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Abstract: Over the last decade, the problem of data-driven modeling in linear dynamic
networks has been introduced in the literature, and has shown to contain many different
challenging research questions, that go far beyond the classical problems in open-loop and
closed-loop identification. The structural and topological properties of networks become a central
ingredient in the related identification setting, as well as the selection of locations for signals to
be sensed and for excitation signals to be added. In this seminar we will present an overview
of recent results that are obtained for the problem of identification of a single link/module in
a dynamic network of which the topology is given. The surveyed methods include extensions of
the direct and indirect methods of closed-loop identification, as well as Wiener filter approaches
and Bayesian kernel-based methods. Particular attention will be given to the selection of signals
that need to be available for measurement/excitation, and accuracy properties of the estimated
models in terms of consistency and minimum variance properties.
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1. INTRODUCTION

Linear dynamic networks are structured systems that are
composed of interconnected linear time-invariant systems.
Typically a dynamic network induces a graph, with ver-
tices and edges, that represents the topology of the net-
work. Often a network is represented in a state-space form
with states as node signals represented by the vertices
in the graph, and the state transitions as links or edges
in the graph. However in an identification setting, where
not all states of a system are typically measured, it has
appeared to be attractive to represent the network in a
graph that has (measured) node signals as vertices, and
dynamic transfer functions on the links/edges. The basic
setting of Dynamic Structure Functions that was intro-
duced in Gonçalves and Warnick (2008), was generalized
to a stochastic estimation and identification setting in
Van den Hof et al. (2013), and has been adopted by several
different authors.

In this setting a dynamic network is built up out of L
scalar internal variables or nodes wj , j = 1, . . . , L, and K
external variables rk, k = 1, . . .K. Each internal variable
is described as:

wj(t) =

L∑
l=1

l 6=j

Gjl(q)wl(t) + uj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);
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• Gjl are proper rational transfer functions, referred to
as modules.

• uj is an input signal, uj(t) =
∑K

k=1Rjk(q)rk(t) with
rk external variables that can directly be manipulated
by the user.

• vj is process noise, where the vector process v =
[v1 · · · vL]T is modelled as a stationary stochastic pro-
cess with rational spectral density Φv(ω), such that
there exists a white noise process e := [e1 · · · eL]T ,
with covariance matrix Λ > 0 such that v(t) =
H(q)e(t), where H is square, stable, monic and
minimum-phase.

When combining the L node signals we arrive at the full
network expression
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which results in the matrix equation:

w = G(q)w +R(q)r +H(q)e, (2)

where by construction the matrix G is hollow, i.e. it has
diagonal entries 0, while it encodes the topology of the
network, i.e. Gj`(q) 6= 0 if and only if there is a connection
from node w` to node wj in the network.

The single module identification problem to be considered
is the problem of identifying one particular module Gji(q)
on the basis of measured time-series of a subset of variables
in w, and possibly r, for the situation that the network
topology is known. This is illustrated in the network
depicted in Figure 1.



It may be clear that simply measuring the input and
output of the target module and estimating a model on the
basis of these signals, will generally not lead to accurate
results, because of the signal correlations that are induced
by the remaining part of the network.

Fig. 1. Example network with the green module G21 being
the target module for identification (Ramaswamy and
Van den Hof (2019)).

Non-uniqueness
The network representation (2) will in general be non-
unique. E.g. for the situation R(q) = 0, the dynamic prop-
erties of the network are reflected by the spectral density
Φw(ω), while this spectrum can be generated by different
combinations of G, H and Λ. In this situation uniqueness
is achieved e.g. if the noise model H is restricted to be
diagonal (Bottegal et al. (2018)). However, in situations
that the network and its topology result from structured
first principle modelling, it is still relevant to consider
situations of non-diagonal H, as disturbances in different
locations of the network can very well be correlated. For
the general case of R(q) 6= 0, the freedom of transforming
the network to equivalent representations is analyzed in
Weerts et al. (2020).

2. MAIN APPROACHES

We can distinguish several different approaches for ad-
dressing the single module identification problem, where
the target module is indicated by Gji.

(1) A direct method, that is based on selecting a particular
set of predictor input signals wk, k ∈ D, and a set
of predicted output signals w`, ` ∈ Y, with i ∈ D,
j ∈ Y, and estimating a dynamic model based on a
prediction error:

ε(t, θ) = H̄(q, θ)−1[wY(t)− Ḡ(q, θ)wD(t)], (3)

where Ḡ(q, θ) and H̄(q, θ) are parametrized transfer
function matrices. The target module is then em-
bedded in the model Ḡ(q, θ), and the objective is to
estimate the target module consistently and possibly
with minimum variance.

(2) An indirect method, that is based on selecting a
particular set of predictor input signals rk, k ∈ D,
and a set of predicted outputs w`, ` ∈ Y, that are
used in a predictor model, leading to

ε(t, θ) = wY(t)− T̄ (q, θ)rD(t). (4)

The matrix T̄ refers to a submatrix of the network
transfer matrix T := (I−G)−1R, which maps external
signals r into internal node signals w. In order to

extract the dynamics of a particular module Gji from
an estimated T̄ , a postprocessing step is necessary.
Consistency of the target module estimate is the typ-
ical objective. Different variations of indirect methods
exist, including two-stage and instrumental variable
(IV) methods.

(3) Non-parametric approaches, where relations between
particularly estimated spectral densities of internal
signals are used as a basis for module estimation.

(4) Subspace methods, that can handle non-measured
interacting signals between the modules, see Yu and
Verhaegen (2018).

(5) Recently a generalization of the direct and indirect
method was introduced based on a predictor model
with prediction error

ε(t, θ)=H̄(q, θ)−1[wY(t)−Ḡ(q, θ)wDw
(t)−T̄ (q, θ)rDr

(t)],

and where the target module estimate is obtained
after post-processing the estimated Ḡ and T̄ . This
method allows for more flexibility in selecting the
node signals to be measured for identification, see
Ramaswamy et al. (2019).

The direct method (3) has node signals wD as predictor
inputs, and therefore utilizes both external signals r and
e for creating data-informativity. On the other hand,
indirect methods rely on external excitation signals r only
for data informativity, and therefore will typically require
more “expensive” external excitations. The direct method
provides asymptotically efficient estimates (i.e. consistency
and minimum variance for the identification setup) at
the cost of the need to include noise models H̄(q, θ).
The indirect method and its variations provides consistent
estimates but not with minimum variance. When the node
signals are measured with sensor noise (errors-in-variables
(EIV) situation), the direct method becomes biased and
the indirect method provides consistent estimates of the
target module.

3. DIRECT METHOD FOR UNCORRELATED
DISTURBANCES

In the situation that it is known that the process dis-
turbances are uncorrelated, i.e. Φv is diagonal, the direct
identification method can typically be reduced to a MISO
problem, i.e. in (3) wD is a vector signal, and wY = wj is
scalar. The simplest situation is when all w-in-neighbors
of wj (denoted by wN−

j
) are included, i.e. wD = wN−

j
.

The target module can then directly be parametrized and
estimated as part of a MISO model, see Van den Hof
et al. (2013). For consistency, conditions on informativity
of the data have to be satisfied, implying that sufficient
excitation should be present in the predictor inputs. A
typical, but conservative, condition is that Φwm(ω) is pos-
itive definite for a sufficient number of frequencies where
wm is the vector of stacked predicted output and predictor
input signals. For a particular situation, a less conservative
condition is formulated in Gevers and Bazanella (2015).
In general it is not necessary to use the full set wN−

j
as

predictor input. It is sufficient to select a subset wD that
satisfies the property that upon removal (immersion) of
the remaining unmeasured nodes from the network, the
target module remains invariant. This is achieved if the
parallel path and loop condition is satisfied (Dankers et al.



(2016)): all parallel paths from wi to output wj that do
not pass through Gji, and all loops around wj need to
pass through a measured node signal in wD. Confounding
variables 1 can occur during the process of immersion and
leads to the loss of consistency. This can be resolved by
including additional node signals in wD, see Dankers et al.
(2017). By using abstractions as an alternative to im-
mersion, the parallel path and loop condition can further
be generalized, introducing more flexibility in the signal
selection, see Weerts et al. (2020).

4. DIRECT METHOD FOR CORRELATED
DISTURBANCES

In the situation that it is known that the process noise
is correlated and the disturbance correlation structure,
i.e. the non-zero entries of Φv, is known the problem of
dealing with confounding variables becomes even more
pronounced. Next to the indirect confounding variables
that can occur due to non-measured input signals, now
also direct confounding variables appear as a result of
disturbance correlations, leading to biased estimates when
not properly being taken care of. The direct confounding
variables can only be handled by enlarging the output
vector wY to include those node signals that have distur-
bances that are correlated with the disturbance on wY ,
and including an appropriate multivariate noise model.
Building on the results in the previous section this leads
to a triple set of conditions for arriving at consistent (and
efficient) estimates of the target module:

(1) Selecting predictor wD to satisfy the parallel path and
loop condition;

(2) Handling of indirect and direct confounding variables,
by adding predictor inputs and/or adding predicted
outputs; and

(3) Persistency of excitation conditions, typically formu-
lated in the form of a positive definite signal spectrum
of a specified signal vector, and thus requiring suffi-
cient (external) excitation, either through excitation
or through disturbance signals.

Path-based conditions for most of these aspects have been
formulated in Ramaswamy and Van den Hof (2019). The
resulting MIMO identification setup, indicated by (3), is
sketched in Figure 2, where wQ denote the node signals
that appear both as input and as output in the predictor
model. The results provide multiple options for the user
to choose from, in terms of how many and which node
signals to include in the estimation setup, dependent on
the availability of measured node signals.

5. INDIRECT METHOD AND ITS VARIANTS

The network model (2) can be rewritten as w = Tr + v̄

where v̄ = (I − G)−1He. A consistent estimate T̂ (q) of
T (q) can be obtained using open loop MIMO identification

method as in (4). On the basis of T̂ (q), a consistent esti-

mate Ĝ of G can be obtained by solving (I − Ĝ)T̂ (q) = R.
By identifiying only a submatrix of T and solving only a
subset of the above equations, a target module embedded

1 Confounding variables are unmeasured variables that affect both
the inputs and outputs of an estimation problem.

Fig. 2. Identification setup and classification signals in
the input and output of the identification problem,
Ramaswamy and Van den Hof (2019).

in the dynamic network can be identified, see Gevers et al.
(2018); Hendrickx et al. (2019). For the situation of having
excitation signals on all node signals, it has been analyzed
which node signals to measure for consistent identification
of the target module. This is further relaxed in Bazanella
et al. (2019). Related indirect methods, such as the two-
stage method and the Instrumental Variable (IV) method
have been presented in Van den Hof et al. (2013) and
Dankers et al. (2015) respectively. A semi-parametric ap-
proach has been introduced in Galrinho et al. (2017) where
a parametric model of the target module is consistently
identified using a multi-step approach, while avoiding non-
convex optimization. All the indirect methods can handle
an EIV setting as well as networks with correlated process
noise.

6. NON-PARAMETRIC APPROACH

Frequency domain non-parametric approaches are pro-
vided in Dankers and Van den Hof (2015) and Materassi
and Salapaka (2015). In these methods the spectral den-
sities of different signals in the network are used to con-
sistently identify the target module. Flexibility to identify
both proper and non-proper modules using a Wiener filter
based approach has been provided in Materassi and Sala-
paka (2015). This approach uses the d-separation principle
from the probabilistic graphical model theory to select the
node signals for the identification in dynamic networks,
see Materassi and Salapaka (2019).

7. KERNEL-BASED METHODS

By incorporating kernel-based method, the impulse re-
sponse(s) of the modules are modeled as zero-mean Gaus-
sian processes whose covariance(s) are described by a ker-
nel that ensures smoothness and stability of the model.
A probabilistic description of the model is obtained and
the coefficients of the impulse response(s) are obtained by
estimating the hyperparameters of the kernel by maximiz-
ing the marginal likelihood of the data. In this way, the
impulse response of each module is obtained through esti-
mating only a few hyperparameters (eg. 2 hyperparamters
per module for stable spline kernel).
In Chiuso and Pillonetto (2012), this has been applied in a
time domain non-parametric approach for estimating mod-
els in a MISO setup with white output noise. Following a
semi-parametric approach to a dynamic network with only
sensor noise (no process noise), the increase in variance due



to high order modeling in a two-stage method is reduced in
Everitt et al. (2018) by applying a kernel-based method.
Similarly, the direct method demands a model order se-
lection step for all modules in the MISO setup, which
increases the complexity and estimation of large number
of nuisance parameters. In Ramaswamy et al. (2018), a
kernel-based method has been used to tackle these prob-
lems by modeling the target module as a parametric model
and the remaining modules in the MISO setup as Gaussian
processes, thus avoiding the model order selection step and
decreasing the number of parameters. This offers a sub-
stantially reduced variance of the target module estimate.

8. IDENTIFIABILITY

When considering network identifiability (Weerts et al.
(2018a)), conditions can be formulated for identifiability
of a single module in a network model set. This typically
leads to rank conditions on particular transfer functions
from external signals to particular node signals. In a
generic sense, this can be translated to path-based con-
ditions on the graph of the network model set (Hendrickx
et al. (2019) and followed up by Weerts et al. (2018b)).
A synthesis procedure to assign and locate the minimum
number of external excitation signals for guaranteeing lo-
cal module generic identifiability, is provided in Shi et al.
(2020). Note that these results are independent of the
particular identification method considered.
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