Identification of Normalised Coprime Plant Factors from Closed-loop Experimental Data

Paul M. J. Van den Hof, Ruud J. P. Schrama1, Raymond A. de Callafon2 and Okko H. Bosgra
Mechanical Engineering Systems and Control Group, Delft University of Technology, The Netherlands

Recently introduced methods of iterative identification and control design are directed towards the design of high performing and robust control systems. These methods show the necessity of identifying approximate models from closed-loop plant experiments. In this paper a method is proposed to identify approximate normalised coprime plant factors from closed-loop data. The fact that normalised plant factors are estimated gives specific advantages, both from an identification and from a robust control design point of view. It will be shown that the proposed method leads to identified models that are specifically accurate around the bandwidth of the closed-loop system. The identification procedure fits very naturally into a recently developed iterative identification/control design scheme based on \mathcal{H}_∞ robustness optimisation. The identification scheme is illustrated with experiments on the radial servo mechanism in a compact disc player.

Keywords: Closed-loop identification; Coprime factorisations; Gap-metric; Robust control; System identification

1. Introduction

Recently it has been motivated that the problem of designing a high performance control system for a plant with unknown dynamics through separate stages of (approximate) identification and model-based control design requires iterative schemes to solve the problem [1–7]. In these iterative schemes each identification is based on new data collected while the plant is controlled by the latest compensator. Each new nominal model is used to design an improved compensator, which replaces the old compensator, in order to improve the performance of the controlled plant.

A few iterative schemes proposed in the literature have been based on the prediction error identification method, together with LQG control design [7–9]. In [1,2,4,6,10] iterative schemes have been worked out, employing a Youla parametrisation of the plant, and thus dealing with coprime factorisations in both identification and control design stages; as control design methods an \mathcal{H}_∞ robustness optimisation procedure of [11,12] is applied in [4,6,10], while in [1,2] the IMC-design method is employed. Alternatively, in [13] the identification and control design are based on covariance data. In [1] the IMC-design method is employed, and the identification step is replaced by a model reduction based on full plant knowledge. Alternatively, in [14] an iteration is used to build pre-filters for a control-relevant prediction error identification from one open-loop data set. For a general background and a more extensive overview and comparison of different iterative schemes the reader is referred to the survey papers [15–17].

1Now with the Royal Dutch/Shell Company.
2The work of Raymond de Callafon is sponsored by the Dutch ‘Systems and Control Theory Network’.

Correspondence and offprint requests to: Paul M. J. Van den Hof, Mechanical Engineering Systems and Control Group, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands. E-mail: vdhof@tudw03.tudelft.nl

Received 12 December 1994; Accepted 26 April 1995
Recommended by B. Egardt and M. Gevers
One of the central aspects in almost all iterative schemes is the fact that the identification of a control-relevant plant model has to be performed under closed-loop experimental conditions. Standard identification methods have not been able to provide satisfactory models for plants operating in closed-loop, except for the case that the plant is stable and input/output dynamics and noise characteristics can be modelled exactly.

Recently introduced approaches to the closed loop identification problem [1,4,17–20] show the possibility of also identifying approximate models, where the approximation criterion (if the number of data tends to infinity) becomes explicit, i.e. it becomes independent of the unknown noise disturbance on the data. This has opened the possibility of identifying approximate models from closed-loop data, where the approximation criterion explicitly can be ‘controlled’ by the user, despite a lack of knowledge about the noise characteristics. In the corresponding iterative schemes of identification and control design, this approximation criterion then is tuned to generate a control-relevant plant model. The identification methods considered in the iterative procedures presented in [1,4,10] employ a plant representation in terms of a coprime factorisation \(P = ND^{-1} \), while in [4,10] the two plant factors \(N, D \) are separately identified from closed-loop data.

Coprime factor plant descriptions play an important role in control theory. The parametrisation of the set of all controllers that stabilise a given plant greatly facilitates the design of controllers [21]. The special class of normalised coprime factorisations has its applications in design methods [11,12] and robustness margins [22–24]. If we have only plant input-output data at our disposal then the question, how to model normalised coprime plant factors as well as possible, becomes relevant. Besides advantages with respect to control design, normalisation of coprime factorisations will also be shown to have specific merits from an identification point of view.

In this paper we will focus on the problem of identifying normalised coprime plant factors on the basis of closed-loop experimental data.

As an experimental situation we will consider the feedback configuration as depicted in Fig. 1, where \(P_0 \) is an LTI-(linear time-invariant), possibly unstable plant, \(H_0 \) a stable LTI disturbance filter, \(e_0 \) a sequence of identically distributed independent random variables and \(C \) an LTI-(possibly unstable) controller. The external signals \(r_1, r_2 \) can either be considered as external reference (setpoint) signals, or as (unmeasurable) disturbances. In general we will assume we have available only measurements of the input and output signals \(u \) and \(y \), and knowledge of the controller \(C \) that has been implemented. We will also regularly refer to the artificial signal \(r(t) := r_1(t) + Cr_2(t) \). First we will discuss some preliminaries about normalised coprime factorisations and their relevance in control design. In Section 3 a generalised framework is presented for closed-loop identification of coprime factorisations. Next we present a two-step procedure for identification of normalised factors. In Section 5 we will analyse the corresponding asymptotic identification criterion, and we will discuss the close relation with robustness margins in a gap-metric sense, being specifically relevant for the consecutive control design. In Section 6 we will show the experimental results that were obtained when applying the identification algorithm to experimental data obtained from the radial servomechanism in a CD (compact disc player).

Concerning notation, \(RH_\infty \) will denote the set of real rational transfer functions in \(H_\infty \), analytic on and outside the unit circle; \(R[z^{-1}] \) is the ring of (finite degree) polynomials in the indeterminate \(z^{-1} \); \(q \) is the forward shift operator: \(qu(t) = u(t + 1) \); \((\cdot)^*\) denotes complex conjugate transpose, and \(\text{col}(r_1, r_2) = [r_1^T, r_2^T]^T \).

2. Preliminaries

Considering the feedback structure as depicted in Fig. 1 we will state that \(C \) stabilises the plant \(P_0 \) if the mapping from \(\text{col}(r_1, r_2) \) to \(\text{col}(y, u) \) is stable, being equivalent to \(T(P_0, C) \in RH_\infty \) with

\[
T(P_0, C) = \begin{bmatrix} P_0 & I \\ I & CP_0^{-1} \end{bmatrix} [C \ I] \tag{1}
\]

Consider any LTI system \(P \), then (following [2]) \(P \) has a right coprime factorisation \((R,F) (N,D)\) over \(RH_\infty \) if there exist \(U, V, N, D \in RH_\infty \) such that

\[
P(z) = N(z)D^{-1}(z); \quad UN + VD = I \tag{2}
\]
In addition a right coprime factorisation \((N, D)\) of \(P\) is called normalised if it satisfies
\[N^* N + D^* D = I \] (3)

Dual definitions exist for left coprime factorisations (\(L\)).

One of the properties of normalised coprime factors is that they form a decomposition of the system \(P\) in minimal order (stable) factors. In other words, if the plant has McMillan degree \(n_p\), then normalised coprime factors of \(P\) will also have McMillan degree \(n_p\).\(^1\) In the scalar case this implies that there will always exist polynomials \(a, b, f \in \mathbb{R}[z^{-1}]\) of degree \(n_p\) such that \(N = b(z^{-1}) f(z^{-1})^{-1}\) and \(D = a(z^{-1}) f(z^{-1})^{-1}\).

In robust stability analysis normalised coprime factors play an important role in robustness issues with respect to several perturbation classes of systems. One of the important ones is a perturbation class that is induced by the gap-metric \([22, 23]\). This gap-metric between two (possibly non-stable) systems \(P_1, P_2\) is defined as \(\delta(P_1, P_2) = \max\{\delta(P_1, P_2), \delta(P_2, P_1)\}\), with
\[\delta(P_1, P_2) := \inf_{U \in \mathcal{H}_\infty} \left\| \begin{bmatrix} N_1 \\ D_1 \\ \end{bmatrix} - \begin{bmatrix} N_2 \\ D_2 \\ \end{bmatrix} U \right\|_\infty \] (4)

where \((N_1, D_1), (N_2, D_2)\) are normalised \(rcf\)'s of \(P_1, P_2\) respectively.

Gap-metric uncertainty sets can be used in robustness issues, as formulated in the following result.

Proposition 2.1. [22] Let \(\hat{P}\) be a plant model that is stabilised by the controller \(C\), and consider the following two classes of systems:
\[\mathcal{P}_{gap}(\hat{P}, \gamma) := \{ P | \delta(\hat{P}, P) \leq \gamma \} \] (5)
\[\mathcal{P}_{dgap}(\hat{P}, \gamma) := \{ P | \delta(\hat{P}, P) \leq \gamma \} \] (6)

Then, for either of the two classes of systems, the result holds that a controller \(C\) will stabilise all elements if and only if \(\|T(\hat{P}, C)\|_\infty < \gamma^{-1}\). \(\Box\)

This result shows that when we have access to normalised coprime factors of a plant model, together with an error bound on these (estimated) factors (in the form of error bounds on their mismatches \(\Delta_N\) and \(\Delta_D\)), then immediate results follow for the robust stability of the plant.

On one hand, this result may not seem to be too striking, since a similar situation can be reached by any hard-bounded uncertainty on the system’s transfer function, and application of the small gain theorem. However, the ability to deal with unstable plants as well as unstable perturbations on the open-loop plant, and the interpretation of the related uncertainty description in terms of the gap-metric, are considered to be specific advantages. The latter aspect is motivated by the fact that closed-loop properties of two systems will be close whenever their distance in terms of the gap-metric is small.

The control design method of [11, 12, 26] is directed towards optimising this same robustness margin, as discussed above. This control design method is characterised by
\[C = \arg \min_{C \in \mathcal{C}} \| V_1 T(\hat{P}, C) V_2 \|_\infty \] (7)

with \(V_1, V_2\) being user-chosen stable weighting functions and \(\mathcal{C}\) an appropriate class of controllers considered. This control design is utilised in the iterative identification/control design scheme of [4, 6, 10].

The above robustness results motivate the identification of a model \(\hat{P}\) that minimises the distance between \(\hat{P}\) and \(P_0\) in a gap-metric sense. In this respect, expression (4) shows that this can be done by constructing a model \(\hat{P}\) with \(rcf\) \((N, D)\) where the coprime factors are an accurate approximation (in the \(\mathcal{H}_\infty\) sense of (4)) of normalised coprime factors of the plant \(P_0\). This motivates the approximate identification of normalised coprime plant factors.

3. Closed-loop Identification of Coprime Factorisations

3.1. Closed-loop Identification

The closed-loop identification problem is not straightforwardly solvable in the prediction error framework in the case that one is not sure that exact models of the plant and its disturbances can be obtained in the form of a consistent estimate of \(P_0\) and \(H_0\). Even in this case, results are mostly restricted to the situation of a stable plant \(P_0\) [27]. What we would like to find – based on signal measurements – is a model \(\hat{P}\) of a possibly unstable plant \(P_0\) such that there exists an explicit approximation criterion \(J(P_0, \hat{P})\) indicating the way in which \(P_0\) has been approximated (at least asymptotically in the number of data), while \(J(P_0, \hat{P})\) is independent of the unknown noise disturbance of the data.

Additionally, one would like to be able to tune this approximation criterion to get an approximation of \(P_0\) that is desirable in view of the control design to be performed. This explicit tuning of the approximation

\(^1\)In the exceptional case that \(P\) contains all-pass factors, (one of) the normalised coprime factors will have McMillan degree \(< n_p\), see \([25, 26]\).
criterion is possible within the classical framework only when open-loop experiments can be performed.

Let us consider a few alternatives to deal with this closed-loop approximate identification problem, assuming the signal \(r = r_1 + Cr_2 \) is available from measurements:\(^2\)

- If we know the controller \(C \), we could do the following:

 Consider a parametrised model \(P(\theta), \theta \in \Theta \), and identify \(\theta \) through:
 \[
 \varepsilon(t, \theta) = y(t) - P(\theta)[1 + CP(\theta)]^{-1}r(t)
 \]
 by least squares minimisation of the prediction error \(\varepsilon(t, \theta) \).

 This first alternative leads to a complicated parametrised model set. Moreover, for application of the asymptotic analysis of prediction error methods [27], the parameter set \(\Theta \) has to be a connected subset of \(\mathbb{R}^d \) and to parametrise only models that generate stable predictors \(P(\theta)[1 + CP(\theta)]^{-1} \). In contrast with the open-loop situation, there will generally not exist such a parameter set \(\Theta \) that covers all appropriate plant models with a specified McMillan degree.

- Identify transfer functions

 \[
 H_{yr} = P[1 + CP]^{-1} \quad \text{and} \quad H_{ur} = [1 + CP]^{-1}
 \]
 as black box transfer functions \(H_{yr}, H_{ur} \), then an estimate of \(P \) can be obtained as \(\hat{P} = H_{yr}H_{wr}^{-1} \).

 This method shows a decomposition of the problem in two parts, actually decomposing the system into two separate (high order) factors: sensitivity function and plant-times-sensitivity function. In this setting it will be hard to specify the order of the model to be identified on beforehand, as the quotient of the two estimated transfer functions \(H_{yr}, H_{ur} \) will generally not cancel the common dynamics that are present in both functions. As a result the model order will become unnecessarily high.

- As a third alternative we can first identify \(H_{ur} \) as a black box transfer function \(H_{ur} \), and consecutively identify \(P \) from:

 \[
 \varepsilon(t, \theta) = y(t) - \hat{P}(\theta)\hat{u}_e(t) \quad \text{with} \quad \hat{u}_e(t) := H_{ur}r(t).
 \]

 This method is presented in [20]. It also uses a decomposition of the plant \(P \) in two factors as in the previous method, now requiring a very accu-
rate estimate of \(H_{ur} \) in the first step. An explicit approximation criterion can be formulated.

If, as in the last two methods, the plant is represented as a quotient of two factors of which estimates can be obtained from data, it is advantageous to let these factors have the minimal order, thus avoiding the problem that the resulting plant model has an excessive order, caused by non-cancelling terms with redundant dynamics. This will be discussed in the next subsection.

3.2. A Generalised Framework

We will now present a generalised framework for the identification of coprime plant factors from closed loop data, allowing the situation to identify unstable models for unstable plants. It will be shown to have close connections to the Youla-parametrisation, as employed in the identification schemes as proposed in [1,4,19,18].

Consider the notation:\(^3\)

\[
S_0(z) = (I + C(z)P_0(z))^{-1} \quad \text{and} \quad W_0(z) = (I + P_0(z)C(z))^{-1}.
\]

Then the system’s equations can be written as:\(^4\)

\[
y(t) - P_0(q)S_0(q)r(t) + W_0(q)H_0(q)e_0(t)
\]

\[
u(t) = S_0(q)r(t) - C(q)W_0(q)H_0(q)e_0(t).
\]

Note also that

\[
r(t) = r_1(t) + C(q)r_2(t) = u(t) + C(q)y(t)
\]

Using knowledge of \(C(q) \), together with measurements of \(u \) and \(y \), one can simply 'reconstruct' the reference signal \(r \) in (13). So, instead of a measurable signal \(r \), we can equally well deal with the situation that \(y, u \) are measurable and \(C \) is known.

It can easily be verified from (11) and (12) that the signal \(\{u(t) + C(q)y(t)\} \) is uncorrelated with \(\{e_0(t)\} \) provided that \(r \) is uncorrelated with \(e_0 \). This shows with Eqs (11) and (12) that the identification problem of identifying the transfer function from signal \(r \) to \(\text{col}(y, u) \) is an 'open loop'-type of identification problem, since \(r \) is uncorrelated with the noise terms dependent on \(e_0 \). The two transfer functions \(H_{ur} \) (from \(r \) to \(u \)) and \(H_{yr} \) (from \(r \) to \(y \)) can now act as a factorisation of the open-loop plant \(P_0 \), by considering that \(P_0 = H_{yr}H_{wr}^{-1} \). The corresponding factorisation of \(P_0 \) that is accessible from closed

\(^2\)Similar results follow if either \(r_1 \) or \(r_2 \) are available from measurements.

\(^3\)The main part of the paper is directed towards multivariable systems, and so we distinguish between output and input sensitivity.

\(^4\)Note that we have employed the relations \(W_0P_0 = P_0S_0 \) and \(S_0C = CW_0 \).
loop data \(r, y, u \) is the factorisation \(P_0 = N_0 D_0^{-1} \) with \(N_0 = H_y = P_0 S_0 \) and \(D_0 = H_u = S_0 \). This latter factorisation is also employed, in e.g., [14].

However, this is only one of the many factorisations that are accessible from closed-loop data. By introducing an auxiliary signal
\[
 x(t) := F(q)r(t) = F(q)(u(t) + C(q)y(t))
\]
with \(F(z) \) a fixed stable rational transfer function, we can rewrite the system’s relations (11) and (12) as
\[
 y(t) = P_0(q)S_0(q)F(q)^{-1}x(t)
 + W_0(q)H_0(q)e_0(t) \tag{15}
\]
\[
 u(t) = S_0(q)F(q)^{-1}x(t)
 - C(q)W_0(q)H_0(q)e_0(t),
\]
and thus we have obtained another factorisation of \(P_0 \) in terms of \(P_0 = N_0,F D_0,F \) with
\[
 N_{0,F} = P_0 S_0 F^{-1} \tag{17}
\]
\[
 D_{0,F} = S_0 F^{-1}. \tag{18}
\]

Since the signal \(x \) can be reconstructed from closed-loop measurement data, these factors can also be identified from data, as they occur as transfer functions between the measured signals \(\{x, y, u\} \). For appropriate identification of these factors in a prediction-error framework, they are required to be stable.

We will now characterise the freedom that is present in choosing this filter \(F \).

Proposition 3.1. Consider a data generating system according to (11), (12) such that \(C \) stabilises \(P_0 \), and let \(F(z) \) be a rational transfer function defining
\[
 x(t) = F(q)(u(t) + C(q)y(t)). \tag{19}
\]
Let the controller \(C \) have a left coprime factorisation \((\bar{D}_c, \bar{N}_c)\). Then the following two expressions are equivalent:

a. the mappings \(col(y, u) \rightarrow x \) and \(x \rightarrow col(y, u) \) are stable;

b. \(F(z) = W\bar{D}_c \), with \(W \) any stable and stably invertible rational transfer function.

The proof of this Proposition is added in the appendix.

Note that stability of the mappings mentioned under (a) is required in order to guarantee that a bounded signal \(x \) is obtained as an input in our identification procedure, and that the factors to be estimated are stable, so we are able to apply the standard (open-loop) prediction error methods and analysis thereof.

Note also that all factorisations of \(P_0 \) that are induced by these different choices of \(F \) reflect factorisations of which the stable factors can be identified from input/output data (cf. eqs (15), (16)).

The construction of the signal \(x \) is schematically depicted in Fig. 2. Here we have employed (13), which clearly shows that \(x \) is uncorrelated with \(e_0 \) provided the external signals are also uncorrelated with \(e_0 \).

For any choice of \(F \) satisfying the conditions of Proposition 3.1, the induced factorisation of \(P_0 \) is right coprime, as is shown next.

Proposition 3.2. Consider the situation of Proposition 3.1. For any choice of \(F = W\bar{D}_c \), with \(W \) stable and stably invertible, the induced factorisation of \(P_0 \), given by \((P_0 S_0 F^{-1}, S_0 F^{-1}) \) is right coprime.

Proof: Let \((X, Y)\) be right Bezout factors of \((N, D)\), i.e. \(XN + YD = I \), and denote \([X_1 \ Y_1] = W(\bar{D}_c D + \bar{N}_c N) [X \ Y] \). Then, by employing (A.1), it can simply be verified that \(X_1, Y_1 \) are stable and satisfy \(X_1 P_0 S_0 F^{-1} + Y_1 S_0 F^{-1} = I \).

By appropriate tuning of the filter \(F \) we can now influence the specific coprime factorisation \(P_0 = N_{0,F} D_{0,F}^{-1} \) that is accessible from closed-loop experimental data.
However, before we start the discussion about the specific choice of F, we present an alternative formulation for the freedom that is present in this choice of F, as formulated in the following proposition.

Proposition 3.3. The filter F yields stable mappings $(y,u) \rightarrow x$ and $x \rightarrow (y,u)$ if and only if there exists an auxiliary system P_x with rcf (N_x,D_x), stabilised by C, such that $F = (D_x + CN_x)^{-1}$. For all such F the induced factorisation $P_0 = N_{0,F}D_{0,F}$ is right coprime.

Proof: Consider the situation of Proposition 3.1. It will be shown that for any C with rcf $D_x^{-1}N_x$, and any stable and stably invertible W there always exists a system P_x with rcf $N_xD_x^{-1}$, being stabilised by C, such that $W = [D_x + N_x]^{-1}$.

Take a system P_x with rcf $N_xD_x^{-1}$ that is stabilised by C. With Lemma A.1 it follows that $D_x + N_x = \Lambda$ with Λ stable and stably invertible. Then choosing $D_x = D_x\Lambda^{-1}W^{-1}$ and $N_x = N_x\Lambda^{-1}W^{-1}$ delivers the desired rcf of a system P_x as mentioned above. Since $F = WD_c$ and substituting $W = [D_x + N_x]^{-1}$ it follows that $F = (D_x + CN_x)^{-1}$.

Employing this specific characterisation of F, the coprime plant factors that are accessible from closed loop data are determined by

$$
\begin{bmatrix}
N_{0,F} \\
D_{0,F}
\end{bmatrix} = \begin{bmatrix}
P_0(I + CP_0)^{-1}F^{-1} \\
(I + CP_0)^{-1}F^{-1}
\end{bmatrix}
$$

with $F^{-1} = (I + CP_0)D_x$ (21) with $P_x = N_xD_x^{-1}$ any auxiliary plant that is stabilised by C. The auxiliary system P_x and its coprime factorisation can act as a design variable that can be chosen to tune the specific coprime factorisation that is accessible from closed-loop data. It has been shown that the open-loop dynamics of the plant can be accessed by identification of two coprime factors $N_{0,F}, D_{0,F}$ (20). These two transfer functions can be identified using standard open-loop identification techniques, as the input signals related to these factors are uncorrelated with the output noise disturbances (see Fig. 2). One of the problems in the identification of $N_{0,F}, D_{0,F}$ (20) is that there can be considerable redundant dynamics in the two factors, that cancel in the quotient $P_0 = N_{0,F}D_{0,F}$. This is clearly visible in (20). Consequently the two separate factors generally will have a McMillan degree that is higher than the McMillan degree of P_0. In identifica-

tion terms this leads to the identification of models with a McMillan degree that is larger than necessary, and thus to the identification of a too-high number of parameters. As there is a freedom in choosing the filter F according to (21), this filter can be constructed so as to reduce (or even eliminate) the effect of redundant dynamics. When F is chosen such that the factorisation $(N_{0,F}, D_{0,F})$ is normalised, the McMillan degree of both factors will be equal to the McMillan degree of their quotient, and thus a complete elimination of redundant dynamics will be achieved. This mechanism will be further elaborated in the next section.

The representation of P_0 in terms of the coprime factorisation above shows great resemblance with the dual Youla-parametrisation [1,18,19], i.e. the parametrisation of all plants that are stabilised by a given controller. This will be illustrated briefly.

Proposition 3.4. Let C be a controller with rcf (N_c,D_c), and let P_x with rcf (N_x,D_x) be any system that is stabilised by C. Then

(a) A plant P_0 is stabilised by C if and only if there exists an $R \in RH_\infty$ such that

$$P_0 = (N_x + D_cR)(D_x - N_cR)^{-1}$$

(22) is a right coprime factorisation of P_0.

(b) For any such P_0, the corresponding stable transfer function R in [22] is uniquely determined by

$$R = D_c^{-1}(I + P_0C)^{-1}(P_0 - P_x)D_x.$$

(23)

(c) The coprime factorisation in (22) is uniquely determined by

$$N_x + D_cR = P_0(I + CP_0)^{-1}(I + CP_x)D_x$$

(24)

$$D_x - N_cR = (I + CP_0)^{-1}(I + CP_x)D_x$$

(25)

Proof: The proof of part (a), which actually reduces to the Youla-parametrisation, is given in [29].

Part (b): With (22) it follows that $P_0[D_x - N_cR] = N_x + D_cR$. This is equivalent to $[D_x + P_0N_c]R = P_0D_x - N_cR$ which in turn is equivalent to $[I + P_0C]D_cR = [P_0 - P_x]D_x$ which proves the result.

Part (c): Simply substituting the expression (23) for R shows that
\[
\begin{bmatrix}
N_0 \\ D_0
\end{bmatrix} := \begin{bmatrix}
N_x + D_x R \\ D_x - N_x R
\end{bmatrix}^{-1} \begin{bmatrix}
N_x + (I + P_0 C)^{-1} (P_0 - P_x) D_x \\ D_x - C (I + P_0 C)^{-1} (P_0 - P_x) D_x
\end{bmatrix}
\]
\[
= \begin{bmatrix}
P_x + (I + P_0 C)^{-1} (P_0 - P_x) \\ I - C (I + P_0 C)^{-1} (P_0 - P_x)
\end{bmatrix}^{-1} \begin{bmatrix}
P_x + (I + P_0 C)^{-1} (P_0 - P_x) D_x \\ I - C (I + P_0 C)^{-1} (P_0 - P_x) D_x
\end{bmatrix}
\]
(26)

which proves the result, employing the relations
\[C (I + P_0 C)^{-1} = (I + CP_0)^{-1} C \quad \text{and} \quad (I + P_0 C)^{-1} P_0 = P_0 (I + CP_0)^{-1}.\]

This result shows that the coprime factorisation that is used in the Youla parametrisation is exactly the same coprime factorisation that we have constructed previously, by exploiting the freedom in the prefiler \(F\), reflected in (21).

In [1,2,18] a closed-loop identification method is discussed in which the Youla parameter \(R\) (23) is identified from experimental data. This leads to an estimated plant model \(\hat{P} = ND^{-1}\) where, in accordance with (24), (25), \(N = N_x + D_x \hat{R}\) and \(D = D_x - N_x \hat{R}\), and where \(\hat{R}\) is the estimated transfer function. The estimated model \(\hat{P}\) is guaranteed to be stabilised by the present controller. This approach solves part of the parametrisation problem as present in the identification method with the tailor-made parametrisation (8). The remaining problem is that the order of the resulting plant model can not simply be ‘controlled’ by restricting the order of the transfer function \(\hat{R}\). As a result, the model order will rise and an additional model reduction is required to obtain a low order model.

In our approach it will appear to be possible to specify \textit{a priori} the order of the model obtained.

4. An Algorithm for the Identification of Normalised Coprime Factors

We will present an approach to identify coprime plant factors, in which the abundance of redundant dynamics in both factors has been removed. This will be done by choosing an appropriate filter \(F\).

The procedure to be elaborated is composed of two basic steps:

1. The coprime factors \((N_{0,F}, D_{0,F})\) of (20) that are accessible from closed-loop data will be shaped in such a way that \((N_{0,F}, D_{0,F})\) becomes (almost) normalised. This is being done by an appropriate choice of the filter \(F\) which, in its turn by (21), is based on an appropriate choice of auxiliary model \(P_x\) and its coprime factorisation.

2. Two plant factors are identified using classical (open-loop) prediction error techniques, applied to the signals \(x\) as input and \((y, u)\) as output, where the signal \(x\) is constructed as a result of the filter \(F\) determined in Step 1, according to (14).

Next, the algorithm will be worked out in more detail. A formal justification and analysis is postponed until the next section.

Step 1. A filter \(F\) has to be found such that the factorisation \((N_{0,F}, D_{0,F})\) becomes (almost) normalised. The rationale behind this step is that the factorisation \((N_{0,F}, D_{0,F})\) depends on the specific factorisation \((N_x, D_x)\) of the auxiliary model \(P_x = N_x D_x^{-1}\) used in the filter \(F\), (see (21)). From the ideal situation, where the auxiliary model \(P_x\) satisfies \(P_x = P_0\), it follows from (21) that \(D_{0,F} = D_x\) and \(N_{0,F} = P_0 D_x = N_x\). Consequently, the normalisation of \((N_{0,F}, D_{0,F})\) can be approached by letting \(P_x\) be an accurate (inevitably high order) approximation of the plant \(P_0\) and factorizing \(P_x\) in a normalised rcf \((N_x, D_x)\). In order to obtain such an accurate auxiliary model \(P_x\), the following algorithm based on coprime factor estimation is considered.

To initialise the algorithm, consider an auxiliary model \(P_x\) that is internally stabilised by the known controller \(C\). Now construct a normalised rcf \((N_x, D_x)\) of the auxiliary model \(P_x\). A procedure for constructing this normalised rcf can be found in [30,31]. Construct the data filter \(F\) according to Proposition 3.3:

\[
F = D_x^{-1} (I + CP_x)^{-1}
\]

and use this data filter to construct an auxiliary signal \(x = F(u + Cy)\). The corresponding closed-loop system equations become

\[
y(t) = N_{0,F} x(t) + W_0 H_0 \varepsilon_0(t) \\
u(t) = D_{0,F} x(t) - C W_0 H_0 \varepsilon_0(t)
\]

(28)

(29)

with \(N_{0,F}, D_{0,F}\) given by (20). After this initialisation, the algorithm reads as follows:

1.a Use the signals \(x\) and \(col(y, u)\) in a (least squares) identification algorithm with an output error model structure ([27]):

\[
\varepsilon(t, \theta) = \begin{bmatrix} y(t) \\ u(t) \end{bmatrix} - \begin{bmatrix} N(q, \theta) \\ D(q, \theta) \end{bmatrix} x(t)
\]

(30)
considering \(col(y,u) \) as output signal and \(x \) as input signal, and obtain a parameter estimate

\[
\hat{\theta}_N = \arg \min_{\theta \in \Theta} \frac{1}{N} \sum_{t=1}^{N} \varepsilon(t, \theta)^T \varepsilon(t, \theta)
\]

The factorisation \((N(q, \hat{\theta}_N), D(q, \hat{\theta}_N))\) being estimated here will be used only to update and improve the auxiliary model \(P_s \). Therefore, identification of \(N_{0,F}, D_{0,F} \) is done as accurately as possible through high-order modelling, e.g. by employing orthogonal basis functions in a linear regression scheme. In this respect, the new method of constructing orthogonal basis functions that contain system dynamics \([32,33]\) has shown promising results for identification purposes \([34,35]\). Denote the estimated factors by \(\hat{N} := N(q, \hat{\theta}_N) \) and \(\hat{D} := D(q, \hat{\theta}_N) \).

1.b Compute the model \(\hat{P} = \hat{N} \hat{D}^{-1} \) and update the auxiliary model simply by \(P_s := \hat{P} \).

1.c Again construct a normalised rcf \((N_{s}, D_{s})\) of the auxiliary model \(P_s \); update the data filter \(F = (D_s + CN_{s})^{-1} \) according to Proposition 3.3 and update the auxiliary input \(x = F(u + Cy) \).

If the auxiliary model is satisfactory, the factorisation \((N_{0,F}, D_{0,F})\) will be (almost) normalised and the second step of the procedure can be invoked. Otherwise the steps 1.a to 1.c may be repeated, to improve the quality of the auxiliary model \(P_s \).

Step 2. In the second step of the procedure, the simulated auxiliary signal \(x(t) \), coming from Step 1, and the signal \(col(y,u) \) are used to perform an approximate identification of the (almost) normalised factorisation \((N_{0,F}, D_{0,F})\) again using an output error structure similar to (30), where \((N(q, \theta), D(q, \theta))\) are parametrised as

\[
N(\theta) = b(q^{-1}, \theta)f(q^{-1}, \theta)^{-1}
\]

\[
D(\theta) = a(q^{-1}, \theta)f(q^{-1}, \theta)^{-1}
\]

with \(a, b \) and \(f \) (matrix) polynomials of specified degree, having coefficients that are collected in the parameter vector \(\theta \). This parametrisation, where \(N \) and \(D \) have a common right divisor, guarantees that the McMillan degree of the ultimately identified model is determined by the polynomial matrices \(b \) and \(a \) only.

The parameter estimate is obtained by

\[
\hat{\theta}_N = \arg \min_{\theta} \frac{1}{N} \sum_{t=1}^{N} \varepsilon_f(t, \theta)^T \varepsilon_f(t, \theta)
\]

with \(\varepsilon_f = Le \), and \(L \) a square stable filter of appropriate dimension, decomposed as \(L = \text{diag}(L_y, L_u) \).

The result of the procedure proposed above is composed of a (possibly low order) approximation \((N(q, \hat{\theta}_N), D(q, \hat{\theta}_N))\) of an (almost) normalised right coprime factorisation \((N_{0,F}, D_{0,F})\) of the plant \(P_0 \), and a resulting model \(P(q, \hat{\theta}_N) = N(q, \hat{\theta}_N)D^{-1}(q, \hat{\theta}_N) \).

It should be noted that the coprime factorisations \((N_{0,F}, D_{0,F})\) that can be accessed in this procedure can be made to be exactly normalised only in the situation that we have exact knowledge of the plant \(P_0 \). In the procedure presented above, this exact knowledge of \(P_0 \) has been replaced by a (very) high order accurate estimate \(P_s \) of \(P_0 \) that is obtained in the first step of the procedure. This makes this first step similar in spirit to the first step in the two-stage identification procedure in \([20]\).

The more accurate is this auxiliary model \(P_s \), the more common dynamics is cancelled in the coprime factors \((20)\), and consequently the easier the factorisation \((N_{0,F}, D_{0,F})\) can be accurately described by a model of limited order. This highly motivates the usage of an iterative repetition of steps 1.a to 1.c in the algorithm presented above. Such an iterative procedure has also been applied in the application example discussed in section 6.

5. Analysis of the Algorithm

In order to write down explicitly the asymptotic identification criterion that has been used in the final step of the algorithm, we write the related prediction error as

\[
\varepsilon(t, \theta) = \begin{bmatrix} L_y & 0 \\ 0 & L_u \end{bmatrix} \left\{ \begin{bmatrix} y(t) \\ u(t) \end{bmatrix} - \begin{bmatrix} N(\theta) \\ D(\theta) \end{bmatrix} x(t) \right\}
\]

\[
= \begin{bmatrix} L_y & 0 \\ 0 & L_u \end{bmatrix} \left\{ \begin{bmatrix} N_{0,F} - N(\theta) \\ D_{0,F} - D(\theta) \end{bmatrix} x(t) + \begin{bmatrix} W_0H_0 \\ -CW_0H_0 \end{bmatrix} \varepsilon_0(t) \right\}
\]

with \(N_{0,F}, D_{0,F} \) given by \((20)\). As a result the asymptotic parameter estimate \(\hat{\theta}^* = \lim_{N \to \infty} \hat{\theta}_N \) is characterised by

\[
\hat{\theta}^* = \arg \min_{\theta} \int_{-\pi}^{\pi} \left[|N_{0,F}(e^{j\omega}) - N(e^{j\omega}, \theta)|^2 \left| L_y(e^{j\omega}) \right|^2 + |D_{0,F}(e^{j\omega}) - D(e^{j\omega}, \theta)|^2 \left| L_u(e^{j\omega}) \right|^2 \right. \cdot \Phi_s(\omega) d\omega
\]

\[
\left. + \left| L_u(e^{j\omega}) \right|^2 \cdot \Phi_s(\omega) d\omega \right]
\]
with \(x(t) = D_x^{-1}(I + CP_x)^{-1}[u(t) + C(q)y(t)] \).

We will write this expression as

\[
\theta^* = \arg \min_{\theta} \left\| \frac{L_p [N_{0,F} - N(\theta)]}{L_u [D_{0,F} - D(\theta)]} \right\|_2 H_x \tag{37}
\]

where \(H_x \) is the monic stable spectral factor of \(\Phi_x \), and \(N_{0,F}, D_{0,F} \) the specific factorisation of the plant that is obtained by (20).

Note the close relationship between the minimisation in (37) and the directed gap-metric (4) if, indeed, an \(\mathcal{H}_\infty \)-norm would have been used during the identification.

We will now write this identification criterion in terms of (exact) normalised coprime factors of the considered plant.

Proposition 5.1. Consider the specific plant factors \(N_{0,F}, D_{0,F} \) given by (20) to be identified from data as in Step 2 of the algorithm presented before, employing an auxiliary system \(P_x = N_x D_x^{-1} \) stabilised by \(C \), with \(N_x, D_x \) a normalised rcf.

Using an output error model structure to identify \(N_{0,F}, D_{0,F} \), as denoted in (30) with a least squares identification criterion (33), the asymptotic parameter estimate \(\theta^* \) will satisfy

\[
\theta^* = \arg \min_{\theta} \left\| \frac{L_p [N_x Q - N(\theta)]}{L_u [D_x Q - D(\theta)]} \right\|_2 \tag{38}
\]

with \(N_x, D_x \) a normalised rcf of the plant \(P_0 \) and \(Q \) the unique monic, stable and stably invertible solution to

\[
Q^* Q = R^* K R + R^* G + G^* R + I \tag{39}
\]

with

\[
K = D_x^c D_c + N_c^c N_c \tag{40}
\]
\[
G = D_x^c N_x - N_c^c D_x \tag{41}
\]

Proof: Using the expressions (24), (25) for \(N_{0,F} \) and \(D_{0,F} \) it follows that

\[
D_{0,F}^* D_{0,F} + N_{0,F}^* N_{0,F} = R^* K R + R^* G + G^* R + I.
\]

Since this expression is positive real, there exists a unique \(Q \), with \(Q, Q^{-1} \in \mathcal{R}\mathcal{H}_\infty \) and \(Q \) monic satisfying (39). As a result it follows that \((N_{0,F} Q^{-1}, D_{0,F} Q^{-1}) \) is a normalised rcf of \(P_0 \).

If in Step 1 of the algorithm the identification of \((N_{0,F}, D_{0,F}) \) is accurate enough \((P \to P_0) \), then \(P_x \to P_0 \), with \(N_x, D_x \) a normalised rcf of \(P_x \). As \(P_x \to P_0 \), applying (23) shows that \(R \to 0 \), and the \(R \)-dependent terms in (24), (25) will vanish in the second identification step. In terms of the matrix \(Q \) as used in the expression (38) this shows as follows:

Proposition 5.2. Consider the situation of Proposition 5.1. Then

(a) \(\|Q - I\|_\infty \to 0 \) as \(\|P_x - P_0\|_\infty \to 0 \).

(b) \(\|Q^{-1} - I\|_\infty \to 0 \) as \(\|P_x - P_0\|_\infty \to 0 \).

Proof: Note that \(\|Q^* Q - I\|_\infty = \|R^* K R + R^* G + G^* R + I\|_\infty \). For \(\|P_x - P_0\|_\infty \to 0 \) it follows with (23) that \(\|R\|_\infty \to 0 \) and so \(\|Q^* Q - I\|_\infty \to 0 \).

If \(\|Q^* Q - I\|_\infty = 0 \), and using the restriction that \(Q, Q^{-1} \in \mathcal{R}\mathcal{H}_\infty \) and \(Q \) monic, it implies that \(Q = I \). Using continuity properties of \(Q \) as a function of \(R \) the result follows.

Our result now shows a similar type of expression as in the original two-step method of [20], with an approximation criterion in identification (38) that becomes very nice in case \(P_x = P_0 \), and consequently \(Q = I \), but that also shows the deviation of the desired criterion as a result of a non-perfect first step.

Finally, we will show the relation of the asymptotic identification criterion with a specific upper bound for a directed gap-metric measure, which has direct implications for robust stability properties of a controller to be designed on the basis of the identified model. For simplicity of notation and without loss of generality we will restrict attention to the situation \(L_p = L_u = H_x = I \).

We take as a starting point that our identification, that has resulted in (38), provides us with an \(\alpha \in \mathbb{R} \) satisfying

\[
\left\| \begin{bmatrix} N_{0,F} - N(\theta^*) \\ D_{0,F} - D(\theta^*) \end{bmatrix} \right\|_\infty \leq \alpha \tag{42}
\]

For the construction of this \(\alpha \) one can apply an alternative identification procedure that provides direct expressions and sometimes even minimisation of the \(\mathcal{H}_\infty \)-error in (42) (see, e.g., [36–38] for an approach in a worst-case deterministic setting, and [39–41] for approaches that incorporate probabilistic aspects).

If we have this \(\alpha \) available we can apply the following result.

Proposition 5.3. Consider the identification setup discussed before, and suppose that we have available an expression

\[
\left\| \begin{bmatrix} N_{0,F} \\ D_{0,F} \end{bmatrix} - \begin{bmatrix} N(\theta^*) \\ D(\theta^*) \end{bmatrix} \right\|_\infty \leq \alpha \tag{43}
\]

Then \(\delta(P_0, P(\theta^*)) \leq \alpha \|Q^{-1}\|_\infty \) with \(Q \) defined as before.

\[\square\]
Proof: Combining (42) and (38) it follows that
\[
\left\| \begin{bmatrix} N_n D_n \\ D_n \end{bmatrix} \right\| \left\| \begin{bmatrix} N(\theta') \\ D(\theta') \end{bmatrix} \right\|_{\infty} \left\| Q^{-1}\right\|_{\infty} \leq \alpha \left\| Q^{-1}\right\|_{\infty}
\]
which leads us to
\[
\left\| \begin{bmatrix} N_n \\ D_n \end{bmatrix} \right\| \left\| \begin{bmatrix} N(\theta') \\ D(\theta') \end{bmatrix} \right\|_{\infty} \left\| Q^{-1}\right\|_{\infty} \leq \alpha \left\| Q^{-1}\right\|_{\infty}
\]
Using the definition of the directed gap-metric now shows the result. \qed

In terms of control design, on the basis of this model that is identified, the following interesting result can now be formulated:

Proposition 5.4. Consider the control design scheme as discussed in [11,12,26], characterised by
\[
C_{\rho} = \arg \min_{C \in \mathcal{C}} \| T(\hat{P}, \hat{C}) \|_{\infty}
\]
with \(\hat{P} = P(\theta') \). If this controller satisfies
\[
\| T(\hat{P}, C_{\rho}) \|_{\infty} \leq \frac{1}{\alpha} \| Q^{-1} \|_{\infty}
\]
then the plant \(P_0 \) will be stabilised by \(C_{\rho} \). \qed

Proof: This follows directly, using the robust stability results for uncertainty sets in the directed gap-metric; see Proposition 2.1. \qed

This proposition shows that we can test a priori whether the designed controller will stabilise our plant, before actually implementing it. To this end we need an expression for (an upper bound on) the \(H_\infty \)-error that is made in the identification of coprime factors, actually in both steps of the identification procedure.

Note that, in this procedure, there is no need to use a parametrisation of the model \(P(\theta) \) in terms of normalised coprime factorisations. We have chosen the auxiliary system in such a way that the plant factors that are identified are almost normalised, and this is sufficient to obtain the given results reflecting robust stability properties.

6. Application to a Mechanical Servo System

We will illustrate the proposed identification algorithm by applying it to data obtained from experiments on the radial servo mechanism in a CD player. The radial servo mechanism uses a radial actuator which consists of a permanent magnet/coil system mounted on the radial arm, in order to position the laser spot orthogonally to the tracks of the compact disc. For a more extensive description of this servo mechanism we refer to [34,35,42]. A simplified representation of the experimental setup of the radial control loop is depicted in Fig. 3, where \(P_0 \) and \(C \) denote respectively the radial actuator and the known controller. The radial servo mechanism is marginally stable, due to the presence of a double integrator in the radial actuator \(P_0 \).

This experimental setup is used to gather time sequences of 8192 points of the input \(u(t) \) to the radial actuator \(P_0 \) and the disturbed track position error \(y(t) \) in closed loop, while exciting the control loop by a band-limited (100Hz–10kHz) white noise signal \(r_1(t) \), added to the input \(u(t) \).

The results of applying the two steps of the procedure presented in Section 4 are shown in a sequence of figures. Recall from Section 4 that in the first step the aim is to find an auxiliary model \(\hat{P}_z \) with a normalised \(rcf \) \((N_z, D_z) \) used in the filter \(F \), such that the factorisation \((N_{0,F}, D_{0,F}) \) of \(P_0 \) becomes (almost) normalised. The result of performing Step 1 is depicted in Fig. 4. A high (thirty-second) order model \(P_x \) has

![Fig. 3. Block diagram of the radial control loop in a CD player.](image)

Fig. 4. Bode magnitude plots of results in Step 1 of the procedure; a: Identified 32nd-order coprime plant factors \((N_z, D_z) \) of auxiliary model \(\hat{P}_z \) (solid) and spectral estimates \(\hat{N}_{0,F}, \hat{D}_{0,F} \) of the factors \((N_{0,F}, D_{0,F}) \) (dashed); b: Plot of \(\hat{N}_{z,F}, \hat{N}_{0,F} + D_{0,F}, \hat{D}_{0,F} \) using the spectral estimates \(\hat{N}_{0,F} \) and \(\hat{D}_{0,F} \).
been estimated and a normalised \(rcf \) \((N_x,D_x)\) has been obtained. Based on this factorisation a filter \(F \) has been constructed according to (21), giving rise to a coprime factorisation of \(P_0 \) in terms of \((N_{0,F},D_{0,F})\).

The result has been obtained by running through the steps 1.a to 1.c three times. Fig. 4(a) shows an amplitude Bode plot of a spectral estimate of the factors \(N_{0,F} \) and \(D_{0,F} \), respectively denoted by \(\hat{N}_{0,F} \) and \(\hat{D}_{0,F} \), along with the factorisation \(N_x \) and \(D_x \) of the high order auxiliary model \(P_x \). Additionally, it is verified whether the spectral estimates \((\hat{N}_{0,F},\hat{D}_{0,F})\) are (almost) normalised. To this end the expression \(\hat{N}_{0,F}\hat{N}_{0,F} + \hat{D}_{0,F}\hat{D}_{0,F} \) is plotted in Fig. 4(b). The fact that this expression is very close to unity shows that the coprime factorisation induced by the specific choice of \(F \) is (almost) normalised.

Figure 5 presents the result of a low (tenth) order identified model of the factorisation \((N_{0,F},D_{0,F})\), which is obtained in the second step of the procedure outlined in Section 4. The amplitude and phase Bode plots are drawn of the obtained factors, along with the previously obtained spectral estimates \((\hat{N}_{0,F},\hat{D}_{0,F})\).

Amplitude and phase Bode plots of the finally obtained tenth order model \(P(\hat{\theta}_N) = N(\hat{\theta}_N)D^{-1}(\hat{\theta}_N) \) have been depicted in Fig. 6, along with the corresponding spectral estimate.

Scalar normalised \(rcf \)'s exhibit the property that their amplitude is bounded by 1. As a result, the integral action in the plant is necessarily represented by a small denominator factor \(D_{0,F} \) for low frequencies, whereas a roll-off of \(P_0 \) for high frequencies will be represented by a roll-off of the numerator factor \(N_{0,F} \). This is clearly visualised in the results. Note also that the control-relevant frequency region, i.e. the area of the cross-over frequency, is very well represented in both normalised coprime factors. As a result the dynamics that is related to this frequency region is relatively easy to be identified from these factors. Again this is a particular consequence of the fact that we identify normalised coprime factors.

Conclusions

In this paper it has been shown that it is possible to identify (almost) normalised coprime plant factors based on closed-loop experiments. A general framework is given for closed-loop identification of coprime factorisations, and it is shown that the freedom that is present in generating appropriate signals for identification can be exploited to obtain (almost) normalised coprime plant factors from closed-loop data. A resulting multi-step algorithm was presented and the corresponding asymptotic bias expression was shown to be specifically relevant for evaluating gap-metric distance measures between plant and model. The identification algorithm has been illustrated with results that are obtained from closed-loop experiments on an open-loop unstable mechanical servo system.

Acknowledgements

The authors are grateful to Douwe de Vries and Hans Dötsch for their contributions to the experimental part of the work, and to Gerrit Schootstra and Maarten Steinbuch of the Philips Research Laboratory for their help and support, and for access to the CD-player experimental setup.
References

34. de Callafon, RA, Van den Hof PMJ, Steinbuch M. Control relevant identification of a compact disc

Appendix

Lemma A.1 [21]. Consider rational transfer functions $P_0(z)$, with $\text{rcf} (N, D)$, and $C(z)$ with $\text{lcf} (\bar{D}_c, \bar{N}_c)$. Then

\[T(P_0, C) = \begin{bmatrix} P_0 & 0 \\ 0 & I \end{bmatrix} (I + CP_0)^{-1} \begin{bmatrix} C & I \end{bmatrix} \]

is stable if and only if $\bar{D}_c D + \bar{N}_c N$ is stable and stably invertible.

Proof of Proposition 3.1.

(a) \Rightarrow (b). The mapping $x \rightarrow \text{col}(y, u)$ is characterised by the transfer function \[\begin{bmatrix} P_0 S_0 F^{-1} \\ S_0 F^{-1} \end{bmatrix} \].

By writing \[\begin{bmatrix} P_0 S_0 F^{-1} \\ S_0 F^{-1} \end{bmatrix} = P_0 (I + CP_0)^{-1} F^{-1} \] and substituting a right coprime factorisation (N, D) for P_0, and a left coprime factorisation (\bar{D}_c, \bar{N}_c) for C we get, after some manipulation:

\[\begin{bmatrix} P_0 S_0 F^{-1} \\ S_0 F^{-1} \end{bmatrix} = \begin{bmatrix} N \\ D \end{bmatrix} (\bar{D}_c D + \bar{N}_c N)^{-1} \bar{D}_c F^{-1}. \]

(A.1)

Premultiplication of the latter expression with the stable transfer function $(\bar{D}_c D + \bar{N}_c N)[X \ Y]$ with (X, Y) right Bezout factors of (N, D) shows that $\bar{D}_c F^{-1}$ is implied to be stable. As a result, $\bar{D}_c F^{-1} = W$ with W any stable transfer function.

With respect to the mapping $\text{col}(y, u) \rightarrow x$, stability of F and FC implies stability of $W^{-1} [\bar{D}_c \ N_c]$, which after postmultiplication with the left Bezout factors of (\bar{D}_c, \bar{N}_c) implies that W^{-1} is stable.

This proves that $F = W^{-1} \bar{D}_c$ with W a stable and stably invertible transfer function.

(b) \Rightarrow (a). Stability of F and FC is straightforward. Stability of $S_0 F^{-1}$ and $P_0 S_0 F^{-1}$ follows from (A.1), using the fact that $(\bar{D}_c D + \bar{N}_c N)^{-1}$ is stable (lemma A.1).