
A sequential least squares algorithm for
ARMAX dynamic network identification ?

Harm H.M. Weerts ∗ Miguel Galrinho ∗∗ Giulio Bottegal ∗

H̊akan Hjalmarsson ∗∗ Paul M.J. Van den Hof ∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {h.h.m.weerts, g.bottegal, p.m.j.vandenhof}@tue.nl).

∗∗Department of Automatic Control, School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden

(e-mail: {galrinho, hjalmars}@kth.se)

Abstract: Identification of dynamic networks in prediction error setting often requires the
solution of a non-convex optimization problem, which can be difficult to solve especially when
dealing with large-scale systems. Focusing on ARMAX models of dynamic networks, in this
paper we instead employ a method based on a sequence of least-squares steps. For single-input
single-output models, we show that the method is equivalent to Weighted Null Space Fitting
and drawing from the analysis of that method, we conjecture that the proposed method is both
consistent as well as asymptotically efficient (under suitable assumptions). Simulations indicate
that the sequential least squares estimates can be of high quality also for short data sets.
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1. INTRODUCTION

Dynamic networks are models of multivariable dynamical
systems where, instead of modeling the full system for
every input-output relationship, dynamics are modeled
locally and interconnected through a particular structure,
usually referred to as the network topology. The topology
of a dynamic network can be used to gain insights on the
physical structure of the system. Furthermore, when the
task is to identify the network dynamics from a data set
knowing the network topology, this knowledge can be used
to decrease the number of free parameters in the model
compared to an unstructured input-output model.

Identification of dynamic networks has received consider-
able attention in recent years. For detection of the net-
work topology, some methods use linear regression models
(Sanandaji et al., 2011; Chiuso and Pillonetto, 2012), or
the Wiener filter (Materassi and Salapaka, 2012). For
identification of a single interconnection modeled as a
rational transfer function (referred to as a module), Everitt
et al. (2017); Galrinho et al. (2017a) exploit the avail-
ability of an external excitation. Identification of a single
module is often formulated as a prediction error method
(PEM), where one or several multi-input-single-output
(MISO) closed-loop identification problems need be solved
(Van den Hof et al., 2013; Dankers, 2014; Linder, 2017). To
identify the full network, a structured multi-input-multi-
output (MIMO) problem is formulated (Weerts et al.,
2016, 2017b). The associated PEM cost functions are gen-
erally non-convex, and no specific strategy is discussed to
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solve the optimization problem. Identification methods for
dynamic networks that are useful in practice should rely on
effective optimization algorithms. This is particularly im-
portant for large-scale dynamic networks, where the large
number of parameters may lead to high computational
complexity and multiple local minima of the cost function.

For networks of arbitrary structure, including loops, with
the process noise on each node independent of other
noises, the problem complexity can be reduced by splitting
the identification procedure into smaller MISO problems.
Algorithms that solve the MISO problem are available, e.g.
the ARMAX() function in Matlab based on Ljung (1999),
but also subspace algorithms such as SSARX (Jansson,
2003). However, when process noises are correlated, and
there are loops in the network, we cannot split the network
dynamics into smaller MISO problems; otherwise, the
obtained estimates would be biased. To the best of our
knowledge, there are no dedicated algorithms for dynamic
network identification with correlated noise sources.

For single-input single-output (SISO) ARMA time-series,
Durbin (1960) observed that if the innovations sequence
is known, the model can be written as a linear regression
model, and the model parameters estimated with least-
squares. Based on this, he proposed a method—Durbin’s
first method—where the innovations are first estimated as
the residuals of a high-order AR-model, and then used to
estimate the ARMA parameters with least-squares. This
method is not asymptotically efficient. The inefficiency
can be traced to that the data used in the second step
should be filtered with the inverse of the MA-polynomial.
As a remedy to this, Mayne and Firoozan (1982) filter
the output and the AR-residuals with the inverse of the
estimated MA-polynomial obtained from Durbin’s first
method, and then re-estimate the ARMA-parameters.
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In this contribution, we extend this method to identifica-
tion of MIMO ARMAX models, in particular to ARMAX
identification of dynamic networks. While the asymptotic
results in Mayne and Firoozan (1982) provide a motivation
for this type of method, they are not entirely satisfactory
in that they do not cover the practical situation where the
order of the ARX-model is a function of the sample size.
We show the close relation between the proposed method
and Weighted Null Space Fitting (WNSF) of Galrinho
et al. (2014). Thanks to this we can refer to the thorough
asymptotic analysis in Galrinho et al. (2017b).

The paper proceeds as follows. A definition of the dynamic
network, of the model, and of the identification method is
given (Section 2). The algorithm is formulated (Section 3).
A discussion of the algorithm and its estimation properties
is given (Section 4). The algorithm is tested in simulations
(Section 5), after which the paper is concluded.

2. DYNAMIC NETWORK MODELS

Following the basic setup of Van den Hof et al. (2013), a
dynamic network is built up out of L scalar internal vari-
ables or nodes wj , j = 1, . . . , L, and L external variables
rj , j = 1, · · ·L. Each internal variable is described as:

wj(t) =

L∑
l=1 (l 6=j)

G0
jl(q)wl(t) +

L∑
k=1

R0
jk(q)rk(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);

• G0
jl are strictly proper rational transfer functions, and

single transfers G0
jl are referred to as network modules

• rk are external variables that can be user-manipulated,
and R0

jk are proper rational transfer functions;
• vj is process noise, where the vector process v =

[v1 · · · vL]T is modelled as a stationary stochastic process
with rational spectral density, such that there exists a
white noise process e := [e1 · · · eL]T with covariance
matrix Λ0 > 0 such that v(t) = H0(q)e(t), with H0(q) a
proper rational transfer function such that H(∞) = I.

When combining the L node signals, we arrive at the
network expression (q and t dropped for space limits)
w1
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...
wL
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...
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This results in the matrix equation:

w = G0w +R0r +H0e. (2)

The open-loop response of the network is denoted by

w(t) = T (q)
[
e(t)
r(t)

]
, where

T (q) = (I −G(q))−1 [H(q) R(q)] . (3)

To obtain a well-defined network model, we assume:

• H0(q) is stable and has stable inverse,
• G0(q) is stable and (I−G0(q)) has stable inverse, and
• R0(q) is stable and a full rank matrix.

In this paper we focus on MIMO ARMAX model struc-
tures. For dynamic networks thses are defined as

M = {M = (D(q, θ), NG(q, θ), NH(q, θ), NR(q, θ)), θ ∈ Θ} ,

where all matrices are L × L proper polynomial matrices
of order np. We consider parameterizations where

• D(q, θ) is diagonal and monic,
• NG(q, θ) has zeros on the diagonal,
• NH(q, θ) is monic,
• It is assumed that the model structure is globally net-

work identifiable at M(q, θ0) (Weerts et al., 2017a).

Network identifiability ensures that the dynamics of the
network appear only once in the model set, i.e. M(q, θ0) is
the only model inM that describes M(q, θ0), which allows
to distinguish the contribution of different modules in the
network. This is guaranteed when at least one between
H(q, θ) and R(q, θ) is diagonal (Weerts et al., 2017a).

These matrix polynomials relate to parameterized rational
transfer functions

G(q, θ) = D−1(q, θ)NG(q, θ), (4)

H(q, θ) = D−1(q, θ)NH(q, θ), (5)

R(q, θ) = D−1(q, θ)NR(q, θ). (6)

We assume that there exists some parameter θ0 for which
the model captures all dynamics in the network, i.e. S =
M(θ0). As D is diagonal, all transfer functions in one row
of [G R H] have the same poles. Note however that, with
adequate model orders, this model structure is able to
capture any data generating system (1).

2.1 The prediction error criterion

We assume that N samples of w(t) and r(t) are collected
for identification. The joint-direct method (Weerts et al.,
2017b) is a prediction error-based approach where all
nodes are predicted jointly, so that all the network model
can be identified simultaneously.

With the ARMAX model defined before, we can define the
prediction error of w(t) as

ε(t, θ) := H−1(q, θ)
(

(I −G(q, θ))w(t)−R(q, θ)r(t)
)
. (7)

The identification criterion is then

θ̂N = arg min
θ∈Θ

1

N

N∑
t=1

εT (t, θ) Q ε(t, θ) , Q > 0, (8)

which leads to the model estimate M(θ̂N ). In Weerts et al.
(2017b) it is shown that, under some conditions, (8) is a
consistent estimate of the network dynamics, and that the
estimate is a maximum likelihood estimate with variance
at the Cramér-Rao lower bound.

In general, criterion (8) is a non-convex optimization
problem. When the size of the network and the number
of modules to be estimated grow, so does the number of
local minima. Moreover, computing the direction of the
next iterative solution becomes increasingly challenging.
In the next section, we propose an estimation method that
does not suffer from this problem.

3. SEQUENTIAL LEAST SQUARES

In this section we extend the method in Mayne and
Firoozan (1982) from identification of SISO ARMA-
models to identification of network ARMAX models.



3.1 Step 1: ARX fitting of network dynamics

This step serves to make an initial estimate of the dynam-
ics, without taking the network structure into account. An
ARX model structure is defined as

MA = {MA = (A(q, η), B(q, η)), η ∈ β} ,
where A and B are L × L proper polynomial matrices of
order nA, and A(q, η) is monic. Using this ARX model a
prediction error is defined as

εA(t, η) = A(q, η)w(t)−B(q, η)r(t), (9)

and optimized with the weighted least squares criterion

η̂N = arg min
η∈β

1

N

N∑
t=1

εTA(t, η) QA εA(t, η) , QA > 0.

(10)
This estimate has an analytical closed-form solution.

When the ARX estimate is consistent, we also have re-
constructed the innovation of the network as ε̂A(t) :=
εA(t, η̂N ). The error between the innovation and the re-
constructed innovation is denoted by

s(t) := e(t)− ε̂A(t) (11)

and will be used in the later steps of the algorithm.

3.2 Step 2: Reconstructed innovation as input

From (9), we notice that the innovation e(t) can be written
as a sum of a known signal ε̂A(t) and an unknown signal
s(t). Substituting this into (2) yields

w = G0w +R0r +H0ε̂A +H0s. (12)

Since ε̂A(t) is known, it acts as an input in the above
network formulation, while s acts as the “new innovation”.
Note that s(t) becomes smaller when the innovation is
estimated better, and if the innovation was recovered
exactly, then the above network essentially would be noise-
free. When using that G(q), H(q), R(q) share the common
denominator D(q), the related prediction error is

εs(t, θ) = N−1
H (q, θ)L2(t, θ), (13)

with

L2(t, θ) = (D(q, θ)−NG(q, θ))w(t)

−NR(q, θ)r(t)−NH(q, θ)εA(t, η̂N ). (14)

The estimated innovation ε̂A acts as an additional input,
parameterized with the same parameters as the noise
model. The relation between the original prediction error
and new prediction error is

εs(t, θ) = ε(t, θ)− ε̂A, (15)

so εs is non-linear in the parameters just like ε. However,
we note that L2 is linear in the parameters, and contains
the numerator of the noise model NH . Then, instead of
optimizing εs, we solve

θ̂
[2]
N = arg min

θ∈Θ

1

N

N∑
t=1

LT2 (t, θ) Q L2(t, θ) , Q > 0, (16)

which has a closed-form solution in θ. With this criterion
we obtain an estimate of all the ARMAX polynomials.
In particular, we also obtain an estimate of N−1

H , which
we use in the next step of the algorithm. For SISO
ARMA models, (16) corresponds to Durbin’s first method
(Durbin, 1960).

3.3 Step 3: Improve approximation

In step 2, an approximation of εs(t, θ) is made in order
to obtain a linear-in-the parameters criterion that yields
an estimate of the parameters. Using the estimate of
NH from step 2, we can construct a new criterion to
refine the parameter estimates. To do so, we define a new
approximation of εs(t, θ), where the parameterized term
N−1
H (q, θ) is replaced with the estimated version from the

previous step. This can be done for one step, or optionally
in an iterative procedure as follows: For k ≥ 3 use:

Lk(t, θ) := N−1
H (q, θ̂

[k−1]
N )Lk−1(t, θ). (17)

Then we can define criterion

θ̂
[k]
N = arg min

θ∈Θ

1

N

N∑
t=1

LTk (t, θ) Q Lk(t, θ). (18)

The algorithm can be summarized as follows.

Algorithm 1. 1) Choose an ARX model set MA with
model order nA, and a parametric network model set
M with model order n.

2) Solve the multivariable linear regression problem (10)
with w as the output and r as the input, while using
model set MA.

3) Compute ε̂A = A(η̂N )w −B(η̂N )r.
4) Solve the linear regression problem (16) where w are

the nodes and r and ε̂A are the inputs, while using
network model set M.

5) Set k = 3

6) InvertNH(q, θ̂k−1
N ) to obtain the pre-filterN−1

H (q, θ̂k−1
N ).

7) Solve the linear regression problem (18) where the

error of step 4) is pre-filtered withN−1
H (q, θ̂k−1

N ), while
using network model set M.

8) If not converged, increase k by 1, and return to 6). 2

4. ANALYSIS AND DISCUSSION

4.1 Relation to standard ARMAX models

A standard MIMO ARMAX model of the form

A(q, θ)w(t) = B(q, θ)r(t) + C(q, θ)e(t) (19)

can be used to model the dynamics. This ARMAX model
is related to the network model through

A = D −NG, B = NR, C = NH . (20)

Standard ARMAX models and network ARMAX models
can be estimated using the same algorithms.

4.2 Connection to WNSF

Although they have been independently derived, in this
section we analyze equivalence between Algorithm 1 and
WNSF. We now review the basic ideas of WNSF, and refer
the reader to Galrinho et al. (2014) for more details.

The first step of WNSF is to estimate a non-parametric
ARX model. Then, the parametric model is obtained by
equating it to the non-parametric model, using weighted
least squares. For example, ARMAX model (19) and the
non-parametric ARX model polynomials are related by{

C(q, θ)A(q, η)−A(q, θ) = 0
C(q, θ)B(q, η)− B(q, θ) = 0

. (21)



Because (21) is linear in θ, we can solve for θ using
(weighted) least squares when η is replaced by the available
estimate η̂N . To do this we write (21) in vector form

η̂N −Q(η̂N )θ =: εη(η̂N , θ), (22)

where Q(η̂N ) is a block-Toeplitz matrix. These residuals
can be used to determine which weighting to use in the
weighted least-squares solution. It can be shown that

εη(η̂N , θ) ∼ AsN
(
0, TC(θ)PT>C (θ)

)
. (23)

where N is the Gaussian distribution, TC(θ) is a block-
Toeplitz matrix function of the parameters in C(q, θ), and
P is the covariance matrix of the non-parametric least-
squares estimate, which can be estimated from data. Then,
the optimal weighting to minimize (22) is the inverse of
the covariance of the residuals: W (θ) = [TC(θ)PT>C (θ)]−1.
Because the weighting depends on θ, we replace it by an
estimate, leading to the iterative procedure

θ̂
[k]
N =arg min

1

N

(
η̂N−Q(η̂N )θ

)>
W (θ̂

[k−1]
N )

(
η̂N−Q(η̂N )θ

)
,

(24)
Initializing the algorithm can be done, for example, with

W (θ̂
[0]
N ) = I (the first step is least squares) or with

W (θ̂
[0]
N ) = P (the first step is with θ̂

[0]
N = 0). Any

choice of invertible initialization weighting matrix will

provide a consistent estimate θ
[1]
N . Then, the estimate θ

[2]
N

is asymptotically efficient.

A formal proof of equivalence between the methods for a
general MIMO ARMAX case is notationally heavy and
space consuming; thus, we will not reproduce it here.
Instead, the following proposition considers the SISO case.

Proposition 1. Let (19) be a SISO model. Then, the pro-
posed sequential least squares method is, asymptotically
in nA, equivalent to WNSF.

Proof. In the proof, the following notation will be used:
let x be a p-dimensional column vector; then, Tn×m{x}
(n ≥ p, n ≥ m) is the n × m lower-triangular Toeplitz
matrix whose first column is [x> 01×n−p]

>. Without loss
of generality, we assume the polynomials in (19) are all of
order n and there is one delay. Then, for WNSF, we have
that (Galrinho et al., 2017b)

η =
[
aη1 . . . aηnA

bη1 . . . bηnA

]>
,

θ =
[
aθ1 . . . a

θ
n b

θ
1 . . . b

θ
n c

θ
1 . . . c

θ
n

]>
,

Q(θ) =

[
τnA×n(1) 0 τnA×n(η̄(a))

0 τnA×n(1) τnA×n(η̄(b))

]
,

TC(θ) =

[
τnA×nA

(θ̄(c)) 0
0 τnA×nA

(θ̄(c))

]
,

(25)

where aηk is the coefficient of q−k in A(q, η), and analo-
gously for the coefficients of the other polynomials; also,
η̄(a) = [1 aη1 . . . aηnA−1]>, η̄(b) = [1 bη1 . . . bηnA−1]>, and

θ̄(c) = [1 cθ1 . . . cθn]>. For the non-parametric covariance,

we take P ∝ (Φ>Φ)−1 (for SISO, a scaled version of the
covariance suffices), where Φ = [−Φy Φu] with

Φy = τN×nA
([u(1) . . . u(N)]>),

Φu = τN×nA
([y(1) . . . y(N)]>).

(26)

In (26) we assumed zero initial conditions, but it does not
have to be the case (this is discussed in Section 5). With
these definitions, we may write the WNSF estimate as

θ̂
[k]
N = arg min

1

N
L(η̂N , θ̂

[k−1]
N ; θ)>L(η̂N , θ̂

[k−1]
N ; θ) (27)

where

L(η̂N , θ̂
[k−1]
N ; θ) = ΦT−1

C (θ̂
[k−1]
N )

(
η̂N −Q(η̂N )θ

)
. (28)

To observe equivalence between the methods, we must
write (27) in a form similar to (18) (i.e., using filters).
Indeed, the Toeplitz structure of the matrices in (28)
provides a filtering interpretation. Taking one term from
(28), then entry t of the vector can alternatively be
expressed in filtering form as

[ΦT−1
C (θ̂

[k−1]
N )η̂N ]t ≈

B(q, η̂N )

C(q, θ̂
[k−1]
N )

u(t)− A(q, η̂N )− 1

C(q, θ̂
[k−1]
N )

y(t)

(29)

and similarly for ΦT−1
C (θ̂

[k−1]
N )Q(η̂N )θ. The only difference

(and therefore the approximation sign) is in the tail of the
filters because of the way that the filters are truncated
in matrix form. This difference was treated in detail by
Galrinho (2016) for OE models; it is negligible in practice,
and it vanishes asymptotically in nA.

Then, we have that, asymptotically in nA, the WNSF
estimate (24) can be written as

θ̂
[k]
N = arg min

1

N

N∑
t=1

(
C−1(q, θ̂

[k−1]
N ) {[B(q, η̂N ) C(q, θ)

−B(q, θ)]ut − [A(q, θ)−A(q, η̂N )C(q, θ)]yt}
)2
. (30)

Using (9), (14), and (17), (18) can be written in the same
form as (30), which concludes the proof. 2

4.3 Asymptotic properties

Although informal, the following argument provides an
intuition for consistency of Algorithm 1. When a consis-
tent ARX estimate is obtained, then the prediction error
converges to the innovation, i.e. εA(t, η̂N ) → e(t). The
estimated innovation sequence is used as a known input
in the ARMAX estimation step (16), and the s(t) acts as
the “new innovation”. We can investigate whether θ0 is a
minimum of (16). When substituting the true network into
L2, we obtain the expression

L2(t, θ) =
(
X(θ)NR(θ0)−NR(θ)

)
r(t)

+
(
X(θ)NH(θ0)−NH(θ)

)
ε̂A(t)

+ X(θ)NH(θ0)s(t),

(31)

driven only by external signals, with

X(θ) = (D(θ)−NG(θ))(D(θ0)−NG(θ0))−1. (32)

We can see that for θ = θ0 the X = 1 and then the first 2
terms of (31) are 0, and so L2(t, θ0) = NH(θ0)s(t). Due to
consistency of the ARX estimate,

s(t) = e(t)− εA(t, η̂N )→ 0, (33)

which implies that L2(t, θ0) → 0. Then, the cost function
of (16) is 0 and minimized by θ0.

Given that the proposed algorithm is asymptotically the
same as WNSF, consistency and asymptotic efficiency fol-
low from extending the results by Galrinho et al. (2017b)
to MIMO ARMAX models. Doing this extension in detail
would be notationally heavy, but it is easy to understand



that the results therein still apply in the MIMO case. The
challenge in proving consistency and asymptotic efficiency
is to keep track of the bias and variance errors in the
non-parametric model. It is possible that nA must tend
to infinity to obtain unbiased estimates: for that, we make
nA a function of sample size N , as suggested by Ljung
and Wahlberg (1992). Assuming standard identifiability
conditions for MIMO systems (Ljung, 1999), the key step
in extending the proof of Galrinho et al. (2017b) is to
guarantee that the difference between the noisy weighted
regression matrices and the true ones converge in some
norm. In the MIMO case, these matrices will be larger,
but their dimensional increase still satisfies the same rates.
Thus, assuming standard rates of increase of n(N) (Ljung
and Wahlberg, 1992)—n(N)4+δ/N → 0 (δ > 0) suffices
for all theoretical results—the method is consistent and
asymptotically efficient.

5. IMPLEMENTATION ISSUES AND SIMULATIONS

In this section, simulations are performed to validate the
theoretical results, and to see how the models estimated by
Algorithm 1 compare to the PEM estimate (8). However,
first we discuss some implementation aspects.

5.1 Selecting the ARX-order and the number of iterations

The quality of the estimated parametric may be influenced
by the order of the ARX model. Since it is known that
PEM is asymptotically efficient, one possibility is to choose
the ARX order which minimizes (8) (Galrinho et al.,
2017b). The same criterion can be used to select the
number of iterations. If some combinations of ARX order
and iteration lead to unstable models for particular data
sets, these unstable models will not be selected.

5.2 Transient estimation

With the ARX-model being of high order, the handling of
transient effects becomes important for short data records.
Estimating the transient can then improve the model
quality since the transient contains information regarding
the poles of the network. We will not go into details here
on how this can be done but refer to Galrinho et al. (2015).

5.3 A SISO model

The network used for showing the asymptotic and iterative
properties is depicted in Fig. 1 for L = 3, i.e. the network
consists of 3 nodes. We try to estimate G32 from data.
This network has these dynamics

w2 w3

w1

G12 G21

G13

v2

G32

v1

v3

wL

G1L

GL(L-1)

vL

...

Fig. 1. An L node network used for simulations.

G32 =
q−1 + 0.5q−2

1− 0.5q−1 + 0.2q−2
, H33 =

1− 0.6q−1

1− 0.85q−1
,

G21 =
0.4q−1 − 0.2q−2

1 + 0.4q−1 − 0.5q−2
, H22 =

1− 0.3q−1

1− 0.9q−1
,

G13 =
0.8q−1

1− 0.3q−1
, H11 =

1 + 0.5q−1

1− 0.7q−1
,

G12 =
−0.7q−1

1− 0.7q−1
.

The Gaussian white noises driving the network are uncor-
related with equal power. Since H is diagonal, the joint-
direct method consists of 3 separate MISO problems that
can individually be solved. A 3rd order ARMAX model is
estimated for node 3. Mean squared error of the impulse
response is used as the performance measure.

Simulations with varying number of samples N are per-
formed over 100 Monte-Carlo runs, for the sufficiently high
ARX order nA = 35. For each different data length N ,
100 Monte-Carlo runs are performed, and the MSE of

module G32(θ̂N ) is averaged over the runs. Fig. 2 shows the
resulting average MSE per data length N for the 2nd, 3rd
and 10th iteration of Algorithm 1, and for the joint-direct
estimate (8) computed by the Matlab algorithm armax()
using the true system as initialization.

103 104
N

10-2

10-1

M
S
E

Fig. 2. Average MSE over 100 Monte-Carlo runs plotted
against data length N . Blue: Step 2, Red: Step 3, Yel-
low: 10-th iteration, and Purple: the direct method.

For small number of data N , Algorithm 1 has a slightly
higher MSE than PEM. Increasing N leads to improved
models for each step of the algorithm. Around N = 3 ·104,
step 3 has the same MSE as PEM, and around N = 6 ·103

the 10-th iteration has the same MSE as PEM. The point
of these simulations is to show that this algorithm with
explicit solution is a close approximation of the non-convex
optimization problem (8), even for small data sets.

5.4 A 5 node network

Estimation of a more challenging 5 node network with
randomly generated dynamics will now be tested with a
fixed number of samples N = 1000. We try to estimate
G12 in a MISO setting. The network is shown in Fig. 1 for
L = 5. In each Monte-Carlo run, the modules are randomly
generated with restrictions:

• Modules are randomly generated by drss() and of
2nd order, with |G(z)| < 0.9 and and ‖G(z)‖H2 = 0.5.

• The closed-loop transfer and the predictor filters
satisfy |T (z)| < 0.95 and |W (z)| < 0.95 respectively.



Process noises are colored, Hi is first order, and all driving
white noises are uncorrelated with equal power. Models are
estimated with:

• Algorithm 1 with order and iteration selection as
specified in Section 5.1.
• The SSARX subspace identification algorithm imple-

mented in Matlab as part of the n4sid() function.
• PEM, with the armax() algorithm of Matlab with

standard initialization.
• PEM, with the armax() algorithm of Matlab with the

true system as initialization.

Performance is evaluated by fit ratio defined by

fg(θ) = 1− ‖g(θ0)− g(θ)‖2
‖g(θ0)‖2

, (34)

where g is the impulse response of a module. In total 100
Monte-Carlo runs are performed, and the resulting fit of
module G12 is shown in Fig. 3. The PEM algorithm starts
to struggle with these 4 inputs, but overall the performance
of the 4 algorithms is competitive. We conclude that
Algorithm 1 is suitable for extension to MISO and MIMO,
and therefore suitable for use in dynamic networks.

Algorithm 1 SSARX PEM PEM oracle
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40

60

80

100
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Fig. 3. Fit of G12 for 100 randomly generated systems and
data sets for: Algorithm 1, SSARX, PEM with stan-
dard initialization, PEM initialized by true system.

6. CONCLUSIONS

We have presented a method for identification of dynamic
networks of ARMAX-type that is based on a sequence of
least-squares steps. It generalizes the method for ARMA
models presented in Mayne and Firoozan (1982) and
we have shown that for SISO models it corresponds to
WNSF, which through the analysis in (Galrinho et al.,
2017b) suggests that consistency and asymptotic efficiency
can be established under suitable conditions on the rate
of increase of the ARX-model order as function of the
sample size. With simulations we have verified that the
method performs comparable to PEM, i.e. that it achieves
asymptotic efficiency, as the sample size grows in a simple
SISO setting subject to Gaussian disturbances. Further, in
a more challenging network setting, the method was shown
to be competitive with PEM, even when this algorithm was
initialized at the true parameter values. This means that
in the future this algorithm can be used for example for
topology detection.
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