suitable for
parametrizing models in an identification setting. For this
purpose we first have to rework the predictor filters into a
unique form.

III. TOWARDS UNIQUE PREDICTOR FILTERS

For purpose of identification we would like to represent
the system through (unique) prediction filters that can be
parametrized with unknown parameters. The prediction prop-
erties of the system can be represented by (5), which actually
constitute two equations; one equation that generates the
predictor on the basis of y and u, and one that represents a
constraint on the innovation process, since according to (2),[
η −1

]
H∞e(t) = 0. As a result the prediction properties

of the system are characterized by the following set of
equations that result from combining (9), (6) with (5), (2):

[
ŷ(t|t− 1)

0

]
=

[
I − H̃ H̃G

[η − 1]H̃ −[η − 1]H̃G

] [
y(t)
u(t)

]
.

(10)
In order to further analyze the role of H̃ in this equation,
the freedom in choosing the left inverse H+(z) needs to be
specified.

Lemma 1: Let H be denoted as H =

[
Ha

Hb

]
. Then

H+ =
[
(1−BHb)H

−1
a B

]
(11)

with B any scalar rational transfer function. For a proper and
stable H+, B will need to be proper and stable too.

Proof: Denote H+ =
[
A B

]
. Then (3) shows that

AHa + BHb = I , and with Ha being invertible it follows
that A = (1−BHb)H

−1
a . which directly leads to the result.

Substituting (11) into the expression for H̃ (6) shows that

H̃ = I −
[
Ha − 1
Hb − η

] [
(1−BHb)H

−1
a B

]
=

[
1− (Ha − 1)(1−BHb)H

−1
a 0− (Ha − 1)B

0− (Hb − η)(1−BHb)H
−1
a 1− (Hb − η)B

]
=

[
BHb − (BHb − 1)H−1

a (1−Ha)B
(Hb − η)(BHb − 1)H−1

a 1− (Hb − η)B

]
.(12)

Expressions (10) and (12) reveal that the predictor filters
that generate ŷ(t|t − 1) are non-unique. On the one hand
this is induced by the 0-equality in (10), which shows that
the two equations in (10) e.g. can be added together without
changing the left hand side. On the other hand, H+ and
therefore also H̃ are dependent on a free rational function
B. The underlying reason for this non-uniqueness of the
predictor filters is the fact that the vector signal [y(t) u(t)]T

that serves as input to the filters, is not a full rank process.
By manipulating the expression (10) we can construct an
equivalent form that only uses y1 and u as input, as a result
of which the predictor filters become unique. This is reflected
in the following Theorem.
Theorem 1: A unique expression for the predictor filters is
given by [

ŷ1(t|t− 1)
ŷ2(t|t− 1)

]
=

[
P11 P12

P21 P22

] [
y1(t)
u(t)

]
(13)
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with[
P11 P12

P21 P22

]
=

[
1−H−1

a [H−1
a 0]G

H−1
a (Hb − η) [−H−1

a (Hb − η) 1]G

]
(14)

Proof: Enclosed in appendix.
By removing output signal y2, with a noise contribution that
is fully dependent on the noise on y1, the two one-step-
ahead output predictions can be constructed with predictor
filters that are uniquely determined by the system properties
Ha, Hb, G. As a result, the expression (14) for P now lends
itself well to construct a parametrized predictor that can be
used in identification.

IV. AN IDENTIFICATION CRITERION BASED ON
MAXIMUM LIKELIHOOD CONSIDERATIONS

For identification purposes we need to formulate an identifi-
cation criterion through which we can (consistently) identify
a parametric model from measurement data. In the prediction
error identification framework the identification criterion is
developed on the basis of the innovation process of the
considered system, which in the situation of the considered
process is given by (5):

H∞e(t) = y(t)− ŷ(t|t− 1). (15)

It is clear that H∞e(t) is a vector of two random variables
that are actually the same (except for a scaling). The vector
process H∞e(t) has a singular covariance matrix, and -when
e.g. assuming that e(t) has a Gaussian distribution- the vector
process does not have a joint probability density function
(pdf). However e(t) does have a pdf and this term can be
isolated from the vector equation (15) as follows:

e(t) = y1(t)− ŷ1(t|t− 1) (16)

ηe(t) = y2(t)− ŷ2(t|t− 1). (17)

In terms of identification, we are parametrizing the two
predictors ŷ1(t|t − 1; θ) and ŷ2(t|t − 1; θ) with parameter
vector θ on the basis of parametrized versions of the predictor
filter P (q, θ) (14), where θ is composed of the parametrized
elements of the transfer functions G(q, θ) and H(q, θ) with
Ha(q, θ) monic. A parametrized pair (G(q, θ), H(q, θ)) will
be denoted by M(q, θ).
Following maximum likelihood considerations, it is obvious
that the identification criterion should not be to minimize
the power of the innovation process on each of the two
components (16)-(17) independently. Since there is only one
degree of freedom in the vector innovation process, the
natural choice of identification criterion is to minimize the
power of one component of the innovation, under a constraint
on the second component:

Constrained identification criterion:{
min
θ∈Θ

Ēε1(t, θ)2

under the constraint ε2(t, θ) = ηε1(t, θ) ∀t
(18)

with Ēx2(t) := limN→∞
1
N

∑N−1
t=0 Ex2(t), and[

ε1(t, θ)
ε2(t, θ)

]
:= y(t)− ŷ(t|t− 1; θ) = y(t)− P (q, θ)

[
y1(t)
u(t)

]
.

The reduced-rank property of the noise process induces a
constraint in the identification criterion. This is a direct gen-
eralization of the zero-noise situation that has been addressed
in [8], [9]. Note that the parametrized predictor filters do
not incorporate parameter η, since η only appears in P (q, θ)
through the term Hb−η which is actually independent of η1.
However occurence of η in the constraint equation allows the
consistent identification of η too, as is shown in the following
result.
Proposition 2: Consider input-output data that has been gen-
erated by system (1) with (G,H) = M0(q), and let θ∗ be
in the solution set of the identification criterion (18). Then
M(q, θ∗) = M0(q) provided that:

1) The data generating system is in the model set, i.e.
∃ θ0 ∈ Θ such that M(q, θ0) = M0(q), and

2) input u is persistently exciting of a sufficiently high
order.

Proof: Enclosed in appendix.
With slight abuse of the notion, we refer to the above result
as a consistency property2. Consistency of the estimator is
actually not very much surprising since it is also possible
to obtain consistent estimates by separately estimating two
independent SISO models on the basis of u, y1 and u, y2

respectively. Nevertheless it is attractive that consistency
can be formally proved for the multi-output model and the
constrained identification criterion.
While the constrained identification criterion can be applied
to situations where the data generating system is in the
model set, application beyond that situation can easily lead
to lack of feasibility of the constrained optimization problem.
Therefore we apply a relaxation to the constrained criterion,
by adding the constraint as a quadratic term to the original
cost function

Identification criterion after constraint relaxation:

min
θ∈Θ

Ē
[
ε1(t, θ)2 + λ(ε2(t, θ)− ηε1(t, θ))2

]
(19)

with λ ∈ R a tuning parameter.

The attractive feature of this relaxed criterion is that it has
the same consistency properties as the original criterion.
Proposition 3: The consistency result of Proposition 2 holds
true if we replace the constrained identification criterion (18)
by the unconstrained criterion (19).

Proof: The result follows directly from the fact that the
minimum of Ē(ε2(t, θ)− ηε1(t, θ))2 is equal to 0, which is
indeed achieved when the system is in the model set. This
does not constrain the minimum of Ēε1(t, θ)2 which is equal
to σ2

e .
One of the nice properties of the criterion with constraint
relaxation, is that it allows an asymptotic analysis of the
parameter variance, according to the multivariate theory as
presented in [11]. This will be presented elsewhere.

1Note that the constant (algebraic) term of Hb is equal to η.
2Since we have formulated the identification criterion as an infinite-data

expected value criterion, we do not consider the convergence property of
the related finite-time criterion, see [10].
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V. SIMULATIONS

This section is dedicated to simulating the proposed method
and comparing it to performing two separate SISO estima-
tions. For simulations it turns out to be easier to first rewrite
the constraint into a form that is simpler to implement.
Proposition 4: The constraint ηε1(t, θ) = ε2(t, θ) can equiv-
alently be written as

Hb(q, θ)(y1−G1(q, θ)u) = Ha(q, θ)(y2−G2(q, θ)u), (20)

or, provided that η 6= 0:

H−1
a (q, θ)(y1 −G1(q, θ)u) = H−1

b (q, θ)(y2 −G2(q, θ)u).
(21)

Proof: Included in the appendix.
This form of the constraint is useful for the current system
setup, but will generally not be possible for systems of larger
dimensions because for example Hb will not be invertible.
In the optimization ε1 will be optimized subject to the
constraint defined in (21). To this end we use the system
in Figure 1 with

G1(q) = 0.3 + 0.7q−1 + 0.3q−2,

G2(q) = 0.15 + 0.9q−1 − 0.5q−2,

Ha(q)=
1

1+0.3q−1+0.4q−2
, Hb(q)=

1

2−0.4q−1+0.2q−2
,

such that η = 0.5. The plant has a FIR structure while the
inverse of the noise filters are also of the FIR type. In this
way a parametrization can be used where both the plant and
noise inverse are parameterized by FIR models of order 3,
i.e.

Gi(q, θ) = b0,i + b1,iq
−1 + b2,iq

−2, i = {1, 2}
Hj(q, θ)

−1 = d0,j + d1,jq
−1 + d2,jq

−2, j = {a, b}.

Prediction error ε1(t, θ) and the constraint (21) are then
bilinear in the parameters. The input and process noise are
both generated as a realization of two independent white
noise processes.
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Fig. 2. Results of parameter estimates of G over 100 experiments, for
parameters b0, b1, b2 (left, middle, right), and models G1, G2 (top, bottom).
In all 6 plots the left box is the result of the constrained criterion method
(Con), and the right box is the result of the SISO identifications (SISO).

Results of applying the constrained criterion are compared
with an identification where the SIMO problem is decom-
posed into two unconstrained SISO problems. In the SISO
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Fig. 3. Results of parameter estimates of H over 100 experiments,
for parameters d0, d1, d2 (left, middle, right), and models Ha, Hb (top,
bottom). In all 6 plots the left box is the result of the constrained method
(Con), and the right box is the result of the SISO identifications (SISO).

problems similar model parametrizations are used, i.e. an FIR
models of order 3 for the plant models, and an FIR of order
3 for the inverse of the noise models. This again results in
parametrizations that are bilinear in the parameters.
In total 100 Monte-Carlo experiments have been performed
where each time a new realization of the input and noise
is generated. The results of estimation using the constrained
SIMO criterion are compared to the separate SISO identi-
fications in Figures 2 and 3. It can be observed that the
estimates of G1 and G2 are consistent for both methods,
and that the variance of the parameters is smaller in the case
of the constrained criterion. For the estimates of Ha both
methods are consistent, and the constrained method has very
small variance on the parameter estimates.
Since in the SISO estimation, the noise models are monic
by definition, the estimation results of Hb for the SISO
estimation, are scaled by σε1/σε2 to make the results compa-
rable to the Hb-estimate from the constrained method. Both
methods deliver a consistent Hb and again the constrained
method has smaller variance when compared to separating
the identification problem in two SISO problems. This is
due to the fact that in the constrained case, we appropriately
take account of the relation that exists between the noise
processes on the two different outputs. These result are also
in line with the variance results of [12].
Next we have implemented the criterion (19) with the
constraint relaxation, and we have applied it to the same
example, with different values of the tuning parameter λ: λ
1, 10, 100. For λ→∞ the criterion converges to the result of
the constrained criterion. Simulation results for 100 Monte-
Carlo experiments are shown in Figure 4. It can be observed
that the variance of the relaxation criterion is somehow in
between the case of the constrained criterion and of the SISO
identifications. For increasing values of the tuning parameter
λ, the variance decreases.

VI. CONCLUSIONS

Motivated by applications in large scale dynamic networks,
the prediction error identification method has been extended
to be able to deal with output disturbances that are generated
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Fig. 4. Results of parameter estimates of G1 over 100 experiments for
the relaxed criterion for λ = 100, 10, 1 (3 middle columns), compared to
the constrained criterion (left column) and the separate SISO identifications
(right column) for parameters b0, b1, b2 (top, middle, bottom) of G1.

by a reduced-rank noise process. To this end the one-step-
ahead predictor is written in a particular form in order to
arrive at unique predictor filters, and a constrained identifi-
cation criterion based on maximum likelihood considerations
has been analyzed. Through constraint relaxation an alterna-
tive criterion can also be formulated that shares consistency
properties with the constrained criterion. Consistency and
variance properties of the two methods have been illustrated
and compared with the separate identification of SISO mod-
els, showing improved variance properties. Extensions of
this work to a more complex dynamic network situation are
addressed in [13].

APPENDIX

Corollary 1: On the basis of the expression (12) for H̃ , and

denoting H̃ =

[
H̃11 H̃12

H̃21 H̃22

]
, the following expressions hold

true:

a. X := [ηH̃12 − H̃22]−1[ηH̃11 − H̃21] = −HbH
−1
a

b. −H̃11 + 1 + H̃12X = 1−H−1
a

c. −H̃21 + [H̃22 − 1]X = H−1
a [Hb − η]

Proof:
Part a. When using the expressions for H̃ it follows that

[ηH̃12 − H̃22]−1[ηH̃11 − H̃21] =

[η(1−Ha)B − [1− (Hb − η)B]]
−1 ·[

ηH−1
a (1−BHb) + ηBHb−[Hb − η][BHb−1]H−1

a

]
= [B[Hb − ηHa]− 1]

−1 [
Hb(ηB +H−1

a −H−1
a HbB

]
= [B[Hb − ηHa]− 1]

−1
HbH

−1
a [1−B[Hb − ηHa]] =

= −HbH
−1
a .

Part b.

−H̃11 + 1 + H̃12X =

= −BHb + (BHb−1)H−1
a +1−(1−Ha)BHbH

−1
a =

= 1−H−1
a

Part c.

−H̃21 + [H̃22 − 1]X = −(Hb − η)(BHb − 1)H−1
a +

+ [1− [1− (Hb − η)B]]HbH
−1
a =

= H−1
a

[
−BH2

b −Hb+ηBHb−η+Hb+(Hb−η)BHb

]
= H−1

a [Hb − η].

Proof of Theorem 1
On the basis of (10), we can writeŷ1(t|t− 1)

ŷ2(t|t− 1)
0

 = A ·

y1(t)
y2(t)
u(t)


where A can be written in the form of its scalar entries, as
A = −H̃11+1 −H̃12 [H̃11 H̃12]G

−H̃21 −H̃22 + 1 [H̃21 H̃22]G

ηH̃11−H̃21 ηH̃12−H̃22 [H̃21−ηH̃11 H̃22−ηH̃12]G

 .
We can now manipulate with the equations to remove the
dependence on y2(t) as “input” to the above equations.
Premultiplying the set of equations with[

1 0 H̃12

[
ηH̃12−H̃22

]−1
]

delivers:

ŷ1 = 1−H̃11+H̃12

[
ηH̃12−H̃22

]−1

[ηH̃11−H̃21]y1(t)

+

{
[H̃11 H̃12]G+ H̃12

[
ηH̃12−H̃22

]−1

·

[H̃21 − ηH̃11 H̃22 − ηH̃12]G
}
u(t). (22)

Employing part (b.) of Corollary 1 then shows the correct
expression for P11, while P12 can simply be verified to have
the structure P12 = [1− P11 0]G.
For obtaining ŷ2(t|t− 1) we premultiply the original set of
equations with[

0 1 [H̃22 − 1]
[
ηH̃12−H̃22

]−1
]

and obtain:

ŷ2 = −H̃21+[H̃22−1]
[
ηH̃12−H̃22

]−1

[ηH̃11−H̃21]y1(t)

+

{
[H̃21 H̃22]G+ [H̃22 − 1]

[
ηH̃12−H̃22

]−1

·

[H̃21 − ηH̃11 H̃22 − ηH̃12]G
}
u(t). (23)

Employing part (c.) of Corollary 1 then shows the correct
expression for P21, while P22 can simply be verified to have
the structure P22 = [−P21 1]G. �

Proof of Proposition 2:
The first part of the proof is to show that the true system
minimizes the quadratic function V̄ (θ) = Ēε2

1(t, θ) and
satisfies the constraint. For this we rewrite the prediction
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error in terms of its driving variables u and e by filling (1)
in into the prediction error3

ε1(t, θ) = H−1
a (θ)Hae+H−1

a (θ)(G1 −G1(θ))u.

In ε1 we can split the e term in a delayed and a non-delayed
part

ε1(t, θ) = (H−1
a (θ)Ha − 1)e+H−1

a (θ)(G1 −G1(θ))u+ e

such that the white noise term e is uncorrelated to the other
terms on the right hand side. It follows directly that θ = θ0

leads to the minimum value of the cost function V̄ (θ) being
equal to σ2

e . Similarly, because ε1(t, θ0) = e(t) it can simply
be verified that the constraint equation ε2(t, θ) = ηε1(t, θ)
is satisfied for θ = θ0.
In the second step we will show that any θ1 that reaches the
same cost function value as θ0, i.e. V̄ (θ1) = V̄ (θ0), while
satisfying the constraint, must have the same dynamics as
θ0.
So consider any model θ1 that satisfies V̄ (θ1) = V̄ (θ0), and
also satisfies the constraint ε2(t, θ1) = η(θ1)ε(t, θ1). It can
be shown that

V̄ (θ1)− V̄ (θ0) = Ē
(
ε1(t, θ1)− ε1(t, θ0)

)2
+

+2Ē
(
ε1(t, θ1)− ε1(t, θ0)

)
ε1(t, θ0). (24)

Analysing the second term we can use the fact that
ε1(t, θ0) = e(t) being a white noise process, while
ε1(t, θ1)−ε1(t, θ0) can be shown to be dependent on data up
to t− 1 only. Therefore this latter term will be uncorrelated
with e(t), and the second term in (24) will be 0, so that

V̄ (θ1)− V̄ (θ0) = Ē
(
ε1(t, θ1)− ε1(t, θ0)

)2
= 0 (25)

which can equivalently be formulated as

V̄ (θ1)− V̄ (θ0) = Ē
{[
P̃11 P̃12

] [y1(t)
u(t)

]}2

= 0 (26)

with P̃ij := Pij(θ1) − Pij(θ0) for i, j = 1, 2. Since u is
persistently exciting of a sufficiently high order, the process[
y1(t)
u(t)

]
is full rank which then implies that P̃11 = P̃12 = 0,

which in turn implies that Ha(θ1) = Ha(θ0) and G1(θ1) =
G1(θ0). For the constraint equation we will take a different
path. We know that the constraint is satisfied for θ0, so we
can add it to the constraint of θ1 as in

η(θ1)ε1(θ1)− ε2(θ1)− η(θ0)ε1(θ0) + ε2(θ0) = 0. (27)

Next we define

Q̃1j := η(θ1)P1j(θ1)− η(θ0)P1j(θ0) (28)

for j = 1, 2 such that we can write (27) as[
η(θ1)− η(θ0)− Q̃11 + P̃21 −Q̃12 + P̃22

] [y1

u

]
= 0.

3We will use the shorthand notation Ha = Ha(θ0), G1 = G1(θ0),
G2 = G2(θ0).

Since this constraint holds for all t and (y1, u) is persistently
exciting, this implies that the filters should be equal to 0, i.e.

0 = η(θ1)− η(θ0)− Q̃11 + P̃21,

0 = −Q̃12 + P̃22.

When we combine the above two equations with the knowl-
edge that G1 and Ha are unique then we obtain that
Hb(θ1) = Hb(θ0) and G2(θ1) = G2(θ0) which concludes
the proof. �

Proof of Proposition 4: With the predictor form of Theorem
1 the constraint ηε1 = ε2 can be written as

ηH−1
a (y1 −G1u) = y2 −H−1

a Hd
b y1 +H−1

a Hd
bG1u−G2u

where Hd
b := Hb − η. Multiplication with Ha, and moving

all y1 and G1 terms to the left hand side delivers (20). Then
when η 6= 0, H−1

b is proper and we can multiply with H−1
a

and H−1
b to obtain (21). �
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