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Abstract Describing nonlinear dynamic systems by linear parameter-varying mod-
els has become an attractive tool for control of complex systems with regime-
dependent (linear) behavior. For the identification of LPV models from experimen-
tal data, a number of methods has been presented in the literature, but a full picture
of the underlying identification problem is still missing. In this contribution a solid
system theoretic basis for the description of model structures for LPV models is pre-
sented, together with a general approach to the LPV identification problem. Use is
made of a series expansion approach to LPV modeling, employing orthogonal basis
function expansions.

1 Introduction

Many physical/chemical processes exhibit parameter variations due to non-station-
ary or nonlinear behavior or dependence on external variables. For such processes,
the theory ofLinear Parameter-Varying(LPV) systems offers an attractive model-
ing framework [15]. This class of systems is particularly suited to deal with systems
that operate in varying operating regimes. LPV systems can be seen as an extension
of the class ofLinear Time-Invariant(LTI) systems. In the LPV systems the sig-
nal relations are considered to be linear, but the model parameters are assumed to
be functions of a measurable time-varying signal, the so-called scheduling variable
p. As a result of this parameter variation, the LPV system class can describe both
time-varying and nonlinear phenomena. Practical use of this framework is stimu-
lated by the fact that LPV control design is well worked out, and the results of
optimal and robust LTI control theory can be extended to nonlinear, time-varying
plants [15, 17, 28].
In the past two decades several methods have been developed for the identification
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of discrete-time LPV models from measured data [4, 18, 16, 3,26, 25]. Most of
these approaches exploit the fact that an LPV system can be viewed as a collec-
tion of “local” models joined together by scheduling dependent weighting functions
[15, 22].
The identification approaches that are presented in the literature so far all take the
starting point of a fixed model structure and identification method, usually chosen
as a direct extension of the situation of LTI systems. A general theory for identifi-
cation of LPV models is still missing. To a large extent this is due to the fact that a
structured framework for the description of this model class is lacking. This is also
true for such well-defined notions as model transformations, equivalence classes
and canonical forms. As a result the model structures, commonly used in LPV iden-
tification methods, are generally not well defined or are limiting the representation
capabilities of the resulting models considerably. In thispaper the behavioral frame-
work, originally developed for LTI systems [13], is used andextended to the LPV
system class, to overcome the indicated limitations. On thebasis of a solid system-
theoretic definition of LPV systems, several LPV model structures are presented
herein and the consequences of their use in identification are discussed. Particular
attention will be given to a series-expansions approach in terms of orthonormal ba-
sis functions. The question whether the scheduling signal has a static or dynamic
effect on the system coefficients is an important issue and isdiscussed in detail.

In this paper, we will restrict our attention to single input- single output (SISO)
systems, but all the results can be applied to the MIMO case ina straightforward
way.

2 Concepts and Notation

A conceptual view of an LPV system is depicted in Figure 1, emphasizing the fact
that the system coefficientsθ(k) – that are used to determine outputy(k) – are
dependent on an external signalp(k), while for a fixedθk = c the systemS is linear
time-invariant. At every time instantk, this linear dynamics is updated on the basis
of the mappingp→ θ .

LPV systems can be written in different representations, among which one is the
LPV state-space description,

Fig. 1 LPV system represen-
tation, where for a fixed value
of k, S(θ(k)) describes an LTI
system. The coefficientθ is
a function of the scheduling
variablep.

S(θ(k))u(k) y(k)

p(k)
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x(k+1) = A(p(k))x(k)+B(p(k))u(k) (1a)

y(k) = C(p(k))x(k)+D(p(k))u(k) (1b)

and the LPV IO model representation

y(k) = −
na

∑
i=1

ai(p(k))y(k− i)+
nb

∑
j=0

b j(p(k))u(k− j). (2)

Here,y andu are the output and the input of the system, respectively,x is the state
vector, and the real-valued system coefficients(A,B,C,D) and(ai ,b j)i=1...na; j=0...nb,
are dependent on a scheduling functionp : Z→ P, whereP ⊂ Rnp. It is assumed
that p is either measurable or known.

A few observations should be added to these concepts:

• An important observation is that usually the mapp→ θ (see Fig. 1) is assumed
to be a static (nonlinear) mapping, i.e.θ(k) depends only on the value ofp(k).
As will be shown in Section 3, this assumption is a core issue in the development
of a solid theory of LPV systems.

• Note that in these representations there is no limitation orguarantee that the
McMillan degree of the linear systems remains constant for every value ofk.

• It is clear that LPV systems are closely related to the class of Linear Time-Varying
(LTV) systems, with the restriction that knowledge about the time-varying be-
havior is limited by the fact that the scheduling signalp can generally only be
measured on-line.

• With respect to control synthesis for LPV systems, it is important to note that
virtually all methods are based on LPV state-space models, very often with the
assumption that the dependence of the matrices onp is affine, i.e. every matrix
functionX in Eq. (1) can be decomposed as

X(p(k)) = X0 +
np

∑
i=1

Xi pi(k), (3)

where{Xi} are real-valued matrices.
• If p is dependent ony, u or x the system is referred to as a quasi-LPV system.

3 LPV models revisited

3.1 Approaches to LPV identification

For the identification of LPV models, two major different approaches can be distin-
guished.

1. Local approach
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• LTI models are identified in a number of (local) operating points correspond-
ing to constant scheduling signalsp(k) ≡ p̄i , i = 1, · · ·Nl , whereNl is the
number of local models obtained in this fashion.

• The resulting local linear models are interpolated (possibly by using data from
an additional global experiment) to form an LPV model.

2. Global approach

• Determine a global LPV model structure and an identificationcriterion.
• Use data from a global experiment, i.e. with a varying scheduling signal, to

estimate an LPV model.

For the estimation step in these identification approaches,both prediction-error
methods and subspace methods are available [4, 25]. For interpolation, various tech-
niques and approaches have been introduced, ranging from interpolation on pole
estimates to the technique where each local (LTI) model is converted to a state-
space model in canonical form, and subsequently the coefficients in this model are
interpolated ([26]).

This simple sketch of possible approaches directly leads toquestions about the
definition and selection of appropriate model structures. While many identification-
related issues require further research, related to e.g. experiment design, estimation
accuracy, model validation, here we will focus on the questions related to the use of
different model structures.

3.2 Model structure considerations

To get an indication that there are theoretical problems involved with the current
practice, let us consider the LPV model representations in state-space and IO form
in Eq. (1-2) and evaluate whether these two representationsare equivalent, as is the
case for LTI systems, or not. A simple example shows that theyare not equivalent for
LPV systems, if the mappingp→ θ is restricted to be static. Consider the following
second-order state-space model in the form of Eq. (1):

[
x1

x2

]
(k+1) =

[
0 a1(p(k))
1 a2(p(k))

][
x1

x2

]
(k)+

[
b1(p(k))
b2(p(k))

]
u(k)

y(k) = x2(k).

With simple manipulations this system can be transcribed into IO form:

y(k) = a2(p(k−1))y(k−1)+a1(p(k−2))y(k−2)

+ b2(p(k−1))u(k−1)+b1(p(k−2))u(k−2),

which is clearly not in the form defined by Eq. (2). In order to obtain equivalence be-
tween the state-space and IO representations, it is necessary to allow for a dynamic
mapingp→ θ , i.e. allowθ(k) to depend on{· · · , p(k−1), p(k), p(k+1), · · ·} [20].
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Based on the observation that LPV systems are closely related to LTV systems,
it follows that for the definition of state-space equivalence transformations the con-
cepts of the LTV theory should be used [6]. It can be shown (see[20]) that this
results in transformation matrices – and consequently alsoin state-space matrices
– that depend dynamically on the scheduling parameterp. Note that by using only
LTI based state-space transformations, there is no guarantee that the resulting state
vectors have a common basis.

It can be concluded that transforming estimated IO models tostate-space de-
scriptions, while retaining a static dependence on the scheduling function, as well
as, using LTI state-space transformations on local models (before interpolation) may
result in errors. This especially holds for situations withrapidly varying scheduling
signals, as further illustrated in [20].

3.3 A behavioral approach

From the previous sections it can be concluded that the classical formulation of LPV
models should be adapted to deal with dynamic scheduling dependence. In [19] the
behavioral framework, originally developed1 for LTI systems ([13]), is extended to
deal with LPV systems. In this framework, a parameter-varying systemS is defined
as a quadruple

S= (T,P,W,B) , (4)

whereT is called the time axis,P denotes the scheduling space (i.e.p(k) ∈ P),
W is the signal space with dimensionnw andB⊂ (P×W)T is thebehaviorof the
system. The setT defines the time-axis of the system, describing continuous,T = R,
and discrete,T = Z, systems alike, whileW gives the range of the system signals.B

defines the physical laws, i.e. the rules for selecting whichtrajectories of(P×W)T

are possible. In the sequel, we restrict attention to the discrete-time case. Note that
there is no prior distinction between inputs and outputs in this setting.

We also introduce the so-calledprojected scheduling behavior

BP = {p∈ PT | ∃w∈WT s.t. (w, p) ∈B}, (5)

and for a given scheduling tractoryp∈BP, we define theprojected behavior

Bp = {w∈WT | (w, p) ∈B}. (6)

With these concepts we can define LPV systems as follows:

Definition 1. (LPV system)The parameter-varying systemS is called LPV, if the
following conditions are satisfied:

1 In the past decades this framework has been extended to LTV ([27, 8]), and evennonlinear(NL)
systems ([13, 14]).
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• W is a vector-space andBp is a linear subspace ofWT for all p∈BP (linearity).
• T is closed under addition.
• For any(w, p) ∈B (a signal trajectory associated with a scheduling trajectory)

and anyτ ∈ T, it holds that(w(�+ τ), p(�+ τ)) ∈B, in other wordsqτ
B = B

(time-invariance)2.

In the next step, the behavior of LPV systems has to be specified in terms of
mathematical representations. The coefficients in these representations will become
(nonlinear) functions of the scheduling signalp. In order to describe this functional
dependence of a single real-valued coefficient in one of the representations to be
introduced in the next section, we employ functions

r : Rn→ R,

that are considered to be in the setR =
⋃

nRn, whereRn is the set of essentially3 n-
dimensional real-meromorphic functions (being a quotientof analytical functions).
This function specifies how the resulting coefficient is dependent onn variables, that
are selected – in a unique ordering – from elements of the set{qi p j}i∈Z; j=1,··· ,np. In
order to specify the (time-varying) coefficient, we introduce new notation through
the operator

⋄ : (R,BP)→ RZ, defined by(r ⋄ p)(k) = r(x(k)) (7)

wherex is a vector ofn signals, being constructed by taking the firstn components
of the signal vector

[
pT q−1pT qpT q−2pT q2pT · · ·

]T
. (8)

A (scheduling-dependent) coefficient in an LPV system representation is evaluated
by an operation(r ⋄ p)(k).

Example 2.(Coefficient function)LetP = Rnp with np = 2. Consider the coefficient

1+ p1(k−1)

1− p2(k)
.

In order to describe this coefficient with a real-meromorphic functionr, we need a
function with dimension 3, i.e.x = [p1, p2,q−1p1] specified by

r(x1,x2,x3) =
1+x3

1−x2
.

With this specification ofr, (r ⋄ p)(k) =
1+ p1(k−1)

1− p2(k)
.

2 Hereq denotes the standard shift operator,qix(t) = x(t + i), i ∈ Z.
3 In the sense thatr(x1, · · · ,xn) does depend onxn.
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In the sequel the (time-varying) coefficient sequence(r ⋄ p) will be used to oper-
ate on a signalw. In this respect it is important to note that multiplicationwith the
shift operatorq is not commutative, in other wordsq(r ⋄ p)w 6= (r ⋄ p)qw.

Shift operations−→r ,←−r can be defined by the equations−→r ⋄ p= r ⋄(qp), and←−r ⋄
p = r ⋄ (q−1p), respectively. With this notion, it follows thatq(r ⋄ p)w = (−→r ⋄ p)qw
andq−1(r ⋄ p)w = (←−r ⋄ p)q−1w.

The considered operator⋄ can straightforwardly be extended to matrix functions
r ∈R

nr×nw where⋄ is applied to each scalar entry of the matrix, as well as to poly-
nomial matrices inq. Let R[q]nr×nw denote the set of polynomial matrices inq with
coefficients inR, then

(R(q)⋄ p)w :=
nq

∑
i=0

(r i ⋄ p)qiw (9)

whereR(q) = ∑
nq
i=0 r iqi , nq is the order ofR, andr i is anr ×nw-dimensional matrix

with elements inR. In this notation, the shift operationq operates on the signalw,
while operation⋄ takes care of the time/schedule-dependent coefficient sequence.

3.4 LPV system representations

Kernel representation

Using the behavioral framework, we can introduce the so-called kernel representa-
tion of an LPV system. By employing the notation presented inthe previous section,
a kernel representation of an LPV system is written as

(R(q)⋄ p)w = 0. (10)

We call difference equation (10) a discrete-timekernel representationof LPV
systemS= (T,P,W,B) with scheduling signalp and signalsw if

B = {(w, p) ∈ (Rnw×Rnp)Z | (R(q)⋄ p)w = 0}. (11)

In the sequel we only consider LPV systems, whose behavior can be described by
Eq. (11). An important property of these systems is that theyhave a kernel repre-
sentation whereR has full row rank ([19]).

IO representation

For practical applications one will often need a partioningof the signalsw in input
signalsu∈ (Rnu)Z and output signalsy∈ (Rny)Z. Note that this partitioning is not
trivial and can neither be chosen freely. For details see [13, 19].
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Using an IO partitioning, we can define theIO representationas

(Ry(q)⋄ p)y = (Ru(q)⋄ p)u, (12)

whereRu andRy are again matrix polynomials with meromorphic coefficients, and
whereRy is full row rank with order(Ry)≥order(Ru).
Using the same notation and decomposition as in (9), it follows that

na

∑
i=0

(ai ⋄ p)qiy =
nb

∑
j=0

(b j ⋄ p)q ju, (13)

wherena≥ nb≥ 0, andna≥ 1.

State-space representation

Without going into details about the definition of so-calledlatent variables, we for-
mulate the discrete-time state-space representation, based on an IO partioning(u,y),
as a first-order parameter-varying difference equation system in the latent variable
x : Z→ X as:

qx = (A⋄ p)x+(B⋄ p)u (14a)

y = (C⋄ p)x+(D⋄ p)u, (14b)

whereX ⊂ Rnx is called the state space and the (parameter-varying) statespace
matrices(A,B,C,D) are matrices of appropriate dimensions with their entries being
meromorphic functions inR. Note that the latent variablex in (14) qualifies as a
state variable.

It is apparent that (13) and (14) are the ‘dynamic-dependency’ counterparts of
(2) and (1), respectively.

3.5 Properties

Using the behavioral framework, it is now possible to consider equivalence of be-
haviors, and related equivalent transformations, betweenthe different LPV system
representations. For details see [19].
Transformations between different representations, as well as, state transformations
into a different coordinate system, generally involve dynamically dependent rela-
tions. For instance, the transformation of an LPV state-space model (14) into an
observable canonical form requires a transformation matrix T ∈R

nx×nx to obtain a
new state

x′ = (T ⋄ p)x
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and state-space matricesA′ =
−→
T AT−1, B′ =

−→
T B, C′ = CT−1, D′ = D.

Here, the matrixT is constructed from the LPV observability matrix, which is in
the SISO case built up from

C,
−→
C A,
−−−−→(−→

C A
)

A, · · · .

Suppose that the original state-space model has static dependency on the schedul-
ing function, so at time instantk the matrix functions depend on values ofp(k) only,
then the construction of the transformation matrixT, as well as, the calculation of
the new state-space matrices immediately imply that the newmatrices depend – at
timek – onfuturevaluesp(k+ τ) (τ > 0), as well.

This problem can be circumvented by using a reachability canonical form, in
which case the transformation only involves backward shiftoperations ([19]).

4 An orthonormal basis functions approach

4.1 Series-expansion representations

In this section we explore the possibilities for using a series-expansion type of model
structure for LPV systems, using the concept of orthonormalbasis functions (OBF)
[7]. A major motivation is the linear-in-the-parameters property of these structures,
which is very beneficial in prediction-error identification. A second merit of these
structures is that they allow a relatively simple interpolation of local linear mod-
els with varying McMillan degree. Furthermore, it was shownin [2] for nonlinear
Wiener-models (that is a LTI system followed by a static nonlinearity) that, if the
LTI part is an OBF filter bank, then such models are general approximators of non-
linear systems with fading memory.

For a (local) linear modelG∈ H2 it holds thatG can be written as

G(z) = D+
∞

∑
k=1

ckFk(z), (15)

where{Fk} is a basis forH2. In the theory of generalized orthonormal basis func-
tions (GOBF’s), the functionsFk(z) are generated by applying a Gram-Schmidt or-
thonormalization to the sequence of functions

1
z−ξ1

, · · · 1
z−ξnb

,
1

(z−ξ1)2 , · · ·

with stable pole locationsξ1, · · ·ξnb. The choice of thesebasis polesdetermines the
rate of convergence of the series expansion (15).
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An alternative derivation of the basis functions is based ona balanced realization
{Ab,Bb,Cb,Db} of the inner function

Gb(z) =
nb

∏
k=1

1−zξ ∗k
z−ξk

, (16)

where the functions{Fk(z)} are the scalar elements of the vector functions

(zI−Ab)
−1BbGi

b(z), i = 1,2, · · · .

By using a truncated expansion in (15), an attractive model structure for LTI
identification results, with a well worked-out theory in terms of variance and bias
expressions. The series expansion (15) can be extended to LPV systems, such that
for a given basis{Fk} and a specific IO-partioning(u,y), an LPV system can be
written as

y(t) =

(
(D⋄ p)+

n

∑
k=1

(wk ⋄ p)Fk(q)

)
u(t), (17)

wheren = ∞. It is an obvious step to use a truncated expansion, i.e. (17)with finite
n, as a model-structure candidate for LPV identification. Note that these expan-
sions are formulated in the time domain (using the shift operatorq), as there exist
no frequency-domain expressions for LPV systems. Similarly to the LTI case, this
structure is linear in the parameters. An important question that arises is whether the
basis functionsFk can be chosen in such a manner that a fast rate of convergence
can be accomplished for all possible scheduling trajectoriesp. Note that the repre-
sentation (17) is equivalent with a state-space description (14), where the matrices
A andB are independent of the scheduling function.

4.2 Basis selection

In order to select a basis, it is important to obtain some knowledge about the system
to be modeled. For the LTI case, it is well-known that – if the underlying system
can be well approximated by an LTI model – an optimal basis canbe chosen relying
on the knowledge about the system poles. It can be shown that the same property
holds for LPV systems, where the knowledge of the poles of allpossible local linear
models is required. In practice, this knowledge is generally not available and one
has to resort to limited prior-information resources, suchas expert knowledge, or
preliminary identification experiments.

A possible scheme for the basis selection is given by the following steps:

1. Identify a number of local linear models in several different operating regimes
p̄i , i.e., by using data with a constant scheduling signalp(k)≡ p̄i .
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2. Plot all poles of the identified models in the complex plane.
3. Cluster the poles into groups and find optimal cluster centers (these centers will

be used as basis poles)

In this procedure, use is made of minimization of a distance measure, which is rele-
vant for the worst-case approximation error of the representation (17). This scheme
is motivated by the extension of the classicalKolmogorov n-widthresult of [12] to
OBFs, as obtained by [11]. This result states that for a givenLTI inner functionGb,
the OBF’s generated byGb (see Section 4.1) are optimal in then-width sense for
the set of LTI systems having poles in the region

{z∈ D | |Gb(z
−1)| ≤ ρ}.

Hereρ is the rate of convergence in the series expansion, andn should be a multiple
of the number of basis polesnb. See Fig. 2, taken from [23], for an example of such
regions.

Fig. 2 Example of the func-
tion |Gb(z−1)| and the region
{z∈ D | |Gb(z−1)| ≤ ρ} for
an inner functionGb with 3
poles and various values ofρ .
Note that ifz0 is a pole ofGb,
thenGb(z

−1
0 ) = 0.

For the basis-selection problem, we are dealing with its inverse problem, i.e.
given a region of polesΩ , approximate this region as

Ω ≈Ω(Ξ ,ρ) = {z∈ D | Gb(z
−1)≤ ρ}. (18)

The n optimal OBF polesΞ = {ξ1, · · · ,ξn} are therefore obtained by solving the
following Kolmogorov measure minimizationproblem,

min
Ξ⊂D

ρ = min
Ξ⊂D

max
z∈Ω

∣∣Gb(z
−1)
∣∣= min

Ξ⊂D
max
z∈Ω

∣∣∣∣∣

n

∏
k=1

1−zξ ∗k
z−ξk

∣∣∣∣∣ (19)

As stated above, in a practical situation the knowledge about the pole regionΩ is
limited. In the next section we present an approach to obtaina simultaneous solution
for the problems of reconstructingΩ from experimental data and the Kolmogorov
measure minimization problem.
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4.3 A fuzzy clustering approach

Objective-function-based fuzzy clustering algorithms, such as fuzzyc-max cluster-
ing (FcM), have been used in a wide collection of applications [1, 10]. Generally,
FcM partitions the data into overlapping groups, that describe an underlying struc-
ture within the data [9]. In this section, we describe the extension of FcM to the
so-calledFuzzy-Kolmogorov c-Max(FKcM) algorithm, which enables the deter-
mination of the regionΩ on the basis of observed poles with membership-based,
overlapping areas. We assume that we are given a set of polesZ = {z1, · · · ,zN}.

Let c be the number of clusters, that we wish to discern and letvi ∈ D denote
thecluster centerof the i-th cluster. Furthermore, we define membership functions
µi : D→ [0, 1], that determine for eachz∈D the ‘degree of membership’ to cluster
i. By using athreshold valueε, we obtain a set

Ω = {z∈ D | ∃i, µi(z)≥ ε}. (20)

With these preliminaries, we can now formulate the problem.

Problem 3. For a givenc, find a regionΩ , as described above, such thatΩ contains
all pole locations inZ, and such that the OBFs, with poles in the cluster centers
{vi}ci=1, are optimal in the Kolmogorovn-width sense,n = c, with respect toΩ and
with the corresponding decay rateρ as small as possible.

To measure the dissimilarity ofZ with respect to each cluster, we introduce dis-
tancesdik = κ(vi ,zk) betweenvi andzk, whereκ is a metric onD, defined by

κ(x,y) =

∣∣∣∣
x−y

1−x∗y

∣∣∣∣ , (21)

referred to as theKolmogorov metric.
Analogously, we defineµik = µi(zk) and we regulate the membership functions

by the so-calledfuzzy contraints:

c

∑
i=1

µik = 1 and 0<
N

∑
k=1

µik < N.

Fuzzy clustering can be viewed as the minimization of the FcM-functional [1],
Jm, which – in the FKcM case – can be formulated as

Jm = max
1≤k≤N

c

∑
i=1

µm
ik dik. (22)

Here, the design parameterm∈ (1,∞) determines the fuzziness of the resulting par-
tition. Note thatJm is a function of the membership dataµik and the cluster centers
vi . It can be observed, that (22) corresponds to aworst-case (therefore max) sum-
of-error criterion, contrary to themean-squared-errorcriterion of the original FcM,
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see [1].

The crucial property of this functional is that it can be shown (see [21]) that for
large values ofm the minimization ofJm is equivalent to the Kolmogorov measure
minimization problem (19). For details, as well as, a detailed description of the op-
timization algorithm, see [19], where also the robust extension of the basis selection
is discussed. In that case, not only pole estimates are considered, but also the cor-
responding uncertainty regions of these estimates. See Fig. 3 for an example of the
basis selection mechanism.

For the determination of the actual number of clusters in these algorithms, so-
called adaptive cluster-merging is applied. Starting froma relatively large initial
number of clusters (typically aroundN/2), the adaptive merging steers the algorithm
towards the natural number of groups that can be observed in the data.

4.4 OBF-based model structures

We assume that the basis selection step has been completed and we are given a set of
nf basis functions{Fk(z)}k=1,···nf with good approximation properties for the set of
local LTI behaviors corresponding to constant scheduling signals. In the next step,
we can construct model structures for the identification of an LPV systemS. To
keep the notation simple, we restrict attention to strictlyproper models (i.e.,D = 0
in (17). The input-output dynamics of the LPV model can be written as

y(t) =

nf

∑
k=1

(wk ⋄ p)(t)Fk(q)u(t). (23)

Fig. 3 Example of the basis
selection procedure, using
fuzzy clustering with fuzzy-
ness parameterm= 8. The 30
observed poles (i.e the setZ)
are given with red circles. The
resulting cluster centers are
depicted with a black x. The
blue lines represent the region
Ω as in Eq. (18), obtained
by using the cluster centers
as basis poles. On the left
hand sidec = 5 clusters were
determined, on the right hand
sidec = 8.
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(b) m= 8, c = 8
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Fig. 4 IO signal flow graph of (a) the W-LPV OBF model described by (23) and (b) the H-LPV
OBF model described by (26)

IntroduceΦnf andW as shorthand notation for the vectors with functionsFk and
coefficientswi , respectively.

Φnf =
[

F1 · · · Fnf

]T
(24)

W =
[

w1 · · · wnf

]T
. (25)

Then the model structure (23) can be visualized as shown in Fig. 4a, where
y̆i(t) = Fi(q)u(t). Because of the close resemblance of this structure to classical
Wiener-models, this model structure is referred to as a Wiener LPV OBF (W-LPV
OBF) model. A closely related model structure, depicted in Fig. 4b, is the so-called
Hammerstein LPV OBF model (H-LPV OBF), that is derived from the description

y(t) =

nf

∑
k=1

Fk(q)(wk ⋄ p)(t)u(t). (26)

This latter structure can be generated from the LTI series expansion (15), by
changing the order of the arguments. This change has no effect in the LTI case, but
results in a different LPV structure.
In the sequel we will restrict attention to the Wiener-modelstructure. Furthermore,
we assume that the coefficient functionswk have only a static dependency on the
scheduling functionp, so we can write(wk ⋄ p)(t) = wk(p(t)) in (23). As stated
before, we can write the W-LPV OBF structure also in a state-space form,

qx = Ax+Bu (27a)

y = (W ⋄ p)x, (27b)

where the constant matricesA andB are completely determined by the basis func-
tions {Fk}. This illustrates that the dependency on the scheduling signal is only
present in the output equation, with the result that the assumption of static depen-
dency is much less restrictive than in the general case (14).

With respect to the actual estimation with these model structures, we again dis-
tinguish between a local and a global approach.
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Local estimation approach

This approach is based on a numberNl of ‘local’ experiments, i.e. data collec-
tion with a constant scheduling signalp(k) ≡ pi ∈ P, resulting in data sequences
{ui(t),yi(t)} for i = 1, · · · ,Nl . Based on these data,Nl LTI models are estimated us-
ing a standard least-squares criterion, on the basis of the one-step-ahead prediction
error in Output Error (OE) form:

ε(t) = yi(t)−
nf

∑
k=1

wikFk(q)ui(t), (28)

where{wik} are real-valued coefficients. Note that – under the condition that the
data are persistently exciting – there exists a unique analytic solution to this esti-
mation problem. These estimated coefficients can be considered as ‘samples’ of the
function wk(p(t)), in the sense thatwk(pi) = wik. As a second step, we use inter-
polation to obtain estimates of the functionwk(p(t)), for instance by assuming a
polynomial dependency ofwk on p, or by making use of splines etc.

Global estimation approach

For this approach we need to assume a specific functional dependency of the func-
tions wk on p(t) and we propose to use a linear parametrization for this purpose,
such as a polynomial dependency

wk(p(t)) = wk0 +wk1p(t)+ · · ·+wkr p
r(t).

Here we assumed for simplicity thatp is a one-dimensional signal. Now we collect
a global data set{u(t),y(t), p(t), t = 1, · · · ,T}, which is assumed to be persistently
exciting the system at hand4. It is straighforward that – using a least-squares crite-
rion – a unique analytic solution can be obtained for the parameterswki.
Note that the restriction to static dependency can be relaxed for the global approach
by allowing a dependency ofwk on time-shifts ofp(t), as well.

Because of the postulated OBF structure, both approaches will always result in
asymptotically stable models.

4.5 Approximation of dynamic dependecy

In order to alleviate the restrictions caused by the assumption of static dependency
in the suggested model structures, extensions for these structures were proposed in
[24]. Here, we only consider the extension of the W-LPV OBF model structure. The

4 Persistency of excitation for LPV systems is not yet completely understood.
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Fig. 5 IO signal flow graph
of the WF-LPV OBF model
with feedback-based static
weighting functions V and W.
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idea is still to use weighting functions with static dependency, but with the intro-
duction of an additional feedback loop around each basis component with a gain
incorporating also static dependency. In this way, the filter bank of OBFs – as a
dynamical LTI system – is reused to provide dynamic weighting functions that can
approximate the required class of dependency for W-LPV OBF models. The intro-
duction of feedback-based weighting leads to a new model structure given in Fig.
5, which we call Wiener Feedback LPV (WF-LPV OBF) models. See [19] for an
analogous extension of the H-LPV OBF model structure. For these new model struc-
tures, it is apparent that by setting the feedback gains to zero, the previous structures
result. This immediately indicates an increase in the representation capability of the
extended structures. The W-LPV OBF can be represented in state-space form by

qx = (A−BV(p)C)x+Bu (29a)

y = W(p)Cx, (29b)

where the constant matricesA, B andC are again completely determined by the basis
functions. These equations illustrate how the addition of the feed-back loops intro-
duces dependency on the scheduling signal in the state equations. For the estimation
of the the functionsW andV again a linear parametrization using polynomials or
spline functions is suggested. To overcome the nonlinear optimization problem as-
sociated with the parallel estimation of the whole parameter set (i.e. the coefficients
of W andV), the approach utilizes a separable least squares optimization scheme
[5]. In each iteration cycle of this scheme, one set of the parameters is fixed to en-
able a linear-regression-based estimation of the other set. This results in a steepest
descend algorithm which is guaranteed to converge to a saddle point or a local min-
imum, depending on the initial values of the parameters. Foralgorithmic details see
[24, 19]. It should be noted that the better representation capability comes at a price.
First of all, there is no longer an analytic solution available. Secondly, there is no
guarantee that the resulting models are asymptotically stable.
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Table 1 Validation results of 100 identification experiments by the global and local methods using
the W-LPV OBF and H-LPV OBF model structures. The results are given in terms of the average
MSE and VAF of the simulated output signals of the model estimates.

Model Case MSE (dB) VAF (%)

W-LPV loc.
glob.

−18.01
−31.03

94.12%
98.23%

H-LPV loc.
glob.

−10.16
−26.41

85.69%
96.18%

5 Example

To illustrate the applicability of the introduced model structures, we consider the
following asymptotically stable LPV systemS, given in LPV-IO form:

5

∑
i=0

(ai ⋄ p)qiy = (b4⋄ p)q4u, (30)

with P = [0.6,0.8] and coefficients

a0⋄ p =−0.003, a3⋄ p = 61
110−0.2sin(q5p),

a1⋄ p = 12
125−0.1sin(q5p), a4⋄ p =−511+192q5p2−258(cos(q5p)−sin(q5p))

860 ,

a2⋄ p =−23
85 +0.2sin(q5p), a5⋄ p = 0.58−0.1q5p,

b4⋄ p = cos(q5p).

Using 8 basis functions, obtained through the FKcM algorithm (see [24, 23] for
details) and a 2nd order polynomial-based parametrizationof the coefficients, iden-
tification of S with the local, as well as, the global approach has been carried out,
with the W-LPV OBF and the H-LPV OBF model structures. Each experiment has
been repeated 100 times with different realizations of input, scheduling and noise
signals. The signal-to-noise ration was 20 dB in the resulting data records with a
relative signal-to-noise amplitude of 25 %. See Table 1 for the results in terms of
average MSE and VAF (Variance Accounted For).

As expected, the W-LPV and H-LPV structures based on coefficients with static
dependence could not fully cope with the variations in the parameters{al}5l=0 .
However, the global W-LPV identification provided quite acceptable results for such
a heavily nonlinear system. The explanation why the H-LPV structure gave a worse
result lies in the different approximation capabilities ofthese models.

To illustrate the effect of incorporating feedback, we usedthe same example sys-
tem and identified it with the WF-LPV OBF model structure, as well as, with the
W-LPV OBF structure. For both structures, the coefficients inW are parametrized as
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Table 2 Validation results of 100 identification experiments with theWiener (W) and the Wiener
Feedback (WF) model structures. The results are given in terms of the average MSE and VAF of
the simulated output signals of the model estimates.

MSE (dB) VAF (%)

SNR W WF W WF

no noise-34.96-39.7590.0499.42

35 dB -34.77-39.1798.9999.39

20 dB -32.75-35.0198.7199.00

10 dB -31.81-32.3898.1998.59

a 2nd order polynomial and forV a 3rd order polynomial was used. Identification of
Swith the global approach was accomplished 100 times in 4 different noise settings
with both the Wiener and the Wiener-feedback model structures. See Table 2 for the
results. As expected, both approaches identified the systemwith adequate MSE and
VAF, even in case of extremely heavy output noise, which underlines the effective-
ness of the proposed identification philosophy. For all cases, the WF-LPV model
provided better estimates than the pure static-dependencebased W-LPV model es-
timate. This clearly shows the improvement in the approximation capability due to
the approximation of dynamic dependence with feedback-based weighting.

6 Conclusions

On the basis of a solid system theoretic definition of LPV systems in terms of system
behaviors, several LPV model representations are presented and brought into a uni-
fying framework. Real-valued meromorphic functions are used to specify dynamic
dependency of the system coefficients on the scheduling signal. A series expansion
approach is presented for modelling LPV systems, includingan optimization proce-
dure for selectiing optimal basis functions. The series-expansion models can be used
in both local and global identification methods, and are illustrated in an example.
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