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Abstract: Identification in interconnected systems requires the handling of phenomena that
go beyond the classical open-loop and closed-loop type of identification problems. Over the last
decade a comprehensive theory has been developed for addressing identification problems in
linear dynamic networks, formulated in a module framework, where the network structure is
characterized by a directed graph in which nodes are signals and links are transfer functions.
The resulting methods and approaches have been collected in a MATLAB App and Toolbox,
supported by an attractive graphical user interface that provides an interactive workflow for
manipulating the structural properties of dynamic networks, applying basic network operations
like immersion and module invariance testing, and for investigating network/module generic
identifiability and selecting appropriate predictor model inputs and outputs. The workflow
supports the allocation of external excitation signals (actuation) and measured node signals
(sensing) so as to achieve generic identifiability and provide consistent estimation of target
modules. The Toolbox includes algorithms for actual network simulation and identification.
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1. INTRODUCTION

Increasing attention for dynamic systems operating in a
network of interconnected subsystems, have led to the
development of decentralized and distributed control sys-
tems. While data-driven modeling questions have primar-
ily been addressed in open-loop (non-controlled) exper-
imental circumstances, the need for identification tools
that can effectively exploit the structural topology of the
interconnections, while going beyond the standard feed-
back controlled situation, has become apparent. Starting
from the early publications Gonçalves and Warnick (2008);
Materassi and Innocenti (2010); Van den Hof et al. (2013) a
comprehensive theory has been developed for data-driven
modeling problems in dynamic networks. This includes
questions of identifying the full network, possibly includ-
ing the topology (interconnection structure), identifying
a local part of the network, selection of and handling of
different sensing and actuation schemes, and questions of

⋆ Funded by the European Union. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held
responsible for them.
⋆⋆The App and Toolbox are available for download from the landing
page www.sysdynet.net.
1 The authors gratefully acknowledge implementation contributions
from Wim Liebregts and Ilja van Oort, as well as support from
Gareth Thomas, VersionBay Inc.

identifiability of either the full network or of a particular
subsystem. Methods and algorithms for addressing all of
these questions are incorporated in the MATLAB App and
Toolbox, under construction, that is being presented here.

While different representations of dynamic networks are
available in the literature, see e.g. Verhaegen et al. (2022);
Kivits and Van den Hof (2023), for the MATLAB App
and Toolbox presented here we will focus on the so-called
module framework (Van den Hof et al., 2013), in which a
dynamic network is characterized by the equation

w(t) = G(q)w(t) +H(q)e(t)︸ ︷︷ ︸
v(t)

+R(q)r(t) (1)

where w is a column vector of internal node variables,
with scalar-valued w1 · · ·wL being individual time series,
and t is the (discrete) time-variable; q is the forward shift
operator, qw(t) = w(t+ 1).
G(q), H(q) and R(q) are rational (transfer) matrix, with
G(q) (L×L) being hollow (zero diagonal), indicating which
node gets input from which other nodes in the network.
H(q) (L×p) is a stable and (left) stably invertible transfer
matrix, modelling the (non-measured) disturbances on the
network, e a p-dimensional white noise vector process,
R(q) (L × K) a dynamic transfer matrix representing
the mapping from external excitation signals r1 · · · rK to
internal node variables w.
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The current version of the App mainly works with network
structures. A network structure is a triple (TG, TH , TR)
representing the Boolean adjacency matrices of a network
(G,H,R), in a directed network graph that has node
signals as nodes/vertices and modules as links/edges.
The presence of a module realizing a connection from
node wi to node wj , is then represented by [TG]ji =
1. Similarly this applies to TH and TR with additional
e-signals, respectively r-signals, as nodes in the graph.
A prototype dynamic network is depicted in Figure 1.
Information on the network structure allows us to address

Fig. 1. Prototype dynamic network in a module represen-
tation, with in green a possible target module to be
identified.

questions of (generic) identifiability, and allows us to
construct predictor inputs and outputs for the (consistent)
identification of either a full network or of a single module
in the network.

2. APP FUNCTIONALITY

2.1 Overall menu structure

The Menu Bar in the top line of the window contains the
main functionalities of the App.

• File: Load and Save a network structure from/to a
file;

• Actions: Undo / redo actions;
• View: switch between different views of the network
structure (in/excluding external signals and distur-
bance filters);

• Highlight: highlight different properties of the nodes
and modules in a network structure;

• Help: User support.

The main technical operations are present in the Menu
Items:

• Edit: Edit the network structure and assign proper-
ties to nodes and modules;

• Operations: Apply some basic operations and tests
to a network structure, including immersion and the
Parallel Path and Loop Test;

• Identifiability: Analyse and synthesize (generic)
identifiability, e.g. by allocating external excitation
signals;

• Predictor Model; Analyse and construct predictor
models for identifying a single module;

These four operations each have their own individual
windows which are described in the next subsections.

In all main windows, the graph of the network structure
is displayed on the central display and standard plotting

functions are available for zooming in/out and shifting
the network plot. Highlighting functions are available for
indicating measured nodes (purple), selected nodes (green)
and target modules (purple), as well as for highlighting
module properties like feedthrough terms (light blue),
known modules (black) and switching modules (pink).
Below the central network display, a communication panel
is available where messages to the user and results of tests,
as well as suggestions to the user are being displayed.

2.2 Edit Window

In the Edit Window, the user can interactively edit the net-
work structure/topology and its properties. This includes

• Adding/removing nodes and links (modules);
• Adding/removing noise disturbances and external
excitation signals;

• Nodes can be assigned the status “measured” or
“unmeasured”, depending on whether the node is
equipped with a sensor;

• Modules can be assigned the following properties:
· Known: indicating whether the dynamics of this
module is known or unknown to the user;

· Switching: indicating whether the dynamics is
fixed (non-switching) or switching between dif-
ferent settings.

· Direct feedthrough: indicating whether the trans-
fer function is proper or strictly proper.

For a given network structure, these properties can be
highlighted in the network graph by selecting the Menu
Item “Highlight”. The network edit functions are available
through the left panels in the window, but can also be
realized by right mouse clicks in the network graph.

2.3 Operations Window

• Invariant modules and immersion
Immersion is the construction of a new network,
where a selected set of nodes are maintained and
unselected nodes are removed, while the time series
of all maintained nodes remain invariant. This net-
work operation is closely related to a so-called Kron
reduction, i.e. Gaussian elimination of the unselected
nodes. The invariant modules test, tests which mod-
ules remain invariant after immersing the unselected
nodes in the network. This test can be done separate
from, typically before, the actual immersion.

• Parallel path and loop (PPL) test
A selected target module with input wi and output wj

remains invariant after immersion, if the parallel path
and loop test is satisfied. This test verifies whether
(a) every path from wi to wj passes through a node
that is in the set of selected nodes, and (b) every
loop around wj passes through a node that is in the
set of selected nodes. The results are presented in
the plotted network graph. The test is described in
Dankers et al. (2016).

• Canonical noise model (Shi et al. (2023b))
This operation transforms the network to a network
where only the selected nodes have a direct contri-
bution from disturbances, and the unselected nodes
are disturbance-free. In this transformation the time
series of the selected node variables, as well as the
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Fig. 2. Edit Window for manipulating structural network properties, in so-called “Full View” including the disturbance
correlations.

modules in network matrix G, remain invariant. The
transformation only changes the noise model H.

2.4 Identifiability Window

In the Identifiability window the generic identifiability of
a specified structured network class is evaluated. Generic
identifiability is considered for a network class where all
unknown modules/links are freely parametrized and all
known modules/links are fixed. Generic identifiability con-
cerns the property that a network or module can uniquely
be retrieved from the information that is available.

When writing the network equations for the node signals
w in an explicit form:

w(t) = Twr(q)r(t) + Twe(q)e(t)︸ ︷︷ ︸
v̆(t)

(2)

network identifiability of a network model set M :=
{(G(q, θ), H(q, θ), R(q, θ)), θ ∈ Θ} assesses whether for
two models M (1),M (2) ∈ M, with corresponding charac-

teristics (T
(1)
wr ,Φ

(1)
v̆ (ω)) and (T

(2)
wr ,Φ

(2)
v̆ (ω)) it holds that:

T
(1)
wr (q) = T

(2)
wr (q)

Φ
(1)
v̆ (ω) = Φ

(2)
v̆ (ω) for all ω

}
=⇒ {M (1) = M (2)}. (3)

Rather than investigating whether this implication holds
for all models M (1),M (2) ∈ M, generic identifiability is
focusing on this property for almost all models in the
set. This implies that the property can be tested on the
basis of the network structure only, and does not require
the numerical values of all parameters in the respective
modules.

Generic identifiability is typically dependent on

• the presence and location of external excitation sig-
nals r;

• the topology (interconnection structure) of the net-
work;

• the presence of a priori known modules;

• the selection of node variables that are considered
to be available for the identifiability study; typically
these are the measured node variables.

Generic identifiability of a full network and of a single
module can be investigated. In the latter situation a target
module Gji needs to be selected, and the right-hand side

of implication (3) is replaced by {G(1)
ji (q) = G

(2)
ji (q)}.

While in the full measurement case all node signals w in
the network are considered in expressions (2)-(3), in the
partial measurement case these expressions are considered
for a selected subset of node signals. The Identifiability

Fig. 3. Identifiability window - Analysis: Analyzing single
module identifiability of module G21 on the basis of
partial measurements.

window has options for either Analysis or Synthesis
of identifiability conditions. The Analysis option typically
provides a yes/no answer dependent on whether the iden-
tifiability conditions are satisfied. The Synthesis option
provides suggestions to the user for additional actions,
e.g. adding external excitation signals at particular loca-
tions, for satisfying the (generic) identifiability conditions.
Generic identifiability of a target module typically requires
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Fig. 4. Identifiability window - Synthesis: allocating ex-
ternal signals so as to warrant identifiability of the
full network in the full measurement case, on the
basis of a pseudotree-covering of the network graph
(Cheng et al. (2022)). If a root of each pseudotree is
excited by either an r or a v signal, generic network
identifiability is guaranteed. In the example this holds
for excitations on nodes w3, w8, w9 and (w2∪w5∪w7).

a sufficient number of external signals to be present in the
network. Sufficient excitation can be provided by either ex-
citation signals r, or disturbance signals v. If single module
identifiability is guaranteed by excitation of r-signals only,
then an indirect method for single module identification
can be applied in the Predictor Model window. The user
is informed about this in the user communication panel.
If both r− and e−signals are exploited for single module
identifiability, a direct method for identification is the nat-
ural choice.
Full network identifiability analysis has been introduced in
Weerts et al. (2018b). Based on the graph-based results of
Hendrickx et al. (2019), the notion of generic identifiability
was developed. The single module identifiability results
based on full measurements were developed in Shi et al.
(2022) and for partial measurement in Shi et al. (2023b).
The synthesis algorithm for allocating external excitation
signals for full network identifiability, is based on cover-
ing the graph of the network with pseudotrees/SIMUGs,
and requiring an external signal at a root of each pseu-
dotree/SIMUG. The corresponding algorithms were de-
veloped in Cheng et al. (2022) and Dreef et al. (2022),
effectively taking account of a priori known modules.

2.5 Predictor Model Window

In the Predictor Model Window, predictor models can be
synthesized and analyzed, for consistently estimating a
selected target module in the network, utilizing knowledge
of the underlying structure/topology of the network. A
predictor model is characterized by the following equation:

wout(t) = Ḡ(q)win(t) + H̄(q)ξY(t) + T̄ (q)rin(t), (4)

where node signals can appear both in the output wout

and the input win. This is typically possible for handling
confounding variables 2 . In the Predictor Model Window,
the structure/topology of the matrices in (4) are consid-
ered in terms of their corresponding adjacency matrices,

2 Confounding variables are unmeasured signals that affect both the
input and the output of an estimation problem.

as well properties of the present links/modules, such as
parametrized/known and proper/strictly proper.

There are three types of identification methods for which
predictor models can be constructed:

(1) the local direct method (Ramaswamy and Van den
Hof, 2021), that is based on a predictor model with
w-nodes as predictor inputs and w-nodes as predicted
outputs, and appropriate handling of external excita-
tion signals. This method can end up with a MIMO
(multi-input, multi-output) predictor model.

(2) the multi-step method (Fonken et al., 2023), that
is based on a similar predictor model, but that uses
a nonparametric step to estimate innovation signals
first, which are then used as measured inputs in
a parametric estimation. This method reflects an
alternative way of handling confounding variables and
always ends up with a MISO (multi-input, single-
output) predictor model with w-nodes as predictor
inputs and a w-node as predicted output.

(3) the indirect method (Gevers et al., 2018; Shi et al.,
2022), that is based on a predictor model with r-
nodes as inputs and w-nodes as predicted outputs.
It requires post-processing of the identified predictor
model in order to arrive at a target module estimate.

Besides the central network graph, there are two main
panels in the predictor model window:

• In the left window panel, predictor models are
being constructed (synthesized), according to partic-
ularly chosen algorithms, while constructed predictor
models can be Accepted and consequently stored in
the Stored Predictor Models (right upper) panel.

• In the right window panel, a selected predictor
model from the Stored Predictor Models panel can
be manually edited, and analyzed in terms of its
consistency conditions.

Consistent identification of a single module in a network
requires the satisfaction of three types of conditions:

(1) Structural conditions on the network topology,
that encompass:
(a) Conditions for module invariance, covered by the

parallel path and loop condition;
(b) Conditions on the absence of confounding vari-

ables between particular sets of nodes;
(2) Data Informativity conditions, requiring sufficient

external signals to be present in the network;
(3) Absence of Algebraic Loops in particular parts of

the network (not for the indirect method).

When synthesizing a predictor model, satisfying the condi-
tions of which the check boxes are checked, is guaranteed.
For condition 2 this means that the predictor model has
the structural capability to satisfy data-informativity. It
does not imply that these external signals are indeed
present. Adding external excitation signals can be done
in the analysis panel.

Synthesis algorithms

For the direct method there are four synthesis algo-
rithms between which the user can choose for constructing
a predictor model. Two algorithms are based on the Full
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Fig. 5. Predictor model window. For estimating target module G12 with the direct method, a predictor model is selected
with inputs (w2, w3) and outputs (w1, w2). Inputs are colored red, outputs yellow, and nodes that appear both as
input and output are colored orange. In the left panel predictor models constructed/synthesized through different
algorithms that guarantee that the main structural properties for consistency are satisfied. In the right upper
panel constructed predictor models are stored and can be edited. In the right lower panel predictor models can be
analyzed, e.g. by verifying whether data-informativity conditions are satisfied. The workflow supports the online
addition/removal of external excitation signals from the network.

Measurement situation, i.e. irrespective of the measured
status of nodes, all nodes in the network are assumed to
be available for the predictor model. And two algorithms
are implemented for the Partial Measurement case,
where only the nodes that have the “measured” status
can be taken into account. The first three algorithms are
presented in Ramaswamy and Van den Hof (2021), while
the fourth one (“Outputs first”) is presented in Shi et al.
(2023a).
For the multi-step method there is one algorithm that
is a partial measurement algorithm, in the sense that all
measured nodes are taken into consideration of the first
step of the algorithm, and the predictor that is constructed
is the predictor model for the final parametric step.
For the indirect method there is one algorithm imple-
mented that is based on full measurements and a MISO
(multi-input, single output) predictor model.

Selected predictor models are visualized in the network
graph by coloured nodes for the inputs and outputs.

Predictor model analysis

In the Stored Predictor Models panel, different predic-
tor models can be stored, edited, and selected for analyzing
whether they satisfy the properties for consistent estima-
tion of the target module. If data informativity requires
the addition of external excitation signals, it is reported
in the communication window where excitation signals are
missing. The user can then manually add/remove excita-
tion signals to/from the network.
Selected predictor models can be saved to workspace or
stored in a file, as a nwpredmodel object (see Section 3).

3. DATA STRUCTURES

The data that is typically related to a dynamic network
involves different types of signals. In comparison with a
“classical” open-loop or closed-loop multivariable iden-
tification problem it involves possibly multiple external
excitation signals, allocated at assigned locations in the
network. Additionally, the network predictor models may
include signals that appear as both input and output in the
predictor model. This causes the currently available data
structures for data and model objects in MATLAB’s Sys-
tem Identification Toolbox (The Mathworks, Inc., 2021) to
be less suitable. Inspired by these data and model objects,
dedicated data structures are introduced in the current
toolbox as MATLAB classes:

• LabelledAdjStructure: Network structure object
that stores the network topology and its properties,
see section 2.2;

• nwdata: Network data object to encapsulate all
node/excitation data of networked systems and their
properties, analogous to MATLAB’s iddata object;

• nwpredmodel: Network predictor model class, which
specifies the mapping between nodes and excitations
of a network structure to input and outputs of a
predictor model (4), including the specification of
known/parametrized terms, and estimated values of
parameters.

• nwmodel: Network model class: special case of the
network predictor model class, but where a full net-
work is represented, including all nodes and external

Copyright © 2024 the authors. Accepted by IFAC for
publication under a
Creative Commons License CC-BY-NC-ND.

589



signals, as in (1). It is used in full network identifica-
tion and in network simulation.

4. ADDITIONAL TOOLBOX FUNCTIONS

The methods and tools from the App are also available
as m-files in the MATLAB command window. Additional
command line functionality that is not (yet) supported by
the graphical App:

• nwsimulate: Simulation of all node signals in a
network model when given external signals (r- and
e signals), applied to a network in the nwmodel class.

• nwidfullSLS: Identification of a full network, based
on an nwdata and nwmodel object, using the Sequen-
tial Least Squares method, as presented in Weerts
et al. (2018a).

• nwidPEM: Identification of a single module of a
full network with the local direct (PEM) method
(Ramaswamy and Van den Hof (2021)).

• nwidsingleMultiStep: Identification of a single
module with the multistep method (Fonken et al.
(2023)).

5. FUTURE EXTENSIONS

Identification algorithms, including topology estimation
algorithms, will be further extended, as well as integrated
in the App through the introduction of an Identification
Window. Extension of the network model setup from
the current module framework with a second framework
determined by diffusive couplings between nodes, is also
foreseen. This latter step turns the directed graph of a
network into a non-directed graph, see Kivits and Van den
Hof (2023).

6. CONCLUSIONS

A MATLAB App and Toolbox has been presented for
system identification in dynamic networks, represented
in a module framework. It allows to address data-driven
modeling problems in interconnected dynamic systems.
Currently the focus is on the preparation phase of the
identification problem, addressing the construction of a
suitable predictor model on the basis of knowledge of
the structure/topology of the network, and addressing the
question of generic identifiability of either a single module
or a full network. First algorithms for simulating and
estimating a full network or a single module have been
added as command line instructions. More algorithms for
actual data-driven modeling and model validation will be
added in a future release.
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