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Abstract— For identification of a single module in a dynamic
network several conditions need to be fulfilled for arriving at
consistent or minimum variance model estimates. Conditions
for single module identifiability prescribe the presence of exter-
nal signals, either measured or unmeasured, allowing different
models in an appropriate model set to be distinguishable from
each other, on the basis of a set of measured node signals. While
conditions for identifiability are independent of the chosen
identification method, the particular method, or estimation
setup, will require additional data-informativity conditions to
be satisfied. The setup of the estimation problem is not unique,
as there are different methods for arriving at local module
estimates. In a prediction error setting there are e.g., direct
and indirect approaches, being distinguished by the choice of
predictor inputs and outputs in the estimation setting. In this
paper we will formalize the notion of data-informativity for a
general estimation setup that covers both direct and indirect
methods, and we will specify path-based conditions on the
network that guarantee data-informativity in a generic setting,
i.e. independent on numerical values of the network transfer
functions concerned.

I. INTRODUCTION

Based on the motivating reasoning that many systems in
our current days scientific and technological environment are
interconnected dynamic subsystems, the research community
involved in data-driven modeling of systems has shown an
increasing interest in the problem of identifying a local
(single) module in an interconnected dynamic network of
which the interconnection structure (topology) is given. In
[1] this problem has been formalized in a prediction error
identification setting where local subsystems are described
by linear dynamic systems in the form of transfer functions,
based on the work of [2]. Classical methods for closed-
loop identification have been generalized to be applicable
in this network situation, typically leading to multiple-
input single output type of estimation problems where the
target module is embedded in a larger predictor model,
and where consistency of the target module estimate is
obtained. Reducing the number of to be measured node
signals has been addressed in [3], [4]. For direct methods
of identification, further specification of these results has
been established by handling confounding variables and
correlated disturbances and by deriving minimum variance
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results [5], [6]. This has led to a so-called joint-direct method
of single module identification [7], that provides different
scenarios for the selection of node signals to be measured.
For indirect methods of identification consistency results for
local module estimates are provided in [8]. For all of these
methods data-informativity conditions need to be satisfied for
arriving at consistent module estimates. While for indirect
methods these conditions can typically be phrased in terms
of conditions on external excitation signals, see e.g. [8],
for direct methods they are typically formulated in terms
of a spectral condition on node signals in the network, and
thereby harder to interpret for the user who has to set up
an experiment. This has also been addressed in [9] where it
has been highlighted that the typical spectral conditions will
often be conservative in case of finite modules with finite
model order.
Separate from the introduction of identification methods
to identify single modules, the question of single module
identifiability has been considered in [10], [11], [12], [13],
[14], showing that identifiablity, being independent of the
identification method chosen, puts conditions on the presence
and location of external signals in the network, and the
measurability of node signals in the network. The external
signals that need to take care for sufficient excitation in
the network can be either external excitation signals that
are under control of the user, or disturbance signals that
are not under control. If sufficient excitation is provided
by measurable external excitation signals, then an indirect
identification method can be applied [13]. However if (non-
measured) disturbance signals are required for satisfying the
identifiability conditions, then one has to resort to a direct
method [7] or a generalized/combined direct/indirect method
[15].
In this paper we are going to address the situation of the
direct method [7], and we are going to reformulate the data-
informativity conditions for this method in terms of exci-
tation conditions of the external excitation signals, together
with path-based conditions on the topology of the network
model set. In this way the data-informativity conditions
become verifiable by the user, rather than remaining implicit.
After recalling the dynamic network setup in Section II, we
will highlight the different options for selecting predictor
models in Section III. In Section IV data-informativity con-
ditions are specified, for which path-based conditions are
being derived in Section V. The result are being illustrated
with examples.
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II. DYNAMIC NETWORKS

Following the setup of [1], a dynamic network is built up
out of L scalar internal variables or nodes wj , j = 1, . . . , L,
and K external variables rk, k = 1, . . .K. Each internal
variable is described as:

wj(t) =

L∑
l=1

l 6=j

Gjl(q)wl(t) + uj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);
• Gjl are proper rational transfer functions, referred to as

modules. In order to avoid technicalities in this paper
and without loss of generality we will assume that the
modules are strictly proper.

• uj is an input signal, uj(t) =
∑K
k=1Rjk(q)rk(t) with

rk external variables that can directly be manipulated
by the user.

• vj is process noise, where the vector process v =
[v1 · · · vL]T is modelled as a stationary stochastic pro-
cess with rational spectral density Φv(ω), such that there
exists a white noise process e := [e1 · · · eL]T , with
covariance matrix Λ > 0 such that v(t) = H(q)e(t),
where H is square, stable, monic and minimum-phase.

When combining the L node signals we arrive at the full
network expression
w1

w2

...
wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L

GL1 · · · GL L−1 0



w1

w2

...
wL

+R

r1

r2

...
rK

+H

e1

e2

...
eL


which results in the matrix equation:

w = Gw +Rr +He, (2)

where by construction the matrix G is hollow, i.e. it has
diagonal entries 0. The single module identification problem
to be considered is the problem of identifying one particular
module Gji(q) on the basis of measured time-series of a
subset of variables in w, and possibly r.

III. NETWORK ESTIMATION SETUP

We can distinguish two main different approaches for
addressing the single module identification problem, where
the target module is indicated by Gji.

1) A direct method, that is based on selecting a particular
set of predictor input signals wk, k ∈ D, and a set of
predicted output signals w`, ` ∈ Y , with i ∈ D, j ∈ Y ,
and estimating a dynamic model based on a prediction
error:

ε(t, θ) = H̄(q, θ)−1[wY(t)− Ḡ(q, θ)wD(t)], (3)

where Ḡ(q, θ) and H̄(q, θ) are parametrized transfer
function matrices. The target module is then embedded
in the model Ḡ(q, θ), and the objective is to estimate
the target module consistently and possibly with min-
imum variance.

2) An indirect method, that is based on selecting a partic-
ular set of external excitation signals rk, k ∈ P , and a
set of predicted node signals w`, ` ∈ Y , that are used
in a predictor model, leading to

εY(t, θ) = wY(t)− T̄Y(q, θ)rP(t) (4)

Since T̄Y reflects a mapping from external signals (r)
to internal signals (wY), a processing step is necessary
to recover the target module Gji from an estimated T̄Y .
In the most straightforward version, the node set wY
is composed of the output of the target module (wj)
and all of its in-neighbours in the parametrized model
graph. Consistency of the target module estimate is
the typical objective. Different variations of indirect
methods exist, including two-stage and instrumental
variable (IV) methods.

3) As introduced in [15], the above two methods can
be combined to a generalized approach where both
external signals rP and node signals wD are used as
predictor inputs.

The choice for any of the methods above relies on the
availability of measured external excitation signals that can
guarantee the network identifiability of the target module in
the considered model set. Network identifiability typically
requires the presence of external signals (r,e) for making sure
that different network models can be distinguished, see e.g.
[10], [11] for the situation of only considering r-signals, and
[12], [14] for the handling of noise signals e too. If network
identifiability conditions are satisfied for r signals only, then
the above indirect method can be applied. However, if the
presence of noise signals e is required for satisfying the
identifiability conditions, then an indirect method will fail
and a direct or generalized approach needs to be followed.
Note that all of these considerations are essentially dependent
on the set of node signals that can be measured.

Having a generalized method that allows both r-signals
and node signals w to serve as predictor inputs, allows for
the highest level of flexibility to deal with situations where a
limited set of node signals is available for measurements.
However in order to reduce the complexity of our expo-
sitions, in this paper we will only use this flexibility in a
limited setting.

In order to arrive at a consistent estimate of our target
module, while relying on prediction error type of identifica-
tion methods, there are three sets of conditions that jointly
can lead to a consistent estimate of the target module.

1) The target module Gji is network identifiable in the
considered model set. This aspect can be treated in
the context of global network identifiability [16], [12]
or can be considered in a generic setting [11], [13],
[14] for which attractive path-based conditions are
available. The results are typically dependent on the
selection of node signals that can be measured.

2) An identification method and estimation setup needs
to be chosen, on the basis of which it is possible
to reconstruct the target module from the estimated



objects Ḡ or T̄ . The estimation setup typically comes
down to the choice of a predictor model (3) or (4),
with a specification of signals that appear in wY , wD
and posibly rP .

3) In the chosen estimation setup, the data appearing in
this setup should be sufficiently informative so as to
guarantee that consistent estimates of the objects Ḡ,
H̄ and possibly T̄ are obtained.

The network identifiability question has been extensively
studied, and in particular in the generic setting leads to path-
based conditions on the presence of external excitation and
disturbance signals. Both types of signals can contribute to
satisfaction of the identifiability conditions.

IV. DATA-INFORMATIVITY

We consider an estimation setup on the basis of the
network equations

wY(t) = Ḡ(q)wD(t) + R̄(q)rP(t) + H̄(q)ξ(t) (5)

with wY , wD, rP selected node and excitation signals and ξ
a stationary white noise process.

The one-step ahead predictor for (5) is uniquely defined
through1

ŵY(t) := Ē{wY(t)|wt−1
Y , wtD, r

t
P} = W (q)z(t) (6)

with the predictor filter given by

W (q) :=
[
(1− H̄(q)−1) H̄(q)−1Ḡ(q) H̄(q)−1R̄(q)

]
(7)

and

z(t) :=

wY(t)
wD(t)
rP(t)

 . (8)

In line with the corresponding definitions in the prediction
error literature ([17], Definition 8.1), we can now define the
notion of data-informativity for the related network predictor
model.

Definition 1: Consider a set of network signals contained
in z and a network predictor model

ŵY(t, θ) = W (q, θ)z(t)

for a parametrized set of models

M := (Ḡ(q, θ), R̄(q, θ), H̄(q, θ))θ∈Θ.

Then a quasi-stationary data set Z∞ := {z(t)}t=0,··· with
z(t) defined in (8) is informative enough with respect to the
model set M if, for any two predictor models W1(q) and
W2(q) in the model set,

Ē[(W1(q)−W2(q))z(t)]2 = 0

implies that W1(eiω) ≡W2(eiω) for almost all ω. �
In line with ([17], Definition 8.2), we formulate:
Definition 2: A quasi-stationary data set Z∞ is informa-

tive if it is informative enough with respect to the model set
L∗, consisting of all linear time-invariant models.

1The notation wt refers to the past information {w(k)}k=−∞,··· ,t−1,t.

And in line with ([17], Definition 13.2):
Definition 3: A quasi-stationary signal z is said to be

persistently exciting if Φz(ω) > 0 for almost all ω.
The essential difference with the classical definitions in

[17] is in the composition of the signal vector z(t), being
composed according to (8).

A. Classical open-loop case

The classical open-loop case can be represented by the
situation that in the predictor model, the predictor input is
r, implying that wD is void.

In this case
z(t) :=

[
wY(t)
r(t)

]
.

The well known condition for data-informativity is now [17]:

Φz(ω) > 0 for almost all ω. (9)

Note that the condition includes both predictor input and
predictor outputs. Since there are output disturbances on
wY that are uncorrelated to r, the informativity condition
simplifies to the condition that r should be persistently
exciting. This “open-loop” situation, applies to the indirect
identification method in closed-loop or in networks, since
in this method the predictor input signals are all external
excitation signals that are uncorrelated to disturbance signals
present in the network.

B. Classical closed-loop case: direct method

The direct method for closed-loop systems is characterized
by the situation that in the predictor model
• wY and wD are distinct signals;
• rP is not included in the predictor;
• wD may depend of the present and past samples of wY

(feedback).

It follows that z(t) :=

[
wY(t)
wD(t)

]
and the “open-loop” results

of [17] still apply, i.e. the informativity condition of the data
is represented by the condition (9).

C. The network case: local direct method

When applying a direct identification method in the net-
work case, the resulting predictor model will not include any
external excitation signals r, but will have predictor inputs
wD and predicted outputs wY that may have common signals,
due to the handling of correlated disturbances, as discussed
in [6], [7]. These correlated disturbances can appear as so-
called confounding variables, i.e. non-measured signals that
affect both the input and output of an estimation problem,
and they can be properly handled by including the related
input signals as output too, and by exploiting a multivariate
noise model to cover the correlated disturbances. In this
situation the predictor model is represented as depicted in
Figure 1. In the multi-input multi-output predictor model,
we distinguish the following terms:

• wY =

[
wo
wQ

]
; wD =

[
wU
wQ

]
;

• wo = wj or wo is void if wj is present in wQ;



Fig. 1. Predictor model for local direct identification; the set of node signals
wQ appears both at the input and at the output of the predictor model.

• rP contains those measured external excitation signals
in r that add directly to measured outputs wk, k ∈ Y ,
for which every loop around wk passes through a node
in wY∪U . Therefore R(q) is a binary (selection) matrix
with known elements, indicating which output signals
are excited by signals rP .

Inputs and outputs are allowed to share some common
signals, while all node signals are allowed to depend on
each other’s (present and) past. According to the consistency
results in [7] the data-informativity conditions now become:

Φκ(ω) > 0 for almost all ω, (10)

with

κ(t) :=

wY(t)
wU(t)
ξQ(t)


and ξQ(t) the white noise innovation process that relates to
output wQ in (5). In the vector signal κ we collect all the
measured node signals (wY , wU), but on top of that we need
to include the noise terms ξQ, which appear “extra”. Since
these white noise terms ξQ also appear in a filtered version
in wY , this implies that the related output wQ that is a subset
of wY needs to contribute to the positive definite spectrum
of κ through excitation signals that are different from ξQ.
In other words, ξQ can not be used for the “excitation” of
the signals wQ, but this excitation has to come from other
external signals in the network. This mechanism is going to
be further elaborated upon in the next Section.

V. PATH-BASED CONDITIONS FOR DATA-INFORMATIVITY
IN THE DIRECT METHOD

A. General results

The condition (10) for data-informativity in the direct
method is compactly formulated, but it is actually implicit
and hard to check for the situation of a dynamic network with
given topology and unknown dynamics. It would be very at-
tractive to formulate this condition in terms of properties and
locations of the external signals in the network (i.e. r and e)

together with topological conditions on the interconnections
structure in the network models that we consider. In order
to achieve this objective, we consider the following Lemma:

Lemma 1: Let x(t) ∈ Rm be a quasi-stationary signal
that is persistently exciting, and let F (z) ∈ R(z)p×m be the
proper rational transfer function of a stable filter. Then the
signal y(t) = F (q)x(t) is persistently exciting if and only if
filter F (z) has rank p over the field of rational functions. �

Proof: Collected in the Appendix.
If we apply this Lemma with x-signals being the external
signals r, e, and y signals being selected node signals w in
the network, then the row rank of the considered transfer
function (r, e) → y would need to be evaluated in order to
make a statement about data-informativity. In line with the
idea of introducing a generic form of identifiability [11], i.e.
independent of particular numerical values of coefficients, we
can use the same generic type of result for data-informativity,
based on the results of [18].

Proposition 1: Consider the situation of Lemma 1. The
property that y(t) is persistently exciting holds generically2

if in the dynamic network there are p vertex-disjoint paths
between the nodes x and y. This is denoted by bx→y = p.

So, a persistently exciting “input” signal x and a suffi-
cient number of vertex-disjoint paths betwen x and y, will
generically provide a persistently exciting “output” signal y.
This result can be used to translate persistence of excitation
conditions on node signals, to persistence of excitation
conditions on external network signals.

In order to further specify the data-informativity condi-
tions that apply to the direct method, we need some formal
results from [7] that concern the conditions under which
the chosen predictor model will lead to results that leave
the target module Gji invariant in our estimation setup.
This step actually refers to the second set of conditions as
formulated in Section III, i.e. the choice of predictor model,
and specifies conditions under which Ḡji(q) = G0

ji(q).
Satisfying these conditions helps to further simplify the
topological conditions for data-informativity.

Theorem 1 (Module invariance result [7]): Let Gji be
the target network module. In the system’s equation (5)
conformable to the network model depicted in Figure 1, it
holds that Ḡji = G0

ji under the following conditions:
a. Every parallel path from wi to wj

3 and every loop
around wj passes through a measured node in wY∪U ,
and

b. U is decomposed into two disjunct sets, U = A ∪ B,
such that there are no confounding variables4 for the
estimation problems wA → wY and wA → wB, and

c. i ∈ {A ∪Q}, and
d. Every path from {wi, wj} to wB passes through a

measured node in wY∪U . �
2Generically has to be considered here in terms of a Lebesgue measure

0 of the vector of coefficient values of the rational transfer functions in all
modules of the network.

3A parallel path is a path from wi to wj that does not pass through Gji.
4A confounding variable for the estimation problem wA to wY is an

unmeasured variable in the network that has paths to both wA and wY , that
do not pass through a measured node in wY∪U .



The interpretation of the decomposition of U into A ∪ B
is that the signals in wB can be used to block the effect of
confounding variables in the estimation problem wA → wY ,
while confounding variables in the estimation problem wB →
wY are allowed. As a result the transfer functions Ḡjk with
k ∈ {Q ∪A} are invariant, i.e. Ḡjk = G0

jk.

B. Path-based conditions

The result on vertex-disjoint paths, as formulated in Propo-
sition 1 can now be applied to the particular situation of
condition (10). In this step the consequence of having the
white noise signal ξ in the condition (10) needs to be
translated to conditions on signals in the original network
(2).

Theorem 2: Consider a dynamic network with external
signals r and e, and let rP be the r-signals that appear
as predictor input in the setting of the local direct method.
Define esel∗ (resp. rsel∗) as
• void, if wQ is void, (else)
• the subset of signals in e (resp. r\rP)5 for which there

is an unmeasured path6 to a node signal in wY∪B,
and define esel := e\esel∗ and rsel := r\rsel∗ .
Then the transfer function from (rsel, esel) to κ generically
has full row rank if there are nY + nU vertex disjoint paths
between external signals (rsel, esel) and wY∪U . �

Proof: The proof is added in the Appendix.
As a direct result of Proposition 1 we can now formulate the
following Corollary:

Corollary 1: The data-informativity condition (10) for the
local direct method is satisfied if the path-based conditions
of Theorem 2 are satisfied and rsel (if present) is persistently
exciting.
The Corollary shows that in the case where there are common
signals in the input and output of the predictor model, except
for signals rP , only those external signals that do not have
unmeasured paths to wY∪B can serve as signals that provide
sufficient excitation for data-informativity. In other words:
the more signals appear in wQ, the stronger the requirements
on the presence of external signals. This is specified in the
next Corollary.

Corollary 2: If Q is not void, we need at least nY + nB
external signals rsel in the network to satisfy the conditions
of Corollary 1.

Proof: The proof is added in the Appendix.
We will illustrate the results of this Section in two exam-

ples.
Example 1: Consider a classical closed loop system rep-

resented by a two-node network as depicted in Figure 2 with
v1 and v2 being process noises that are correlated. First
we consider the situation of having no external excitation
signals, r1 = r2 = 0. The objective is to identify the target
module G21. Due to the correlation between v1 and v2, we
need to choose a predictor model where both node signals

5With slight abuse of notation, we denote r\rP as those components in
r that are not present in rP .

6An unmeasured path is a path that does not pass through a node in
wY∪U .

w1 and w2 are predicted, and therefore serve as outputs,
according to [6], [7]. As a result wY = wQ = {w1, w2}, and
wA and wB are void. In order to satisfy the data informativity
condition according to Theorem 2, we need two vertex
disjoint paths between (rsel, esel) and wY∪U . However since
both e1 and e2 have unmeasured paths to wY , esel will be
void. Hence, we do not have data-informativity unless we
have 2 external excitation signals, one on each of the two
nodes, and that are included in rP as they directly add to node
signals in the output wY . The requirement of two external
excitations is attributed to the need to model both G21 and
G12 since the two noise signals have been used to model
the (2×2) noise model. This result is in agreement with the
observations in [19], that adding one excitation signal only
does not suffice to consistently identify G21.

Fig. 2. Classical closed loop example with two node signals and
disturbances v1 and v2 being correlated.

Example 2: Consider the three node network depicted in
Figure 3 with v1 and v3 being disturbance signals that
are correlated. First we consider the situation of having
no external excitation signals, r1 = r2 = r3 = 0. The
objective is to identify the target module G12. According
to the local direct method [7], we have multiple ways to
choose the identification setup in terms of the predictor
model. Following the full input case [6], [7], we choose
wY = w1, wA = w2, and then we choose wB = w3 in
order to block the effect of the confounding variable e3 for
the estimation problem w2 → w1. In this setup wQ is void.
The data-informativity conditions of Theorem 2 now require
three vertex disjoint paths between (rsel, esel) and wY∪A∪B
with rsel absent and esel = e since wQ is void. Hence, we
can include all the three noise signals in esel. It can simply
be verified that we satisfy the vertex disjoint path conditions
without any need for external excitation signals.

When choosing an alternative predictor model, e.g. accord-
ing to the minimum input case algorithm in [7], we choose
wY = wQ = {w1, w2}, i.e. we model w2 as output also,
in order to deal with the confounding variable e3 for the
estimation problem w2 → w1. In this setup wU = wA∪B is
void. The data-informativity conditions of Theorem 2 now
require two vertex disjoint paths between (rsel, esel) and
(w2, w1), but now none of the e-signals is allowed to be
incorporated in esel because wQ = {w1, w2}, and all e-
signals have unmeasured paths to wY . Hence, we do not
have data-informativity unless we have 2 external excitation



signals, a result which is in accordance with the statement
in Corollary 2. In the current setting of the local direct
method having excitation signals r1, r2 constituting rP would
be sufficient to guarantee data-informativity. An excitation
signals r3 would not help as this would simply be considered
as an additional disturbance input in the considered local
direct method.

Fig. 3. A three node network example.

VI. CONCLUSIONS

For consistent identification of a single module that is
embedded in a dynamic network it is necessary that the
signals that constitute the chosen predictor model satisfy
data-informativity conditions. We have formalized the con-
cept of data-informativity for a generalized predictor model
that is suited for dynamic network modeling, and that allows
for signals to appear both as input and as output in a
MIMO predictor model. It generalizes all known situations
of indirect and direct methods in closed-loop systems and
dynamic networks. The conditions for data-informativity
have been specified for a particular identification method,
the local direct method, showing that the conditions can be
satisfied generically by requiring persistence of excitation of
external signals, together with path-based conditions on the
topology of the network model set.
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APPENDIX

A. Proof of Lemma 1

The spectral density of the output signal is given by
Φy(ω) = F (eiω)Φx(ω)F (eiω)?, with (·)? the complex con-
jugate. For each value of ω in −π ≤ ω ≤ π, this is a matrix
multiplication for which it holds that Φy(ω) > 0 only if
rankR(F (eiω)) = p and Φx(ω) > 0. If rankR(z)(F (z)) = p
then rankR(F (eiω)) = p for almost all ω. Since Φx(ω) > 0
for almost all ω this implies that Φy(ω) > 0 for almost all
ω. If rankR(z)(F (z)) < p then rankR(F (eiω)) < p for all
ω and there will be no value of ω for which Φy(ω) > 0. �

B. Proof of Theorem 2

The proof of this Theorem is based on an extensive proof
in [7], as a result of which we will only provide the main
line of reasoning here.
Resulting from Lemma 1 and Proposition 1, the transfer
function from (r, ξ) to κ generically has full row rank if
there are nY+nU+nQ vertex disjoint paths between external



signals (r, ξ) and κ. However, since ξQ is a component of
κ as well as of ξ, the condition can be reformulated that,
for the transfer function from (r, ξ) to κ to be generically
full row rank, we need nY+nU vertex disjoint paths between
external signals (r, ξ\ξQ), and wY∪U . So, in the input of the
considered transfer function we need to exclude the signals
in ξQ. Since ξ is the white noise innovation signal related to
the predictor model (5), we need to reformulate the condition
in terms of the signals e and r in the full network equation
(2). We are going to do this by, instead of excluding ξQ, we
are going to exclude all signals (r, e) that do not directly
appear in the predictor model, and that contribute to (i.e.
have a path to) ξQ.

Referring to the expression in [7] for ξY , we have

ξY = H̄∞s DΓ̃−1
r ξ̃Y = F ξ̃Y (11)

where H̄∞s := limz→∞ H̄s where H̄s is a stable and
minimum phase rational matrix, and D an “all pass” stable
rational matrix satisfying DD? = I , and Λ̃Y is the covariance
matrix of ξ̃Y , that can be decomposed as Λ̃Y = Γ̃rΓ̃

T
r .

Directly resulting from (11), we have ξQ = FQξ̃Y with FQ
representing the matrix with the rows belonging to wQ. The
next step is to represent the signal ξ̃Q in terms of noise signals
in e. From [7], we have

ξ̃ = H̃−1H̆e = H̃−1v̆. (12)

Here H̃ a monic, stable and minimum phase rational matrix
and v̆ is the process noise on the nodes in the immersed
network, i.e. the network that results after removing the
unmeasured node signals. Following Lemma 3 in [7], if
condition b in Theorem 1 is satisfied, then H̃ is block
diagonal and of the form

H̃ =

[
H̃11 0

0 H̃22

]
; v̆ =

[
v̆Y∪B
v̆A

]
.

As a result H̃−1 will also be block-diagonal, and ξ̃Y∪B will
be a filtered version of v̆Y∪B. And since Q ⊂ Y , also ξ̃Q will
be a filtered version of v̆Y∪B, and because of ξQ = FQξ̃Y this
implies that ξQ will also be a filtered version of v̆Y∪B. As
explained in [7], v̆Y∪B is a filtered version of all signals in
e and r\rP that have a path to wY∪B which does not pass
through nodes in wA. Excluding these signals, excludes the
contribution of ξQ.

When wQ is void, the term ξQ does not appear in κ and
the transfer function from (r, ξ) to κ generically has full
row rank if there are nY + nU vertex disjoint paths between
external signals (r, ξ) and κ. Since ξ is a filtered version of
e, we require nY +nU vertex disjoint paths between external
signals (r, e) and κ, making esel to be e, and rsel to be r.

C. Proof of Corollary 2

Resulting from Theorem 2, we need nY + nB + nA ver-
tex disjoint paths between external signals (rsel, esel) and
wY∪B∪A. Owing to the fact that there are no confounding
variables for the estimation problems wA → wY and wA →
wB (from Theorem 1), all signals in e that have unmeasured
paths to wA (let us call eAsel) will not have unmeasured paths

to wY∪B, and thus they belong to esel and contribute to nA
vertex disjoint paths between (rsel, esel) and wY∪B∪A due
to its path to wA. The signals in e excluding eAsel, either
have unmeasured paths to wY∪B or do not have any path to
wY∪U . The former can not be included in esel and the latter
belong to esel but can not have vertex disjoint paths to wY∪U .
Therefore, the remaining nY+nB vertex disjoint paths should
come from rsel and it is necessary to have at least nY + nB
external signals rsel in the network to satisfy the conditions
of Corollary 1.




