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Abstract

In this paper, several instrumental variable (IV) and instrumental variable-related methods for closed-loop system identification are
considered and set in an extended IV framework. Extended IV methods require the appropriate choice of particular design variables, as the
number and type of instrumental signals, data prefiltering and the choice of an appropriate norm of the extended IV-criterion. The optimal
IV estimator achieves minimum variance, but requires the exact knowledge of the noise model. For the closed-loop situation several IV
methods are put in an extended IV framework and characterized by different choices of design variables. Their variance properties are
considered and illustrated with a simulation example.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For many industrial production processes, safety and pro-
duction restrictions are often strong reasons for not allowing
identification experiments in open-loop. In such situations,
experimental data can only be obtained under so-called
closed-loop conditions. The main difficulty in closed-loop
identification is due to the correlation between the distur-
bances and the control signal, induced by the loop. Several
classical alternatives are available to cope with this problem,
broadly classified into three main approaches: direct, indirect
and joint input/output (Söderström and Stoica, 1989; Ljung,
1999). Some particular versions of these methods have been
developed more recently in the area of control-relevant
identification as, e.g. the two-stage, the coprime factor, the

� A first version of this paper was presented at the 13th IFAC Sympo-
sium on System Identification (2003). Rotterdam, The Netherlands. This
paper was recommended for publication in revised form by Editor T.
Soderstrom.
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dual-Youla methods. An overview of these recent develop-
ments can be found inVan den Hof (1998)andForssell and
Ljung (1999).

When looking at methods that can consistently identify
plant models of systems operating in closed-loop while re-
lying on simple linear (regression) algorithms, instrumental
variable (IV) techniques seem to be rather attractive, but at
the same time not very often applied. On the other hand,
when dealing with highly complex processes that are high-
dimensional in terms of inputs and outputs, it can be at-
tractive to rely on methods that do not require non-convex
optimization algorithms. Besides this computationally at-
tractive property, IV methods have the potential advantage
that they can identify plant models consistently when the
noise model is misspecified, and when the present controller
is non-linear and/or time-varying.

For closed-loop identification a basic IV estimator
has been proposed (Söderström et al., 1987), and more
recently a so-called tailor-made IV algorithm (Gilson
and Van den Hof, 2001), where the closed-loop plant
is parametrized using (open-loop) plant parameters. The
class of algorithms denoted by BELS (for Bias-Eliminated
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mailto:marion.gilson@cran.uhp-nancy.fr
mailto:p.m.j.vandenhof@dcsc.tudelft.nl


242 M. Gilson, P. Van den Hof / Automatica 41 (2005) 241–249

Fig. 1. Closed-loop configuration.

Least-Squares), e.g.Zheng (1996), is also directed towards
the use of linear regression algorithms only. It has recently
been shown that these algorithms are also particular forms
of IV estimation schemes (Söderström et al., 1999; Gilson
and Van den Hof, 2001). Then, while comparing the several
available IV algorithms, the principal question to address
should be: how to achieve the smallest variance of the esti-
mate. Concerning extended IV methods an optimal variance
result has been developed in the open-loop identification
case, showing consequences for the choice of weights,
filters, and instruments (Stoica and Söderström, 1983;
Söderström and Stoica, 1989; Ljung, 1999). For the closed-
loop case a covariance analysis has been provided by
Söderström et al. (1987)andSöderström and Stoica (1983).
While in Forssell and Chou (1998)this analysis is used to
compare several closed-loop identification methods, in the
present paper main attention will be given to a characteriza-
tion of the properties of the several (extended) IV-methods
presented here.

The paper is organized as follows. After the preliminaries,
several IV and IV-related methods are presented and unified
in an extended IV framework in Section 3. Section 4 intro-
duces the optimum variance closed-loop IV estimation with
the consequences for the several design variables. Since for
optimum variance, the noise model has to be known ex-
actly, several bootstrap methods are proposed in Section 5
for approximating this required information from measure-
ment data. In Section 6, the comparison between the differ-
ent proposed methods is illustrated in a simulation example,
showing that the optimal estimator can be accurately approx-
imated by an appropriate choice of the design parameters.

2. Preliminaries

Consider a linear SISO closed-loop system shown in
Fig. 1. The process is denoted byG0(z) and the controller
by C(z); u(t) describes the process input signal,y(t) the
process output signal and{e0(t)} is a sequence of indepen-
dent identically disturbed random variables of variance�0.
The external signalsr1(t), r2(t) are assumed to be uncorre-
lated withe0(t). For ease of notation we also introduce the
signalr(t)= r1(t)+C(q)r2(t). With this notation, the data

generating system becomes

S :
{
y(t) = G0(q)u(t) + H0(q)e0(t),

u(t) = r(t) − C(q)y(t).
(1)

The real plant G0 is considered to satisfyG0(q) =
B0(q

−1)/A0(q
−1), while in these expressionsq−1 is the

delay operator, and the numerator and denominator degree
is n0. Themth order controllerC is assumed to be known
and specified by

C(q) = Q(q−1)

P (q−1)

= q0 + q1q
−1 + · · · + qmq

−m

1 + p1q−1 + · · · + pmq−m
(2)

with the pair of polynomials(P,Q) assumed to be coprime.
A parametrized process model is considered

G : G(q, �) = B(q−1, �)
A(q−1, �)

= b1q
−1 + · · · + bnq

−n

1 + a1q−1 + · · · + anq−n
,

and the process model parameters are stacked columnwise
in the parameter vector

� = [a1 · · · an b1 · · · bn]T ∈ R2n. (3)

Furthermore, let us denote by�c(t) and by�(t) the closed-
loop and open-loop regressors, respectively, defined as

�T
c (t) = [−y(t − 1) · · · − y(t − n − m)

r(t − 1) · · · r(t − n − m)] ∈ R2n+2m, (4)

�T(t) = [−y(t − 1) · · · − y(t − n)

u(t − 1) · · · u(t − n)] ∈ R2n, (5)

�T
r (t) = [r(t − 1) · · · r(t − rB)] ∈ RrB . (6)

andrB a user-specified integer. Ifn = n0, i.e. the plantG0
is contained in the chosen model set, the outputy(t) can be
written as

y(t) = �T(t)�0 + v0(t), (7)

where �0 denotes the true parameters andv0(t) =
A0(q

−1)H0(q)e0(t). Additionally we use the following
notation for filtered data

�̄(t) = L(q−1)�(t), (8)

ȳ(t) = L(q−1)y(t), (9)

whereL(q−1) is a particular chosen prefilter.
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3. Closed-loop IV methods in an extended IV
framework

3.1. Closed-loop basic IV method

The basic-IV estimate of�0 is determined as the solution
�̂iv to the set of equations

1

N

N∑
t=1

z(t)[y(t) − �T(t)�̂iv] = 0 (10)

or, provided that
∑N

t=1 z(t)�
T(t) is nonsingular

�̂iv =
[

1

N

N∑
t=1

z(t)�T(t)

]−1 [
1

N

N∑
t=1

z(t)y(t)

]
, (11)

wherez(t) represents the vector of instruments, having di-
mension 2n.

By using Eq. (7) in (11), it follows that

�̂iv = �0 +
[

1

N

N∑
i=1

z(t)�T(t)

]−1 [
1

N

N∑
i=1

z(t)v0(t)

]
.

(12)

Therefore, the basic IV estimate provides a consistent pa-
rameter estimate (plimN→∞�̂=�0) under the following two
conditions1 :

• Ēz(t)�T(t) is nonsingular,
• Ēz(t)v0(t) = 0.

A typical choice in the closed-loop situation is that the in-
struments vector is composed of delayed samples of the ref-
erence signel:z(t) = �r (t) with dimensionrB = 2n. Note
that the consistency result is valid under the condition that
G0 is contained in the chosen model set; it does not require
exact modeling of the noise modelH0 and it allows the con-
troller C to be nonlinear and/or time-varying.

3.2. Closed-loop extended IV method

An extended IV estimate of�0 is obtained by generalizing
the so-called basic IV estimates of� by prefiltering the data
and by using an augmented instrumentz(t) ∈ Rnz (nz >2n)
so that (10) leads to an over-determined set of equations that

1 The notationĒ[.] = limN→∞ 1
N

∑N−1
t=0 E[.] is adopted from the

prediction error framework ofLjung (1999).

is solved by:

�̂xiv(N) = arg min
�

∣∣∣∣∣
∣∣∣∣∣
[

1

N

N∑
t=1

z(t)L(q)�T(t)

]
�

−
[

1

N

N∑
t=1

z(t)L(q)y(t)

]∣∣∣∣∣
∣∣∣∣∣
2

Q

, (13)

whereL(q) is a stable prefilter and‖x‖2
Q = xTQx, with Q

a positive definite weighting matrix.
Following the same reasoning as in the basic IV case, the

extended-IV estimate provides a consistent estimate under
the following two conditions

• Ēz(t)L(q)�T(t) is nonsingular,
• Ēz(t)L(q)v0(t) = 0.

3.3. Tailor-made IV identification (M1)

The tailor-made IV method (referred to M1 in the fol-
lowing) as discussed in (Gilson and Van den Hof, 2001) is
designed to provide an unbiased estimate for the process
modelG(q, �), while pertaining to simple linear regression
type of estimates. The closed-loop transfer function fromr
to y is modeled by

G(q, �)
1 + C(q)G(q, �)

= B(q−1, �)P (q−1)

A(q−1, �)P (q−1) + B(q−1, �)Q(q−1)
,

parametrized in the plant parameter� (tailor-made
parametrization). The prediction error related to a linear re-
gression model for the closed-loop system is then given by

ε(t, �) = Ācl(q
−1, �)y(t) − B̄cl(q

−1, �)r(t)
B̄cl(q

−1, �) = B(q−1, �)P (q−1)

= Ācl(q
−1, �)

= A(q−1, �)P (q−1) + B(q−1, �)Q(q−1). (14)

Using the relationr=u+Cy or equivalentlyPr=Pu+Qy,
it follows that

ε(t, �) = A(q−1, �)P (q−1)y(t)

− B(q−1, �)P (q−1)u(t),

which alternatively can be written as

ε(t, �) = ȳ(t) − �̄T(t)�, (15)

where ȳ(t), �̄T(t) given by (8)–(9), and the prefilterL(q)

particularly chosen asL(q)=P(q−1). Then the tailor-made
IV estimate of� is determined as the solution to the set of
equations

1

N

N∑
t=1

ε(t, �̂t iv,F )�(t) = 0, (16)
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where�(t)=F�r (t) denotes the vector of instruments, and
F ∈ R2n×rB a user-chosen matrix with rank 2n.

The choicerB = 2n, F = I2n leads to a simple basic IV
estimator applied to the closed-loop system, taking instru-
ments as 2n delayed samples of the reference signal, that is
supposed to be persistently exciting of sufficiently high or-
der. ForrB >2n, the matrixF constructs 2n instruments out
of rB delayed reference samples, by taking particular lin-
ear combinations. Again a basic IV method results, but now
with a particular choice of instruments.

3.4. BELS method

The so-called bias-eliminated least-squares method
(BELS) as proposed byZheng and Feng (1995), Zheng
(1996) has been shown to be a particular form of tailor-
made IV estimator (Gilson and Van den Hof, 2001). It has
two different formats, dependent on the relation between
n (model order) andm (controller order). Form�n, the
BELS estimator is equivalent to the tailor-made estimate
with rB = 2n and F = I2n. For m>n, it is obtained by
choosingrB = n + m and

F = MTR̂T
�r�c

(N)(R̂�r�c
(N)R̂T

�r�c
(N))−1. (17)

with R̂�r�c
(N) = 1/N

∑N
t=1 �r (t)�

T
c (t), and M ∈

R(n+m+rB)×2n a full-column rank matrix dependent on
controller dynamics only and specified as

M =
(
Pc Qc

0 P̄c

)
∈ R(n+m+rB)×2n, (18)

wherePc, Qc ∈ R(n+m)×n are Sylvester matrices expanded
by [1 p1 · · · pm]T and[q0 q1 · · · qm]T respectively, given
in (2), i.e.

Pc =




1 0 · · · 0

p1
. . .

. . .
...

...
. . .

. . . 0

pm

...
. . . 1

0
. . .

... p1
...

. . .
. . .

...

0 · · · 0 pm




(19)

and P̄c ∈ RrB×n is given byPc but expanded with a zero
matrix:

P̄c =
[

Pc

0(rB−n−m)×n

]
.

The matrixM satisfies

�̄(t) = MT�c(t) (20)

for a full description of the relation between BELS and
tailor-made IV, seeGilson and Van den Hof (2001).

3.5. Tailor-made and extended IV identification

3.5.1. Unification
In order to analyze the variance properties of the estima-

tors presented above, they are positioned in the framework
of extended IV estimators. All estimators discussed so far
can simply be interpreted as a special form of extended IV
estimator. The most complicated one is the BELS estimator
specified by the particular choice of instruments determined
by F in (17) and referring to the situationm>n only. For
this latter estimator an alternative formulation can be given,
as shown in the next Proposition.

Proposition 1. The tailor-made IV estimates presented in
Sections3.3and3.4related to the particular situationm>n,
rB =n+m and with the particular choice of F given in(17),
satisfies

�̂t iv(N) = arg min
�

∣∣∣∣∣∣R̂�r �̄(N)� − R̂�r ȳ
(N)

∣∣∣∣∣∣2
Q

(21)

with R̂�r �̄(N) = 1
N

∑N
t=1 �r (t)�̄

T(t), R̂�r ȳ
(N) = 1/N∑N

t=1 �r (t)ȳ(t), and

Q = (R̂�r�c
R̂T

�r�c
)−1 ∈ R(n+m)×(n+m). (22)

Consequently it is equivalent to an extended IV estimator
(13) with

• instrument vectorz(t) = �r (t) with dimensionnz =
rB = n + m,

• prefilterL(q) = P(q−1),
• weighting matrixQ (22).

Proof. A full proof is added in the appendix.

As a result, all considered IV methods can be unified in
an extended IV framework, where the estimator is specified
by Eq. (13) with particular choices of the design parameters
z(t), L(q) andQ, as summarized in the following overview:

• closed-loop basic IV (Section 3.1):nz=2n, z(t)=�r (t)

with rB = 2n, L = 1, Q = I ,
• tailor-made IV (Section 3.3):nz =2n, z(t)=F(q)�r (t)

with rB = 2n, L = P(q−1), Q = I ,
• BELS in casem�n (Section 3.4): special case of the

tailor-made IV whereF = I andrB = 2n,
• BELS in casem>n (see Proposition 1):nz = n + m,

z(t) = �r (t) with rB = n + m, L = P(q−1), Q =
(R̂�r�c

R̂T
�r�c

)−1.

3.5.2. Covariance property
The asymptotic distribution of the parameter (13) esti-

mated by an extended IV type of method has been exten-
sively investigated in the open-loop context (Söderström and
Stoica, 1989). Moreover, the structure of the closed-loop
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extended IV estimates is identical to that of the open-loop
estimates, as is shown in (Söderström et al., 1987). As a re-
sult, under the assumptions given in section 3.2 (in particular
that instruments and noise are uncorrelated) andG0 ∈ G, �̂
is asymptotically Gaussian distributed
√
N(�̂ − �∗) dist→N(0, Pxiv) (23)

with �∗ the asymptotic parameter estimate, and the covari-
ance matrixPxiv is given by

Pxiv = �0(R
T
z�̄QRz�̄)

−1RT
z�̄QRzT zT QRz�̄

× (RT
z�̄QRz�̄)

−1, (24)

where

Rz�̄ = Ēz(t)�̄T(t) = Ēz(t)L(q)�T(t), (25)

RzT zT = ĒzT (t)z
T
T (t), (26)

zT (t) =
∞∑
i=0

tiz(t + i), (27)

T (q) = L(q)A0(q
−1)H0(q) =

∞∑
i=0

tiq
−i (28)

andT (q) is a monic filter. �

3.5.3. Remarks
In the situationnz = 2n, the number of unknowns in (13)

is equal to the number of equation, and the weighting matrix
Q will not influence the optimization. In this situation the
simple choiceQ = I suffices. According to equation (24)
and under the assumptionG0 ∈ G, the expression for the
covariance matrix of this estimate then simplifies to

Pxiv = �0R
−1
z�̄ RzT zT R

−T
z�̄ . (29)

4. Optimal closed-loop IV

The choice of the instrumentsz(t), of nz, of the weight-
ing matrixQ and of the prefilterL(q) may have a consid-
erable effect on the covariance matrixPxiv . In the open-
loop situation the lower bound ofPxiv for any unbiased
identification method is given by the Cramer-Rao bound,
which is specified in, e.g.Ljung (1999)andSöderström and
Stoica (1983). Optimal choices of the above-mentioned de-
sign variables exist so thatPxiv reaches the Cramer-Rao
bound. For the closed-loop case, this type of reasoning is not
viable for IV estimates, as the objective of reaching mini-
mum variance conflicts with the restriction that instruments
and noise should be uncorrelated. However it has been shown
in Söderström et al. (1987)that there indeed exists a min-
imum value of the covariance matrixPxiv as a function of
the design variablesz(t), L(q) andQ, under the restriction
thatz(t) is a function of the external signalr(t) only:

Pxiv �P
opt
xiv

with

P
opt
xiv = �0[Ē�̃F (t)�̃

T
F (t)]−1,

�̃F (t) = L(q)�̃(t) and�̃(t) is the noise-free part of�(t).
The minimum variance can be achieved by the following

choice of design variables:

• Q = I andnz = 2n, i.e.Rz�̄ in (24) is square,
• L(q) = 1

H0(q)A0(q−1)
,

• z(t) = 1
H0(q)A0(q−1)

�̃(t).

This can be verified by substitution into (24) and by using
the fact that

Rz�̄ = Ēz(t)L(q)�̃T(t) = Ē�̃F (t)�̃
T
F (t).

Note that the optimal IV estimator can only be obtained if
the true noise modelA0(q

−1)H0(q)
2 is exactly known and,

therefore, optimal accuracy cannot be achieved in practice.
Furthermore, it is interesting to notice that the optimal

accuracy is achieved without introducing any additional in-
struments (nz = 2n), like in the open-loop situation. The in-
troduction of additional instruments will not contribute to
reduction of the variance, at least in the ideal situation of an
exactly known noise modelA0(q

−1)H0(q).

5. Approximate implementations

In order to give some clues to the closed-loop identifica-
tion method users, it would be interesting to compare the
extended IV method with the optimal IV one. However, as
the latter cannot be achieved in practice, approximate im-
plementations of the optimal IV method will be considered.
For this purpose one will need to take care that

• a model ofA0H0 is available in order to construct the
prefilterL(q) and the instrumentsz(t),

• a first model ofG0(q) is needed to compute the noise
free part of the regressor̃�(t).

The choice of the instruments and prefilter in the IV method
affects the asymptotic variance, while consistency proper-
ties are generically secured. This suggests that minor de-
viations from the optimal value (which is not available in
practice) will only cause second-order effects in the result-
ing accuracy. Therefore, it is considered to be sufficient to
use consistent, but not necessarily efficient estimates of the
dynamics and of the noise when constituting the instrument
and the prefilter (Ljung, 1999).

Additionally for obtaining the necessary preliminary mod-
els a restriction is made to linear regression estimates in or-
der to keep computational procedures simple and tractable.

2 Although A0H0 is referred to as “noise model” it also involves
knowledge ofG0 through its denominatorA0.
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5.1. First alternative (M2, M3)

Several bootstrap IV methods have been proposed in the
open-loop situation, in an attempt to approximate the op-
timal IV method, see e.g.Young (1976), Söderström and
Stoica (1983)andLjung (1999). The first solution consists
of extending one of these algorithms to the closed-loop situ-
ation; here the IV4 method (Ljung, 1999) will be considered.
The only difference between open- and closed-loop cases is
that in the latter, also the input is correlated with the noise.
Therefore, the instruments have to be uncorrelated with the
noise part ofu(t) but correlated with the noise-free part
of u(t).

Method M2 (cliv4)

Step1. Write the model structure as a linear regression

ŷ(t, �) = �(t)T�. (30)

Estimate� by a least-squares method and get�̂1 along
with the corresponding transfer function̂G1(q).

Step2. Generate the instrumentsz1(t) as

ỹ1(t) = C(q)Ĝ1(q)

1 + C(q)Ĝ1(q)
r(t), (31)

ũ1(t) = 1

1 + C(q)Ĝ1(q)
r(t), (32)

z1(t) = [−ỹ1(t − 1) · · · − ỹ1(t − n)

ũ1(t − 1) · · · ũ1(t − n)]T,
z1(t) can be seen as an estimation of the noise-free part
of the regressor�(t). Determine the IV estimate of� in
(30) as

�̂2 = R̂−1
z1�R̂z1y. (33)

The corresponding estimated transfer function is given by
Ĝ2(q) = B̂2(q

−1)/Â2(q
−1), of ordern.

Step3. Letŵ(t)=Â2(q
−1)y(t)−B̂2(q

−1)u(t) and postulate
an AR model of order 2n for ŵ(t): L(q)ŵ(t) = e(t).
EstimateL(q) using a least-squares method and denote
the result byL̂(q).

Step4. Generate the instrumentsz2(t) as

ỹ2(t) = C(q)Ĝ2(q)

1 + C(q)Ĝ2(q)
r(t), (34)

ũ2(t) = 1

1 + C(q)Ĝ2(q)
r(t), (35)

z2(t) = [−ỹ2(t − 1) · · · − ỹ2(t − n)

ũ2(t − 1) · · · ũ2(t − n)]T.

Using these instrumentsz2(t) and the prefilterL̂(q), de-
termine the IV estimate of� in (30) as

�̂cliv4 = R̂−1
z2�T

R̂z2yT , (36)

where

�T (t) = L̂(q)�(t) andyT (t) = L̂(q)y(t). (37)

The asymptotic covariance matrix of the final estimates
is the Cramer-Rao bound, provided the true noise model is
an autoregression of order 2n.

Method M3 (cliv4− armasel)

The method above can be improved by using a more so-
phisticated noise modeling procedure, e.g. by replacing the
third step of the M2 algorithm by thearmasel proce-
dure developed inBroersen (2002), including an appropriate
order selection step. This procedure consists of estimating
several autoregressive models of different orders and in ap-
plying a nonasymptotic order selection criterion based on
estimates of prediction error expectation.

5.2. Second alternative (M4)

Noise and process models have to be known in order to
construct the instruments and the prefilter. Since, the sec-
ond order statistical property is not of crucial importance, a
simple solution consists in estimating these models by us-
ing a high-order least-squares estimator. The result will be
obviously biased but a bias in the first step does not lead to
a bias in the final model.

Method M4 (cliv3)

Step1. Write the model structure as a linear regression
(30), and estimate� by a high-order least-squares method.

The resulting �̂1 leads to process and noise models
Ĝ1(q) = B̂1(q

−1)/Â1(q
−1), Ĥ1(q) = 1/Â1(q

−1), respec-
tively.
Step2. The prefilterL̂(q) = Â1(q

−1)Ĥ1(q) = 1 by con-
struction, due to the ARX model structure. Compute the
noise-free part of the regressor

�̃(t) = [−ỹ1(t − 1) · · · − ỹ1(t − n)

ũ1(t − 1) · · · ũ1(t − n)]T
with ỹ1(t) and ũ1(t) computed as in equations (31)–(32).
Generate the instruments as

z(t) = {[Â1(q
−1)Ĥ1(q)]−1�̃T(t)}T (38)

Step3. Using the instrumentz(t) and the prefilterL̂(q),
determine the IV estimate in (30) as

�̂cliv3 = R̂−1
z�T

R̂zyT
. (39)
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Fig. 2. Bode amplitude plots of the process (black) and of the estimates (grey)

6. Example

The following numerical example is used to compare the
performances of the proposed approaches. The process to
be identified is described by Eq. (1), where

G0(q) = 0.5q−1

1 − 0.8q−1 , n = 1, (40)

C(q) = 0.0012+ 0.0002q−1 − 0.001q−2

0.5 − 0.9656q−1 + 0.4656q−2 ,m = 2, (41)

H0(q) = 1 − 1.56q−1 + 1.045q−2 − 0.3338q−3

1 − 2.35q−1 + 2.09q−2 − 0.6675q−3 . (42)

r(t) is a deterministic sequence (realization of a random bi-
nary signal) ande0(t) is a white noise uncorrelated withr(t).
The process parameters are estimated by means of the meth-
ods M1–M4. Moreover, the results from the basic closed-
loop IV method developed bySöderström et al. (1987)are
also analyzed. These methods referenced as M5, consists of
using the delayed version of the reference signal as instru-
ments; the estimate is thus given by

�̂cliv =
[

N∑
t=1

�(t)�T(t)

]−1 [
N∑
t=1

�(t)y(t)

]
, (43)

�(t) = [ r(t) r(t − 1) · · · r(t − 2n) ]T. (44)

Summary of methods:
M1: tailor-made IV (tiv)/BELS withm>n, see Section 3.3;
M2: bootstrap IV (cliv4), see Section 5.1;
M3: bootstrap IV with automated noise model identification

(cliv4-armasel), see Section 5.1;
M4: bootstrap IV with high-order least-squares (cliv3), see

Section 5.2;
M5: basic closed-loop IV.
For illustration purposes, all of these methods are compared
to a benchmark which consists of applying the true noise
and process models for generating the prefilter and the in-
struments.

The process parameters are estimated on the basis of
closed-loop data sequences of lengthN=1000. Monte Carlo
simulation of 100 experiments has been performed for a
signal to noise ratio

SNR = 10 log

(
Pyd

Pe

)
= 15 dB, (45)

wherePx denotes the power of the signalx andyd is the
noise-free output signal.

In Fig. 2, the Bode diagrams of the 100 models identified
by the six methods are represented. Furthermore, the fol-
lowing function is computed and represented inFig. 3 for
each algorithm

g(�) = 1

MC

MC∑
k=1

|G0(e
i�) − Ĝk(e

i�)| (46)

whereMC denotes the number of Monte Carlo experimenta-
tions andĜk(ei�) the transfer function estimated during the
kth Monte Carlo experimentation.Figs. 2and3 show that
M3 gives the best results (no bias, lower standard-deviation),
really close to those of the benchmark. The two approxi-
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Fig. 3. Average frequency response errorg(�) for several IV methods;
results are averaged over 100 Monte Carlo experiments.

Table 1
Norm

Method Bench. M1 M2 M3 M4 M5
(tiv) (cliv4) (armasel) (cliv3) (cliv)

Norm 1.921 4.766 2.893 2.223 2.591 3.685

mate versions of the optimal IV algorithm (M3, M4) and the
closed-loop IV method (M5) give better results than the pro-
posed extended IV (M1) in this case. Moreover, the method
based on the least-square high-order model (M4) seems to
be more appropriate than the extension of the IV4 method
to this closed-loop case (M2).

Furthermore, the two norm of the difference between the
real and estimated transfer functions is also computed for
each method

Norm= 1

MC

MC∑
k=1

∫
|G0(e

i�) − Ĝk(e
i�)|2 d�. (47)

The results are given inTable 1and confirm the previous
graphic results: the bootstrap methods considered in the pa-
per give better results than the extended IV technique.

7. Conclusion

Several IV and IV-related estimators for closed-loop sys-
tem identification have been studied and set in an extended
IV framework. An explicit expression for the covariance ma-
trix of estimation errors is given and it is then shown that
a minimal value of this covariance matrix can be achieved
for a particular choice of instruments and prefilters. This

minimal value requires the knowledge of the true system pa-
rameters and is, therefore, not reachable in practice. Several
methods have thus been developed to determine the design
parameters which allow to approximate the optimal closed-
loop IV estimator. These methods have been compared to
the recently suggested Tailor-made IV methods and BELS
methods which are known to lead to unbiased plant esti-
mates in closed loop. However, to arrive at estimates with
attractive variance properties it is preferable to apply boot-
strap IV methods as considered in this paper.
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Appendix A.

Proof of Proposition 1. Using (15), the solution to (16) can
be written as

�̂t iv(N) =
[

N∑
t=1

�(t)�̄T(t)

]−1 [
N∑
t=1

�(t)ȳ(t)

]
.

With (20) the expression (17) forF can be written as

F = R̂T
�r �̄

(R̂�r�c
R̂T

�r�c
)−1.

Substituting�(t) = F�r (t) into the expression for̂�t iv(N),
and using (8) then delivers

�̂t iv = [R̂T
�r �̄

(R̂�r�c
R̂T

�r�c
)−1R̂�r �̄]−1

· R̂T
�r �̄

(R̂�r�c
R̂T

�r�c
)−1R̂�r ȳ

. (48)

The structure of this expression is

�̂t iv = (ATQA)−1ATQB (49)

with

A = R̂�r �̄, Q = (R̂�r�c
R̂T

�r�c
)−1, B = R̂�r ȳ

, (50)

having the structure of a solution to a weighted least-squares
problem. As a result,̂�t iv is the solution to the extended IV
problem

�̂t iv = arg min
�

∣∣∣∣∣∣R̂�r �̄� − R̂�r ȳ

∣∣∣∣∣∣2
Q

(51)

with weighting matrixQ given by equation (50).
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