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Abstract Describing nonlinear dynamic systems by linear parametgying mod-

els has become an attractive tool for control of complexesgst with regime-
dependent (linear) behavior. For the identification of LPvd®ls from experimen-
tal data, a number of methods has been presented in theéuiraut a full picture
of the underlying identification problem is still missing. this contribution a solid
system theoretic basis for the description of model stresttor LPV models is pre-
sented, together with a general approach to the LPV idedtiific problem. Use is
made of a series expansion approach to LPV modeling, enmga@yrthogonal basis
function expansions.

1 Introduction

Many physical/chemical processes exhibit parameter ti@nsdue to non-station-
ary or nonlinear behavior or dependence on external vasaBlor such processes,
the theory ofLinear Parameter-VaryingLPV) systems offers an attractive model-
ing framework [15]. This class of systems is particularlitetito deal with systems
that operate in varying operating regimes. LPV systems esebn as an extension
of the class olLinear Time-Invariant(LTIl) systems. In the LPV systems the sig-
nal relations are considered to be linear, but the modelnpeters are assumed to
be functions of a measurable time-varying signal, the diedacheduling variable
p. As a result of this parameter variation, the LPV systemsctas describe both
time-varying and nonlinear phenomena. Practical use sfftaimework is stimu-
lated by the fact that LPV control design is well worked outdahe results of
optimal and robust LTI control theory can be extended to ineal, time-varying
plants [15, 17, 28].

In the past two decades several methods have been devetopée identification
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of discrete-time LPV models from measured data [4, 18, 1&63,25]. Most of
these approaches exploit the fact that an LPV system caneveetlias a collec-
tion of “local” models joined together by scheduling depemidyeighting functions
[15, 22].
The identification approaches that are presented in thratitee so far all take the
starting point of a fixed model structure and identificatioetinod, usually chosen
as a direct extension of the situation of LTI systems. A gantreory for identifi-
cation of LPV models is still missing. To a large extent tisislie to the fact that a
structured framework for the description of this model slaslacking. This is also
true for such well-defined notions as model transformati@ggiivalence classes
and canonical forms. As a result the model structures, camhmsed in LPV iden-
tification methods, are generally not well defined or aretlimgithe representation
capabilities of the resulting models considerably. In gaper the behavioral frame-
work, originally developed for LTI systems [13], is used andended to the LPV
system class, to overcome the indicated limitations. Orb#sés of a solid system-
theoretic definition of LPV systems, several LPV model stites are presented
herein and the consequences of their use in identificatieriacussed. Particular
attention will be given to a series-expansions approacérimg of orthonormal ba-
sis functions. The question whether the scheduling sigaaléhstatic or dynamic
effect on the system coefficients is an important issue adbczuissed in detail.

In this paper, we will restrict our attention to single inpuingle output (SISO)
systems, but all the results can be applied to the MIMO casgestraightforward
way.

2 Concepts and Notation

A conceptual view of an LPV system is depicted in Figure 1, easizing the fact
that the system coefficien®(k) — that are used to determine outpyk) — are
dependent on an external signk), while for a fixed6, = c the systenSis linear
time-invariant. At every time instar this linear dynamics is updated on the basis
of the mappingp — 6.

LPV systems can be written in different representationgragiwhich one is the
LPV state-space description,

Fig. 1 LPV system represen-

tation, where for a fixed value

of k, S(6(k)) describes an LTI

system. The coefficierfi is R 6%(
a function of the scheduling U(k) S( ))
variablep.

lp(k)

—>Yy(K)
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X(k+1) = A(p(K))x(K) +B(p(K))u(k) (1a)
y(k) = C(p(k))x(k) + D(p(k))u(k) (1b)

and the LPV IO model representation
y(k) = = 3 a(p(k))y(k—i)+ 5 bj (p(k))u(k—j). )
o 2"

Here,y andu are the output and the input of the system, respectixéythe state
vector, and the real-valued system coefficigdd3,C,D) and(a;, b;)i—1..n,j=0..ny»
are dependent on a scheduling functipnZ — P, whereP C R". It is assumed
thatp is either measurable or known.

A few observations should be added to these concepts:

e An important observation is that usually the nap- 6 (see Fig. 1) is assumed
to be a static (nonlinear) mapping, i@(k) depends only on the value pfk).
As will be shown in Section 3, this assumption is a core isaube development
of a solid theory of LPV systems.

e Note that in these representations there is no limitatiogu@arantee that the
McMillan degree of the linear systems remains constantfernevalue ofk.

e ltisclearthat LPV systems are closely related to the claksear Time-Varying
(LTV) systems, with the restriction that knowledge abow time-varying be-
havior is limited by the fact that the scheduling sigpatan generally only be
measured on-line.

e With respect to control synthesis for LPV systems, it is img@ot to note that
virtually all methods are based on LPV state-space modety, often with the
assumption that the dependence of the matricep saffine, i.e. every matrix
functionX in Eq. (1) can be decomposed as

p
X(p(K) =Xa-+ 5 Xpi(K) 3)
where{X;} are real-valued matrices.

e If pis dependent og, u or x the system is referred to as a quasi-LPV system.

3 LPV models revisited

3.1 Approaches to LPV identification

For the identification of LPV models, two major different apaches can be distin-
guished.

1. Local approach
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e LTI models are identified in a number of (local) operatingntsicorrespond-
ing to constant scheduling signapgk) = pi, i = 1,---N;, whereN, is the
number of local models obtained in this fashion.

e The resulting local linear models are interpolated (pdg&ip using data from
an additional global experiment) to form an LPV model.

2. Global approach

e Determine a global LPV model structure and an identificatigterion.
e Use data from a global experiment, i.e. with a varying schiedisignal, to
estimate an LPV model.

For the estimation step in these identification approadbath, prediction-error
methods and subspace methods are available [4, 25]. Fguatadion, various tech-
nigues and approaches have been introduced, ranging frempdatation on pole
estimates to the technique where each local (LTI) model ivexed to a state-
space model in canonical form, and subsequently the caafficin this model are
interpolated ([26]).

This simple sketch of possible approaches directly leadpi&stions about the
definition and selection of appropriate model structuresil&\thany identification-
related issues require further research, related to epgriement design, estimation
accuracy, model validation, here we will focus on the questirelated to the use of
different model structures.

3.2 Model structure considerations

To get an indication that there are theoretical problemsluad with the current
practice, let us consider the LPV model representationtate-space and IO form
in Eqg. (1-2) and evaluate whether these two representati@squivalent, as is the
case for LTI systems, or not. A simple example shows thataiheyot equivalent for
LPV systems, if the mapping — 6 is restricted to be static. Consider the following
second-order state-space model in the form of Eq. (1):

e - R0 o [ o
y(K) = x2(K).

With simple manipulations this system can be transcrib&gl@ form:

y(K) = azx(p(k—1))y(k—1) +a(p(k—2))y(k—2)
+ ba(p(k—1))u(k— 1) + by (p(k - 2))u(k - 2),
which is clearly not in the form defined by Eq. (2). In order bdain equivalence be-

tween the state-space and 10 representations, it is negessalow for a dynamic
mapingp — 6, i.e. allow8(k) to depend o - - , p(k— 1), p(k), p(k+1),--- } [20].
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Based on the observation that LPV systems are closely defateTV systems,
it follows that for the definition of state-space equivalet@nsformations the con-
cepts of the LTV theory should be used [6]. It can be shown [26§ that this
results in transformation matrices — and consequently ialstate-space matrices
— that depend dynamically on the scheduling paramet&ote that by using only
LTI based state-space transformations, there is no guseradhat the resulting state
vectors have a common basis.

It can be concluded that transforming estimated 10 modelstdte-space de-
scriptions, while retaining a static dependence on thedsdhmg function, as well
as, using LTI state-space transformations on local motefe(e interpolation) may
result in errors. This especially holds for situations wabidly varying scheduling
signals, as further illustrated in [20].

3.3 A behavioral approach

From the previous sections it can be concluded that theic&$srmulation of LPV
models should be adapted to deal with dynamic schedulingradkmce. In [19] the
behavioral framework, originally developetbr LTI systems ([13]), is extended to
deal with LPV systems. In this framework, a parameter-vaygystenstis defined
as a quadruple

S=(T.P,W,®), “4)

whereT is called the time axisP denotes the scheduling space (ipgk) € P),
W is the signal space with dimensiop and® c (P x W)™ is thebehaviorof the
system. The séf defines the time-axis of the system, describing continuBasR,
and discretel = Z, systems alike, whil&V gives the range of the system signas.
defines the physical laws, i.e. the rules for selecting whiajectories of P x W)T
are possible. In the sequel, we restrict attention to therelis-time case. Note that
there is no prior distinction between inputs and outputhiis $etting.

We also introduce the so-call@dojected scheduling behavior

Bp={pecP’|3Iwe W' st. (w,p) € B}, (5)
and for a given scheduling tractopye %p, we define therojected behavior
Bp={weW" | (wp) e B}. (6)
With these concepts we can define LPV systems as follows:

Definition 1. (LPV system)The parameter-varying systegis called LPV, if the
following conditions are satisfied:

1 n the past decades this framework has been extended to LTVg[R&nd evemonlinear(NL)
systems ([13, 14]).
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o Wis avector-space arid;, is a linear subspace &7T for all p € Bp (linearity).

e T is closed under addition.

e For any(w, p) € B (a signal trajectory associated with a scheduling trajggto
and anyrt € T, it holds that(w(. + 1), p(-+ T)) € B, in other wordj"®8 = B
(time-invariance¥.

In the next step, the behavior of LPV systems has to be spedifiterms of
mathematical representations. The coefficients in thgsesentations will become
(nonlinear) functions of the scheduling sigmealin order to describe this functional
dependence of a single real-valued coefficient in one of ¢ipeesentations to be
introduced in the next section, we employ functions

r:R"— R,

that are considered to be in the $et= |, %, wherefi, is the set of essentiaffyn-
dimensional real-meromorphic functions (being a quot@ranalytical functions).
This function specifies how the resulting coefficient is defent om variables, that
are selected — in a unique ordering — from elements of th%p}}iez;jzl,...,np. In
order to specify the (time-varying) coefficient, we intraéunew notation through
the operator

o: (M, Bp) — RZ, defined by (ro p) (k) = r(x(k)) 7

wherex is a vector ofn signals, being constructed by taking the fimstomponents
of the signal vector

_ _ T
[(P" g 'p" ap" g ?p" ofp" -] . (8)
A (scheduling-dependent) coefficient in an LPV system regméation is evaluated
by an operatiorir o p) (k).
Example 2(Coefficient function)Let P = R" with np, = 2. Consider the coefficient
1+p(k—1)
1-p2(k)

In order to describe this coefficient with a real-meromocgdhinctionr, we need a
function with dimension 3, i.ex= [p1, p2,q 1p1] specified by

1+x
r(X1,X2,X3) = 17);.
With this specification of, (r o p)(k) = w
1—p2(k)

2 Hereq denotes the standard shift operatPx(t) = x(t +i), i € Z.
3 In the sense that(xs, - - - ,X,) does depend ox.
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In the sequel the (time-varying) coefficient sequefreep) will be used to oper-
ate on a signabl. In this respect it is important to note that multiplicatieith the
shift operatoig is not commutative, in other wordgr ¢ p)w # (r ¢ p) qw.

Shift operationsr’, T~ can be defined by the equationse p=r<(gqp), andT o
p=ro(q tp), respectively. With this notion, it follows thatr o p)w = (T o p)qw
andg (rop)w= (T o p)g—tw.

The considered operatorcan straightforwardly be extended to matrix functions
r e X" whereo is applied to each scalar entry of the matrix, as well as tg-pol
nomial matrices irg. LetR[g)™ *™ denote the set of polynomial matricesgmvith
coefficients ireR, then

Ng

(Rajopjw:=3 (riop) ow ©)

whereR(q) = zinﬂoriqi, ng is the order oR, andr; is an; x ny-dimensional matrix
with elements iffR. In this notation, the shift operatianoperates on the signel,
while operation> takes care of the time/schedule-dependent coefficienesegu

3.4 LPV system representations

Kernel representation

Using the behavioral framework, we can introduce the steddlernel representa-
tion of an LPV system. By employing the notation presentetié@previous section,
a kernel representation of an LPV system is written as

(R(@)op)w=0. (10)

We call difference equation (10) a discrete-tikernel representationf LPV
systemS= (T, P, W,%) with scheduling signap and signalsv if

B = {(w.p) € (R™xR"™)” | (R(g)op)w=0}. (11)

In the sequel we only consider LPV systems, whose behaviobeadescribed by
Eg. (11). An important property of these systems is that tiexe a kernel repre-
sentation wher® has full row rank ([19]).

IO representation
For practical applications one will often need a partiondfighe signalsv in input

signalsu (R“ﬂ)Z and output signalg € (R”V)Z. Note that this partitioning is not
trivial and can neither be chosen freely. For details see 2B
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Using an 10 partitioning, we can define th@ representatioras

(Ry(@)ep)y=(Ru(a)op)u, (12)

whereR, andRy are again matrix polynomials with meromorphic coefficieatsd
whereRy is full row rank with orderRy)>orderR,).
Using the same notation and decomposition as in (9), itvidlthat

i(aop)q‘w Z:(bjop)qju, (13)

J:

whereng > n, > 0, andng > 1.

State-space representation

Without going into details about the definition of so-callatént variables, we for-
mulate the discrete-time state-space representatioed fwasan 10 partioningu,y),
as a first-order parameter-varying difference equatiotegysn the latent variable
X:Z — X as:

gx= (Ao p)x+ (Bop)u (14a)
y= (Cop)x+(Dop)u, (14Db)

whereX C R™ is called the state space and the (parameter-varying) Spatee
matrices(A,B,C, D) are matrices of appropriate dimensions with their entresd
meromorphic functions ifR. Note that the latent variabbein (14) qualifies as a
state variable.

It is apparent that (13) and (14) are the ‘dynamic-dependerounterparts of
(2) and (1), respectively.

3.5 Properties

Using the behavioral framework, it is now possible to coasielquivalence of be-
haviors, and related equivalent transformations, betvtleemifferent LPV system
representations. For details see [19].
Transformations between different representations, #isawestate transformations
into a different coordinate system, generally involve dyitally dependent rela-
tions. For instance, the transformation of an LPV statespaodel (14) into an
observable canonical form requires a transformation matd 23™*™ to obtain a
new state

X = (Top)x
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and state-space matrice® = TAT-1, B=TB, C=CT %, D'=D.

Here, the matrix is constructed from the LPV observability matrix, whichris i
the SISO case built up from

S
C,CA (E’A)A,-.-

Suppose that the original state-space model has statiodepey on the schedul-
ing function, so at time instaktthe matrix functions depend on valuespgk) only,
then the construction of the transformation maffixas well as, the calculation of
the new state-space matrices immediately imply that thematrices depend — at
time k — onfuturevaluesp(k+1) (17 > 0), as well.

This problem can be circumvented by using a reachabilityooaal form, in
which case the transformation only involves backward sip#rations ([19]).

4 An orthonormal basis functions approach

4.1 Series-expansion representations

In this section we explore the possibilities for using aessexpansion type of model
structure for LPV systems, using the concept of orthonotraals functions (OBF)
[7]. A major motivation is the linear-in-the-parametersperty of these structures,
which is very beneficial in prediction-error identificatioh second merit of these
structures is that they allow a relatively simple interpiola of local linear mod-
els with varying McMillan degree. Furthermore, it was shawtji2] for nonlinear
Wiener-models (that is a LTI system followed by a static imedrity) that, if the
LTI part is an OBF filter bank, then such models are generalemators of non-
linear systems with fading memory.

For a (local) linear modédb € H; it holds thatG can be written as
G(2)=D+ Y aF(2), (15)

where{F} is a basis foH,. In the theory of generalized orthonormal basis func-
tions (GOBF’s), the functionBy(z) are generated by applying a Gram-Schmidt or-
thonormalization to the sequence of functions

1 1 1

R TR aR

with stable pole location,, - - - &»,. The choice of theskasis polesletermines the
rate of convergence of the series expansion (15).
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An alternative derivation of the basis functions is based balanced realization
{Ap,Bp,Cp, Dp} of the inner function

o 1-ZE

where the function$F(z)} are the scalar elements of the vector functions
(21— Ap) " BpGh(2), i =1,2,--

By using a truncated expansion in (15), an attractive mottattire for LTI
identification results, with a well worked-out theory inres of variance and bias
expressions. The series expansion (15) can be extendedvteyd®ems, such that
for a given basig K} and a specific 10-partioninu,y), an LPV system can be
written as

k=1

y(t) = ((Do P+ S (Weop) Fk<q>> u(t). (17)

wheren = . It is an obvious step to use a truncated expansion, i.e Wit )finite

n, as a model-structure candidate for LPV identification. eNtitat these expan-
sions are formulated in the time domain (using the shift afmeiq), as there exist

no frequency-domain expressions for LPV systems. Simjilarthe LTI case, this
structure is linear in the parameters. An important quegtiat arises is whether the
basis functiondy can be chosen in such a manner that a fast rate of convergence
can be accomplished for all possible scheduling trajeesqri Note that the repre-
sentation (17) is equivalent with a state-space descriffid), where the matrices

A andB are independent of the scheduling function.

4.2 Basis selection

In order to select a basis, it is important to obtain some kedge about the system
to be modeled. For the LTI case, it is well-known that — if thelerlying system

can be well approximated by an LTI model — an optimal basidxeachosen relying

on the knowledge about the system poles. It can be shownhbatame property
holds for LPV systems, where the knowledge of the poles gfadkible local linear

models is required. In practice, this knowledge is gengradit available and one
has to resort to limited prior-information resources, sashexpert knowledge, or
preliminary identification experiments.

A possible scheme for the basis selection is given by theviatig steps:

1. Identify a number of local linear models in several difer operating regimes
pi, i.e., by using data with a constant scheduling sigii&) = p.
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2. Plot all poles of the identified models in the complex plane
3. Cluster the poles into groups and find optimal clusterersnthese centers will
be used as basis poles)

In this procedure, use is made of minimization of a distaneasure, which is rele-
vant for the worst-case approximation error of the repriegem (17). This scheme
is motivated by the extension of the classikalmogorov n-widthresult of [12] to
OBFs, as obtained by [11]. This result states that for a giviérinner functionGy,
the OBF’s generated b§, (see Section 4.1) are optimal in thewvidth sense for
the set of LTI systems having poles in the region

{zeD||Go(z ) < p}.

Herep is the rate of convergence in the series expansionpahduld be a multiple
of the number of basis poles. See Fig. 2, taken from [23], for an example of such
regions.

Fig. 2 Example of the func-
tion |Gp(z1)| and the region
{zeD||Gp(z H)| < p} for
an inner functionG, with 3
poles and various values pf
Note that ifzy is a pole ofGy,
thenGp(z,*) = 0.

Decay rate [dB]

Imaginary axis 1A Real axis

For the basis-selection problem, we are dealing with iters® problem, i.e.
given a region of pole®, approximate this region as

Q~Q(Z,p)={zeD|Gy(z ) <p}. (18)

The n optimal OBF poless = {&1,---,&,} are therefore obtained by solving the
following Kolmogorov measure minimizatigmoblem,

D17
le z— &

min p = min max |Gp(z *)| = min max (19)

=cDh =cD zeQ =cD zeQ

As stated above, in a practical situation the knowledge tthepole region? is
limited. In the next section we present an approach to oltaimultaneous solution
for the problems of reconstructin@ from experimental data and the Kolmogorov
measure minimization problem.
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4.3 A fuzzy clustering approach

Objective-function-based fuzzy clustering algorithms;tsas fuzzyc-max cluster-
ing (FcM), have been used in a wide collection of applications [], G&nerally,
FcM partitions the data into overlapping groups, that descab underlying struc-
ture within the data [9]. In this section, we describe thezegion of EM to the
so-calledFuzzy-Kolmogorov c-MaxFKcM) algorithm, which enables the deter-
mination of the regiom2 on the basis of observed poles with membership-based,
overlapping areas. We assume that we are given a set of petels; , - -+ , zn }-

Let ¢ be the number of clusters, that we wish to discern and;letD denote
the cluster centeiof the i-th cluster. Furthermore, we define membership fonst
K : D — [0, 1], that determine for eache D the ‘degree of membership’ to cluster
i. By using athreshold values, we obtain a set

Q={zeD|3, WKz >c¢e}. (20)
With these preliminaries, we can now formulate the problem.

Problem 3. For a giverc, find a region2, as described above, such tiatontains

all pole locations inZ, and such that the OBFs, with poles in the cluster centers
{vi}{_,, are optimal in the Kolmogoror-width sensen = c, with respect ta2 and

with the corresponding decay ragbeas small as possible.

To measure the dissimilarity & with respect to each cluster, we introduce dis-
tancedix = K (vi, z) betweenv; andz, wherek is a metric orD, defined by

X—y
1-—xty

K(XY) = , (21)

referred to as th&olmogorov metric
Analogously, we defingi, = 1i(z) and we regulate the membership functions
by the so-calleduzzy contraints

c N
Uxk=21and 0< y ik <N.
i; I kzl I

Fuzzy clustering can be viewed as the minimization of thelfunctional[1],
Jm, which —in the FKKM case — can be formulated as

c
_ mq.
Im= 121@)& i; Hiy Gk - (22)

Here, the design parameterc (1, ) determines the fuzziness of the resulting par-
tition. Note thatl, is a function of the membership dgtig and the cluster centers
v;. It can be observed, that (22) corresponds teoast-case (therefore max) sum-
of-error criterion, contrary to thenean-squared-errocriterion of the original EM,
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see [1].

The crucial property of this functional is that it can be shaisee [21]) that for
large values ofn the minimization ofJy, is equivalent to the Kolmogorov measure
minimization problem (19). For details, as well as, a dethdescription of the op-
timization algorithm, see [19], where also the robust esitmof the basis selection
is discussed. In that case, not only pole estimates aredsmesl, but also the cor-
responding uncertainty regions of these estimates. Se& g an example of the
basis selection mechanism.

For the determination of the actual number of clusters isdhagorithms, so-
called adaptive cluster-merging is applied. Starting framelatively large initial
number of clusters (typically aroumd)/2), the adaptive merging steers the algorithm
towards the natural number of groups that can be observéxe iddta.

4.4 OBF-based model structures

We assume that the basis selection step has been compldte® ane given a set of
n¢ basis functiongF(z) }x—1....n, With good approximation properties for the set of
local LTI behaviors corresponding to constant scheduliggais. In the next step,
we can construct model structures for the identification LRV systemS. To
keep the notation simple, we restrict attention to striptigper models (i.eD =0

in (17). The input-output dynamics of the LPV model can betemi as

ng

yt) = 3 (wieo p) (OFQu(t). (23)

k=1

Fig. 3 Example of the basis '

selection procedure, using 08 1 08
fuzzy clustering with fuzzy- 0 1 05
ness parameten= 8. The 30 o ] o @

observed poles (i.e the s&}

are given with red circles. The g V1 oe” /\g
resulting cluster centers are hall
depicted with a black x. The 1
blue lines represent the region 0 J o4 @
Q as in Eq. (18), obtained

by using the cluster centers
as basis poles. On the left

Imaginary a
Imaginary axi
.

%°

-0.2

-0.6 4 -0.6

08 R -08

hand sidec = 5 clusters were B ] N
determined, on the right hand o0 e T e
sidec = 8.

(@ m=8,c=5 (b)y m=8,c=8
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Yn, Un,
OBF Dynamic Dynamic OBF
filter bank weighting weighting filter bank
(a) W-LPV OBF model (b) H-LPV OBF

Fig. 4 10 signal flow graph of (a) the W-LPV OBF model described by (23) év) the H-LPV
OBF model described by (26)

Introduce®,, andW as shorthand notation for the vectors with functiépsand
coefficientsw;, respectively.

@y = [F1- Fn]" (24)
W= [wi-wn ] (25)

Then the model structure (23) can be visualized as shown dn 44, where
yi(t) = F(q)u(t). Because of the close resemblance of this structure toicdhss
Wiener-models, this model structure is referred to as a @ieRV OBF (W-LPV
OBF) model. A closely related model structure, depictedign #b, is the so-called
Hammerstein LPV OBF model (H-LPV OBF), that is derived frdm tescription

Y(t) = 3 Fe(a) (weo p) (Hu(t). (26)
k=1

This latter structure can be generated from the LTI serigmmesion (15), by
changing the order of the arguments. This change has nd effdw LTI case, but
results in a different LPV structure.

In the sequel we will restrict attention to the Wiener-maostelicture. Furthermore,
we assume that the coefficient functiomg have only a static dependency on the
scheduling functiorp, so we can writgwg < p) (t) = wi(p(t)) in (23). As stated
before, we can write the W-LPV OBF structure also in a stages form,

gx = Ax+Bu (27a)
y=(Wop)x, (27b)

where the constant matricdsandB are completely determined by the basis func-
tions {F}. This illustrates that the dependency on the schedulingasig only
present in the output equation, with the result that therapsion of static depen-
dency is much less restrictive than in the general case (14).

With respect to the actual estimation with these model &ires, we again dis-
tinguish between a local and a global approach.
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Local estimation approach

This approach is based on a numbérof ‘local’ experiments, i.e. data collec-
tion with a constant scheduling signalk) = p; € P, resulting in data sequences
{ui(t),yi(t)} fori=1,--- \N,. Based on these datd, LTI models are estimated us-
ing a standard least-squares criterion, on the basis ofrteestep-ahead prediction
error in Output Error (OE) form:

n¢

e(t) =vi(t) — > wiRd(aui(t), (28)
=1

where{wix } are real-valued coefficients. Note that — under the coritiat the
data are persistently exciting — there exists a unique #Hoaglution to this esti-
mation problem. These estimated coefficients can be caesi@de ‘samples’ of the
functionw(p(t)), in the sense thati(pi) = wik. As a second step, we use inter-
polation to obtain estimates of the functieR(p(t)), for instance by assuming a
polynomial dependency ofi on p, or by making use of splines etc.

Global estimation approach

For this approach we need to assume a specific functionahdepey of the func-
tionswy on p(t) and we propose to use a linear parametrization for this [zerpo
such as a polynomial dependency

Wi(P(t)) = Wio + Wit P(t) + - - +Wir ' (1).

Here we assumed for simplicity thptis a one-dimensional signal. Now we collect
a global data sefu(t),y(t), p(t),t =1,--- , T}, which is assumed to be persistently
exciting the system at hafdt is straighforward that — using a least-squares crite-
rion — a unique analytic solution can be obtained for the mpatarsw;.

Note that the restriction to static dependency can be rdltotehe global approach
by allowing a dependency @iy on time-shifts ofp(t), as well.

Because of the postulated OBF structure, both approachieslways result in
asymptotically stable models.

4.5 Approximation of dynamic dependecy

In order to alleviate the restrictions caused by the assiompf static dependency
in the suggested model structures, extensions for thasestes were proposed in
[24]. Here, we only consider the extension of the W-LPV OBFRelcstructure. The

4 Persistency of excitation for LPV systems is not yet completelyetstdod.
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Fig. 5 10 signal flow graph statc
of the WF-LPV OBF model weighting
with feedback-based static
weighting functions V and W.
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idea is still to use weighting functions with static depemde but with the intro-
duction of an additional feedback loop around each basigpooent with a gain
incorporating also static dependency. In this way, therflitenk of OBFs — as a
dynamical LTI system — is reused to provide dynamic weighfimctions that can
approximate the required class of dependency for W-LPV OBHats. The intro-
duction of feedback-based weighting leads to a new modettstre given in Fig.
5, which we call Wiener Feedback LPV (WF-LPV OBF) models. SEj for an
analogous extension of the H-LPV OBF model structure. Fesémew model struc-
tures, itis apparent that by setting the feedback gainsrtn #ee previous structures
result. This immediately indicates an increase in the pr&ation capability of the
extended structures. The W-LPV OBF can be representedtgrgpace form by

gx= (A—BV(p)C)x+Bu (29a)
y =W(p)Cx, (29b)

where the constant matricAsB andC are again completely determined by the basis
functions. These equations illustrate how the additiorheffeed-back loops intro-
duces dependency on the scheduling signal in the statei@gsiefor the estimation
of the the function® andV again a linear parametrization using polynomials or
spline functions is suggested. To overcome the nonlineimgation problem as-
sociated with the parallel estimation of the whole paramse(i.e. the coefficients
of W andV), the approach utilizes a separable least squares optiarizecheme
[5]. In each iteration cycle of this scheme, one set of thaupaters is fixed to en-
able a linear-regression-based estimation of the othefrkét results in a steepest
descend algorithm which is guaranteed to converge to asadit or a local min-
imum, depending on the initial values of the parametersakgorithmic details see
[24, 19]. It should be noted that the better representagalility comes at a price.
First of all, there is no longer an analytic solution avaialSecondly, there is no
guarantee that the resulting models are asymptoticalbtesta
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Table 1 Validation results of 100 identification experiments by thebgll and local methods using
the W-LPV OBF and H-LPV OBF model structures. The results arengivéerms of the average
MSE and VAF of the simulated output signals of the model estimates.

Model | CaselMSE (dB) VAF (%)

w-Lpy|loc- | —1801 |94.12%
glob.| —31.03 |98.23%

H-LPV loc. | —10.16 |85.69%
glob.| —26.41 |96.18%

5 Example

To illustrate the applicability of the introduced modelustiures, we consider the
following asymptotically stable LPV syste8) given in LPV-IO form:

5 .
> (@op)dy=(biop) a'u, (30)

with [P = [0.6,0.8] and coefficients

apop=—0.003 agop= £k —0.2sin(e®p),
592 50 cin(q
arop= 7% —0.1sin(e®p), asop= _ S1H19°p 25§(gé’s(q p)—sin(d p))7

apop=—2+02sing°p), asop=0.58-0.1¢°p,
bso p=cogo’p).

Using 8 basis functions, obtained through theciKalgorithm (see [24, 23] for
details) and a 2nd order polynomial-based parametrizatidime coefficients, iden-
tification of Swith the local, as well as, the global approach has beenechait,
with the W-LPV OBF and the H-LPV OBF model structures. Eacpegiment has
been repeated 100 times with different realizations of inpcheduling and noise
signals. The signal-to-noise ration was 20 dB in the resgltdata records with a
relative signal-to-noise amplitude of 25 %. See Table 1 lfierresults in terms of
average MSE and VAF (Variance Accounted For).

As expected, the W-LPV and H-LPV structures based on coefffisiwith static
dependence could not fully cope with the variations in theapeeters{a, }|5:0 .
However, the global W-LPV identification provided quite eaptable results for such
a heavily nonlinear system. The explanation why the H-LRWcddtire gave a worse
result lies in the different approximation capabilitiestoése models.

To illustrate the effect of incorporating feedback, we ufelsame example sys-
tem and identified it with the WF-LPV OBF model structure, aglase, with the
W-LPV OBF structure. For both structures, the coefficieni&/iare parametrized as
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Table 2 Validation results of 100 identification experiments with Weener (W) and the Wiener
Feedback (WF) model structures. The results are given in ternieafierage MSE and VAF of
the simulated output signals of the model estimates.

MSE (dB) | VAF (%)
SNR | W | WF | W | WF

Nno noisg-34.9¢-39.7590.0499.42
35dB (-34.77-39.17/98.9999.39
20 dB |-32.75-35.0198.71/99.00
10 dB |-31.81-32.3998.1998.59

a 2nd order polynomial and f& a 3rd order polynomial was used. Identification of
Swith the global approach was accomplished 100 times in 4mifft noise settings
with both the Wiener and the Wiener-feedback model strestusee Table 2 for the
results. As expected, both approaches identified the systdnadequate MSE and
VAF, even in case of extremely heavy output noise, which dimdss the effective-
ness of the proposed identification philosophy. For all sagee WF-LPV model
provided better estimates than the pure static-dependssssl W-LPV model es-
timate. This clearly shows the improvement in the approxiomecapability due to
the approximation of dynamic dependence with feedbackdeaighting.

6 Conclusions

On the basis of a solid system theoretic definition of LPVeystin terms of system
behaviors, several LPV model representations are prasanttbrought into a uni-
fying framework. Real-valued meromorphic functions aredus® specify dynamic
dependency of the system coefficients on the schedulinglsigrseries expansion
approach is presented for modelling LPV systems, includimgptimization proce-
dure for selectiing optimal basis functions. The serigsamsion models can be used
in both local and global identification methods, and aresthated in an example.
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