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Abstract

An analysis is made of a closed-loop identification scheme

in which the parameters of the (open-loop) model are iden-

tified on the basis of measurements of input and output

signals of a closed-loop transfer function. A parametriza-

tion of a closed-loop transfer in terms of the parameters

of the open-loop plant model is employed, utilizing knowl-

edge of the implemented feedback controller. This is de-

noted a tailor-made parametrization as it is tailored to

the specific feedback structure at hand. Consistency of

the estimate is shown to hold under additional condi-

tions on controller and plant model order. These con-

ditions result from the requirement of a uniformly stable

model set. Simulation examples show both the power and

the hazard of closed-loop identification with a tailor-made

parametrization.

1 Introduction

System identification from closed-loop data has had a lot

of attention in literature which has resulted in numerous

closed-loop identification schemes. First of all there are

the more classical methods like direct identification, in-

direct identification, instrumental variable methods and

joint input/output identification, see e.g. [6]. More re-

cently particular versions of these closed-loop identifica-

tion schemes have been developed that are directed to-

wards an explicitly tunable bias expression, which is aim-
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ing for an identified model that is particularly suitable

for use in control design. Examples of such schemes are

the two-stage method [7], identification in the dual Youla

parametrization [3] and identification of coprime plant fac-

tors [9]. An overview of these closed-loop identification

schemes can be found in [2] and [8].

In this paper a closed-loop identification method is dis-

cussed that has not had a lot of attention in literature:

closed-loop identification with a tailor-made parametriza-

tion. The basic idea is that the closed-loop transfer func-

tion from excitation signal r to output signal y (see figure

1) is identified using an output predictor

ŷ(t, θ) =
G(q, θ)

1 + C(q)G(q, θ)
r(t)

using the parameters corresponding to the (open-loop)

plant model

G(q, θ) =
b1q

−1 + · · ·+ bnB
q−nB

1 + a1q−1 + · · ·+ anA
q−nA

with θ = [b1 · · · bnB
a1 · · · anA

].

Using the open-loop plant parameters, and knowledge of

the controller C, a prediction error criterion is used to

estimate the plant parameters; this requires a nonlinear

optimization procedure.

The parametrization is referred to as a tailor-made

parametrization, as it is specifically directed towards (tai-

lored to) the closed-loop configuration at hand, including

knowledge of the controller.

This identification approach has been mentioned as an

exercise in [5]. It is also employed in a recursive version

in [4]. In this paper, an analysis will be made of the

consistency properties of this method, where in particular

we will focus on the connectedness of related parameter

sets and the uniform stability of corresponding model sets.
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Fig. 1: Closed-loop configuration

After preliminary notation and the formulation of the

problem, in section 4 it will be made clear that the need

for uniform stability of the model set, which is adopted in

[5] to obtain consistency results, imposes additional con-

ditions on the parametrization. Sufficient conditions for

consistency are derived which results in a condition on

controller and model order. In section 5 two simulations

are given to illustrate both the possible problems and the

power of the application of a tailor-made parametrization.

Next, in section 6 the relation between this and other

closed-loop identification methods is discussed. Finally,

section 7 concludes the paper.

2 Preliminaries

Addressed is the problem of obtaining a model of the lin-

ear time-invariant discrete-time single input single output

plant G0(z) from measurements of the closed-loop config-

uration given in figure 1.

The controller is denoted with C(z) and is assumed to be

known. The signal r(t) is an external excitation signal,

u(t) and y(t) are respectively the plant input and output.

It is assumed that measurements of r(t) and y(t) are avail-

able. The output noise v(t) is assumed to be generated by

filtering of white noise signal e(t) with variance σ2 using

a stable monic filter H0(z). The output noise is assumed

to be uncorrelated with the excitation signal r. The loop

transfer C(z)G0(z) is assumed to be strictly proper. The

closed-loop system is characterized by

y(t)=
G0(q)

1+C(q)G0(q)︸ ︷︷ ︸
R0(q)

r(t)+
1

1+C(q)G0(q)
H0(q)︸ ︷︷ ︸

W0(q)

e(t)

where R0(q) denotes the closed-loop transfer function

and W0(q) the closed-loop noise filter. The sensitivity

function is denoted by S0(z) = (1 + C(z)G0(z))
−1 and

the parametrized sensitivity is denoted with S(z, θ) =

(1 + C(z)G(z, θ))−1.

3 Closed-loop identification with a

tailor-made parametrization

Consider a parametrized model of the plant G(q, θ) where

the parameter vector lies in a parameter set θ ∈ Θ. This

parametrized plant model together with knowledge of the

controller can be used to parametrize the transfer func-

tion between the measured signals r(t) and y(t). This

yields the following prediction of the output in case the

parametrized closed-loop noise filter is set to W (q, θ) = 1

(output error structure)

ŷ(t, θ) =
G(q, θ)

1 + C(q)G(q, θ)︸ ︷︷ ︸
R(q,θ)

r(t), θ ∈ Θ (1)

The corresponding closed-loop model set is defined as

P :=

{
R(q, θ) =

G(q, θ)

1 + C(q)G(q, θ)
, θ ∈ Θ

}
. (2)

The parameter estimate is found by least squares min-

imization of the prediction error by solving θ̂N =

argmin
θ∈Θ

VN (θ), in which the criterion function is given by

VN (θ) = 1
N

∑N
t=1 ε

2(t, θ) and the prediction error is de-

fined as ε(t, θ) = y(t) − R(q, θ)r(t). The resulting esti-

mation of the plant model will be denoted by Ĝ(q) =

G(q, θ̂N ). For this identification method the following con-

sistency result holds [5].

Proposition 3.1 Let P be a uniformly stable model set

and let the data generating system satisfy the standard

conditions in [5]. Then θN → θ∗ w.p. 1 for N → ∞ with

θ∗ = argmin
θ∈Θ

1

2π

∫ π

−π

|R0(e
iω)−R(eiω, θ)|2Φr(ω)dω (3)

Whenever there exists a θ such that G(q, θ) = G0(q) this

choice will be a minimizing argument of the integral ex-

pression above which is unique provided that r(t) is per-

sistently exciting of sufficiently high order.

This proposition states that a consistent estimate is ob-

tained with this parametrization under the condition that

the model set P is uniformly stable. This condition is not

trivially satisfied in case the tailor-made parametrization

given in (2) is used. Therefore, in the next section the

conditions under which the model set (2) is guaranteed to

be uniformly stable will be investigated.



4 Uniform stability of the model

set

Uniform stability of the model set is defined as follows.

Definition 4.1 [5] A parametrized model set G is uni-

formly stable if

• Θ is a connected open subset of IR(nA+nB)

• μ : Θ → P is a differentiable mapping, and

• the family of transfer functions

{R(z, θ), ∂
∂θR(z, θ)} is uniformly stable.

In this section it will be made clear that in case a tailor-

made parametrization is used, the parameter set Θ is pos-

sibly not connected due to the specific parametrization of

the closed-loop transfer function R(z, θ). Also a sufficient

condition is derived for guaranteed connectedness of the

parameter set.

Let the strictly proper1 plant model be parametrized as

G(z, θ) =
B(z, θ)

A(z, θ)
=

b1z
−1 + . . .+ bnB

z−nB

1 + a1z−1 + . . .+ anA
z−nA

(4)

where θ = [a1 . . . anA
b1 . . . bnB

]T . The controller of order

nc is given by

C =
Nc(z)

Dc(z)
=

n0 + n1z
−1 + . . .+ nnc

z−nc

1 + d1z−1 + . . .+ dnc
z−nc

(5)

where Nc(z), Dc(z) are coprime polynomials. With this

notation the parametrization of the output predictor is

given by

ŷ(t, θ) =
Dc(q)B(q, θ)

Dc(q)A(q, θ) +Nc(q)B(q, θ)
r(t) (6)

All closed-loop models R(q, θ) are stable if the absolute

value of the roots of the denominator Dc(q)A(q, θ) +

Nc(q)B(q, θ) is strictly less than one. Hence, the parame-

ter set corresponding to closed-loop stable models is given

by Θ :=

{
θ∈ IRnA+nB

∣∣ |sol{Dc(q)A(q,θ)+Nc(q)B(q,θ)=0}|<1}
(7)

The corresponding set of plant models is denoted by

G := {G(z, θ), θ ∈ Θ} . (8)

1For simplicity of notation only the case of a strictly proper plant

and a proper controller is regarded. However, the case of a strictly

proper controller and a proper plant can be described similarly.

It can be verified that the parameter set for which the

polynomial A(q, θ) is stable, is pathwise connected. As

a result, connectedness of the parameter set when using

a (standard) numerator-denominator parametrization of

the plant in an open-loop setting, will not be a problem.

However, in case the tailor-made parametrization (2) is

used, with Θ given by (7), Θ may not be pathwise con-

nected as the following simple example shows.

Example 4.2 Given the 7th order controller defined by

the continuous time transfer function

C(s) =
0.499s5+0.715s4+2.577s3+3.397s2+2.155s+2.620

s7+1.717s6+5.100s5+8.410s4+4.198s3+6.631s2

The plant that is to be identified is parametrized by a sim-

ple constant G = θ. The parameter space Θ ⊂ IR for

which the closed-loop system is stable can be simply de-

rived from a root locus plot and is approximately given by

Θ = {θ|θ ∈ (0, 1.27) ∪ (2.64, 4.69) ∪ (9.98,∞)}
This set is a disconnected subset of IR. Therefore the cor-

responding model set P is not uniformly stable.

A parameter set that is not connected has not only con-

sequences for the formal proof of consistency as was men-

tioned before, but also for the nonlinear optimization that

has to be performed to obtain an estimate. If, for example,

a gradient search method is used and an initial estimate

is selected in a region of the parameter set that is dis-

connected from the region where the optimal parameter

vector is located, it will be extremely hard if not impossi-

ble to reach the optimum.

The denominator of the closed-loop transfer function can

be written as a function of the open loop parameter θ as

DcA(z, θ)+NcB(z, θ)=1+[z−1 z−2 . . . z−n]θcl (9)

where the closed-loop parameter vector is given by θcl :=

Sθ + ρ. The order of the closed-loop polynomial of (9) is

given by n = max(nA, nB) + nc, ρ = [p1 . . . pnc
0 . . . 0]T ∈

IRn and S = [PD PN ] ∈ IRn×(nA+nB) with PD ∈
IRn×nA , PN ∈ IRn×nB are matrices given by

PD=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

d1 1

d2 d1
. . .

...
... d2

. . . 1

dnc

. . . d1

0
. . . d2

...
. . .

...

0 · · · 0 dnc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,PN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 0 · · · 0

n1 n0

n2 n1

. . .
...

... n2

. . . n0

nnc

. . . n1

0
. . . n2

...
. . .

...

0 · · · 0 nnc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)



The closed loop parameter can vary over a parameter set

Θcl := {θcl = Mθ + ρ|θ ∈ Θ}

where the allowable closed loop parameters are restricted

by the affine relation given above. Now, define a parame-

ter set for stable polynomials of order n as follows

Θn := {θn ∈ IRn| |sol{1 + [z−1 . . . z−n]θn = 0}| < 1
}

From connectedness of the parameter set for stable poly-

nomials it can be concluded that the parameter set Θn is

also connected. In the following theorem a sufficient con-

dition for connectedness of the parameter space Θ is given

using the connected set Θn as a starting point.

Lemma 4.3 Full row rank of the matrix S=[PD PN ] with

PD, PN given in (10), is a sufficient condition for pathwise

connectedness of the parameter set Θ given in (7).

Proof: The closed-loop parameter θn can vary over the

connected set Θn. Now define the set

Θ̄cl = {θ̄cl|θ̄cl = θn − ρ, θn ∈ Θn}

This set is a shifted version of Θn and is therefore also

pathwise connected. An open loop parameter vector

θ ∈ Θ and a parameter vector θ̄cl ∈ Θ̄cl are related via

θ̄cl = Sθ, S ∈ IRn×(nA+nB). If S has full row rank it

defines a surjective map, hence image(S) = Θ̄cl. In the

connected set Θ̄cl a continuous path can be constructed

between two parameter vectors. This path can be mapped

into a continuous path in Θ using the inverse mapping of

S. Therefore Θ is also pathwise connected. �

This result implies that the parameter set for which the

parametrized transfer function (2) is stable, is only a con-

nected set in specific cases. Therefore it is not guaran-

teed that the model set defined in (2) is uniformly stable

following the definition of uniform stability in Definition

4.1. The following lemma gives an easy test for guaran-

teed uniform stability of the model set with a tailor-made

parametrization.

Proposition 4.4 Let a model of order ns be parametrized

as in (4) with nA = nB = ns and let the controller of order

nc be given by (5). A sufficient condition for connected-

ness of the parameter set Θ for a tailor-made parametriza-

tion given in (2), is given by ns ≥ nc.

Proof: From lemma 4.3 it follows that full row rank of S

is a sufficient condition for connectedness. By reordering

the columns of S a 2 × 2 upper triangular block matrix

can be constructed given by S =

[
S1 S12

0 S2

]
where

S1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 n0 0 · · · 0

d1 1 n1 n0

d2 d1
. . .

... n2 n1

. . .
...

... d2
. . . 1

... n2

. . . n0

dnc

. . . d1 nnc

. . . n1

0 dnc d2 0 nnc n2

...
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 dnc 0 · · · 0 nnc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2=

⎡
⎢⎢⎣
dnc . . . d2nc−ns+1 nnc . . . n2nc−ns+1

. . .
...

. . .
...

0 dnc 0 nnc

⎤
⎥⎥⎦

where S1 ∈ IR2nc×2nc and S2 ∈ IR(ns−nc)×2(ns−nc). The

matrix S has full row rank if S1 and S2 have full row

rank. The first is a Sylvester matrix which has full row

rank if and only if the numerator and denominator of

the controller are coprime [1] . The second has full row

rank if dnc
�= 0 or nnc

�= 0. This is always the case

for a controller of order nc. The number of rows of S

is smaller than or equal to the number of columns if

nA+nB≥max(nA, nB)+nc. This reduces to 2ns≥ns+nc

or equivalently ns≥nc. �

From this it can be concluded that connectedness of the

parameter set Θ causes no problem if the order of the

controller is smaller than the model order. So for iden-

tification of a simple model based on experiments with

a complex controller connectedness of the parameter set

may be a problem. Note that this is the case in example

4.2.

5 Simulation examples

In this section two simulation examples are given. One

in the case where G0 ∈ G and the parameter set is not

connected and the other where G0 /∈ G with a connected

parameter set but with a very bad signal to noise ratio. In

the first example the tailor-made parametrization induces

an optimization problem which is difficult to solve while

in the second example it is demonstrated that closed-loop

identification with this parametrization can be very pow-

erful.



Simulation 1

In figure 2 the three separate branches of the cost func-

tion VN (θ) for the system from Example 4.2 is depicted

for a system G0 = 3.5. and G(θ) = θ. The output distur-

bance v(t) in figure 1 is white noise with variance σ = 0.1.

The excitation signal r(t) is white noise with variance 1.

Note that the parameter regions (−∞, 0], [1.27, 2.64] and

[4.69, 9.98] induce an unstable closed-loop system. The

criterion function has several local minima that are lo-

cated at the boundary of the stability area if the itera-

tive search for the optimal parameter vector is confined

to those parameters θ for which the closed-loop system is

stable. This makes it difficult to find the optimum with

gradient search methods.
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Fig. 2: Criterion function for the identification problem

in Example 4.1 with G0 = 3.5.

The global optimum will generally only be found if an

initial estimate is selected from the middle of the three

branches of the criterion function. If the number of data

points goes to infinity, these local minima are not at the

boundary of the stability area because in that case the

value of the criterion function goes to infinity if the pa-

rameter approaches the closed-loop instability area.

Simulation 2

A simulation is made with a fifth order system, which is

given by the transfer function G0(z)=

10−5 5.278z−1+126.7z−2+299.3z−3+110.8z−4+404.2z−5

1−4.391z−1+7.879z−2−7.247z−3+3.430z−4−4.391z−5

which is an integrator with two resonant modes. The con-

troller used in the simulation is a PI-controller which sta-

bilizes the system. The excitation signal r(t) is Gaussian

white noise with standard deviation σr = 1 and the out-

put noise v(t) is Gaussian white noise with a standard

deviation of σv = 1.5. The data length is N = 500. The

open loop and closed-loop transfer functions are given in

figure 3.

For this system a third order model is estimated with a

tailor-made parametrization. For the nonlinear optimiza-

tion a Gauss-Newton method is applied where the initial

estimate is obtained with use of direct identification with

10
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Fig. 3: Amplitude plot closed-loop transfer from r(t) to

y(t) (left) and open-loop transfer (right): plant

(solid), estimation with tailor-made parametriza-

tion (dashed) and direct identification (dotted).

an ARX(3,3,1) model structure. The speed of the nonlin-

ear optimization routine is improved by using the explicit

gradient expression derived in [11]. The estimated model

is given in figure 3. Also the initial model is given. From

this it can be seen that the estimation with a tailor-made

parametrization gives a good fit for the integrator and the

first resonant mode, despite the bad signal-to-noise ratio

and the bad initial estimate.

6 Relation to other closed-loop

identification methods

In this section the relation between closed-loop identifica-

tion with a tailor-made parametrization and other closed-

loop identification methods is discussed.

An obvious parametrization making further use of knowl-

edge of the closed-loop structure, is given by

R(q, θ) =
G(q, θ)

1 + C(q)G(q, θ)
,W (q, θ) =

H(q, θ)

1 + C(q)G(q, θ)

Least squares minimization of the corresponding pre-

diction error yields a criterion function VN (θ) =
1
N

∑N
t=1 H

−1(q, θ)(y(t) − G(q, θ)(r(t) − C(q)y(t))) which

is equal to the cost function for direct identification from

u(t) = (r(t)−C(q)y(t)) to y(t) which is known to be only

consistent in case both the plant G0 and the noise model

H0 can be modelled exactly within the chosen model set.

It is important to note that this inconsistency is due to

the dependent parametrization of the closed-loop transfer

and the closed-loop noise filter. If R(q, θ) and W (q, θ) are

parametrized independently, the consistency result given

in Proposition 3.1 still holds in case G0 ∈ G.
The specific approximative properties of closed-loop iden-

tification with a tailor-made parametrization can be ob-



tained from (3). This expression can be further specified

as θ∗ =

argmin
θ∈Θ

1

2π

∫ π

−π

|S0(e
iω)[G0(e

iω)−G(eiω,θ)]S(eiω,θ)|2Φr(ω)dω.

From this it can be seen that the estimation error is

weighted by both the sensitivity function and the esti-

mated sensitivity function which puts an emphasis on the

crossover region. This implies that in the case of ap-

proximative modelling, G0 /∈ G, the undermodelling er-

ror is particularly small in this frequency region which

is favourable in case the identified model is used in con-

trol design as is pointed out in [8]. In many control-

relevant identification schemes this type of weighting is

pursued but can there only be approximated by use of

specific filtering strategies, while by using a tailor-made

parametrization this weighting is inherent.

Identification using a tailor-made parametrization resem-

bles the indirect identification method where first the

closed-loop transfer function R(q) is identified with a stan-

dard numerator-denominator parametrization. Next, a

plant model is calculated using knowledge of the controller

with Ĝ(q) = R(q, θ̂)(1 − R(q, θ̂)C(q))−1. Estimation of a

plant model with a prespecified model order is not a triv-

ial task here. This same mechanism holds true also for

identification in the dual Youla parametrization, which is

a direct generalization of the indirect method [10]. Using

a tailor-made parametrization a plant model can be esti-

mated with prespecified complexity.

7 Conclusions

In this paper identification of a model from closed-loop

data with a tailor-made parametrization is discussed. Spe-

cial attention is given to the possible occurrence of a non-

connected parameter set which is induced by the structure

of the parametrization.

Sufficient conditions are derived for the model order in

terms of the controller complexity such that the param-

eter set is connected. These conditions indicate that the

parameter set may not be a connected set in case a low

complexity model is identified from data with a high com-

plexity controller.

Additionally it is shown that for a specific parametriza-

tion of the noise model, the method reduces to closed-loop

identification with the classical direct method.

From simulations it follows that the approach can yield

very accurate models also in case of approximative mod-

elling with a bad signal-to-noise ratio.
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