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Abstract

In this paper, several instrumental variable (IV) and instrumental variable-related methods for closed-loop system identification are
considered and set in an extended IV framework. Extended 1V methods require the appropriate choice of particular design variables, as the
number and type of instrumental signals, data prefiltering and the choice of an appropriate norm of the extended IV-criterion. The optimal
IV estimator achieves minimum variance, but requires the exact knowledge of the noise model. For the closed-loop situation several IV
methods are put in an extended IV framework and characterized by different choices of design variables. Their variance properties are
considered and illustrated with a simulation example.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction dual-Youla methods. An overview of these recent develop-
ments can be found Man den Hof (1998andForssell and
For many industrial production processes, safety and pro- Ljung (1999)
duction restrictions are often strong reasons for not allowing  When looking at methods that can consistently identify
identification experiments in open-loop. In such situations, plant models of systems operating in closed-loop while re-
experimental data can only be obtained under so-calledlying on simple linear (regression) algorithms, instrumental
closed-loop conditions. The main difficulty in closed-loop variable (IV) techniques seem to be rather attractive, but at
identification is due to the correlation between the distur- the same time not very often applied. On the other hand,
bances and the control signal, induced by the loop. Severalwhen dealing with highly complex processes that are high-
classical alternatives are available to cope with this problem, dimensional in terms of inputs and outputs, it can be at-
broadly classified into three main approaches: direct, indirect tractive to rely on methods that do not require non-convex
and joint input/output$oderstrom and Stoica, 1989; Ljung, optimization algorithms. Besides this computationally at-
1999. Some particular versions of these methods have beentractive property, IV methods have the potential advantage
developed more recently in the area of control-relevant that they can identify plant models consistently when the
identification as, e.g. the two-stage, the coprime factor, the noise model is misspecified, and when the present controller
is non-linear and/or time-varying.
* A first version of this paper was presented at the 13th IFAC Sympo-  For closed-loop identification a basic IV estimator
sium on System Identification (2003). Rotterdam, The Netherlands. This has been proposedS¢derstrom et al., 1987and more
paper was recommended for publication in revised form by Editor T. recently a so-called tailor-made IV algorithnGi(son

Soderstrom.
*Tel.: +33383684475: fax: +33 383684462 gnd Van d(_an Hof,. 2001 where the closed-loop plant
E-mail addresses:marion.gilson@cran.uhp-nancy.f(M. Gilson), is parametrized using (open-loop) plant parameters. The
p.m.j.vandenhof@dcsc.tudelft.(®. Van den Hof). class of algorithms denoted by BELS (for Bias-Eliminated

0005-1098/$ - see front matté& 2004 Elsevier Ltd. All rights reserved.
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+ € generating system becomes
Hy 7 {y(r) = Go(q)u(t) + Ho(g)eo(1), 1)
r u@) =r@) - Cl@)y@).
2 C Y u G + i _};_ The real plantGo is considered to satisfyGo(g) =
+ 0 Bo(g™1)/Ao(g™1), while in these expressiong ! is the
delay operator, and the numerator and denominator degree

is ng. The mth order controllerC is assumed to be known
and specified by

Fig. 1. Closed-loop configuration.

1
Clg) = i(qil)

Least-Squares), e.g@heng (1996)is also directed towards @) 1

the use of linear regression algorithms only. It has recently _qotaqig "+ -+ amg™" @)

been shown that these algorithms are also particular forms 14+ pigt 4+ pug™

of IV estimation schemesS@derstrom et al., 1999; Gilson ) ) ) )
and Van den Hof, 2001 Then, while comparing the several With the pair of polynomialg P, Q) assumed to be coprime.
available IV algorithms, the principal question to address A Parametrized process model is considered

should be: how to achieve the smallest variance of the esti- .

mate. Concerning extended IV methods an optimal variance ¢ . G(g,0) = Blq—", 0)

result has been developed in the open-loop identification A(g=L,0)
case, showing consequences for the choice of weights, B big Y+ 4 byg"
filters, and instruments Sfoica and Sdéderstrém, 1983; T l4ag i +ang ™’

Soderstrom and Stoica, 1989; Ljung, 1999or the closed-

loop case a covariance analysis has been provided byand the process model parameters are stacked columnwise
Sdderstrom et al. (1988ndSdderstrom and Stoica (1983)  in the parameter vector

While in Forssell and Chou (1998his analysis is used to

compare several closed-loop identification methods, in the 0 = [a1---a, by ---b,]" € R?". 3)
present paper main attention will be given to a characteriza-

tion of the properties of the several (extended) IV-methods Furthermore, let us denote lgy.(r) and by(¢) the closed-

presented here. loop and open-loop regressors, respectively, defined as
The paper is organized as follows. After the preliminaries,

several IV and IV-related methods are presented and unifiedd(r) =[—yt—-1)---—ylt—n—m)

in an extended IV framework in Section 3. Section 4 intro- rt—1)--r(t —n —m)] € RZ+2m, (4)

duces the optimum variance closed-loop IV estimation with

the consequences for the several design variables. Since fop,T ;) — [—y(r — 1) .- — y(r — n)

optimum variance, the noise model has to be known ex- w(t = 1) ut —n)] € R?, (5)

actly, several bootstrap methods are proposed in Section 5
for approximating this required information from measure- 1 r

. . . H=[r@t—1)---r(t—rp)] e R'5. 6
ment data. In Section 6, the comparison between the differ- or ) =1r( ) ( 5] ©
ent proposed methods is illustrated in a simulation example,andrB a user-specified integer. #f= no, i.e. the plantGy

§howmg that the optlmal estlmgtor can be aqcurately appProX-is ~ontained in the chosen model set, the oufitit can be
imated by an appropriate choice of the design parameters. written as

y(©) = " ()00 + vo(1). 7
2. Preliminaries
where 6y denotes the true parameters ang(r) =
Consider a linear SISO closed-loop system shown in Ao(g Y Ho(g)eo(r). Additionally we use the following
Fig. 1 The process is denoted lyp(z) and the controller  notation for filtered data
by C(z); u(¢t) describes the process input signa{s) the

process output signal arfdy ()} is a sequence of indepen- ¢(t) = L(cfl)q)(t), (8)
dent identically disturbed random variables of variange
The external signalg, (¢), r2(¢) are assumed to be uncorre- y(t) = L@ Yy, (9)

lated witheg(z). For ease of notation we also introduce the
signalr(t) = r1(r) + C(q)r2(r). With this notation, the data  whereL(g 1) is a particular chosen prefilter.
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3. Closed-loop IV methods in an extended IV is solved by:
framework

3.1. Closed-loop basic IV method Uuiv(N) = arg o

1 N

[ﬁ > z(r)L(q)coT(r)} 0
=1

2

: (13)
0

Oy to the set of equations N D 2Lg)y @)

_ The basic-IV estimate dfp is determined as the solution { 1 Y ]
=1

N R whereL(q) is a stable prefilter anlx|| = xT Ox, with Q

Z z()[y(t) — <pT(t)0iV] =0 (10) a positive definite weighting matrix.

=1 Following the same reasoning as in the basic IV case, the
extended-1V estimate provides a consistent estimate under
the following two conditions

Z| -

or, provided thaEfil 2(1)o' (1) is nonsingular

. o Ez(t)L(q)@" (t) is nonsingular,

N N e Ez(t)L(g)vo(t) =0.
R 1 T 1
O = [ﬁ; 20 <t>} [ﬁ ; z(t)y(t)] (12)

3.3. Tailor-made IV identification (M1)
wherez(r) represents the vector of instruments, having di-

mension 2. The tailor-made IV method (referred to M1 in the fol-
By using Eq. (7) in (11), it follows that lowing) as discussed idilson and Van den Hof, 2001s
designed to provide an unbiased estimate for the process
1 modelG (g, 0), while pertaining to simple linear regression
A 1 T 1 J type of estimates. The closed-loop transfer function from
Oy =00+ | + Zl e’ 0| |5 Zl 2(Hvo() | . toy is modeled by
(12) G(g,0)
1+ C(q)G(q,0)
Therefore, the basic IV estimate provides a consistent pa- Bqg L, 0)P(¢g™
rameter estimate (plig., .0 = 0) under the following two T AWGLOPGYHtBGLOOGY

conditiong : _ _ .
parametrized in the plant parametdt (tailor-made

parametrization). The prediction error related to a linear re-
gression model for the closed-loop system is then given by

T o1 5 o1
A typical choice in the closed-loop situation is that the in- o 0)_1_ Aei(g ’?iy(t) %f(q - Ore)

struments vector is composed of delayed samples of the ref-5¢ (@ 0) N Blq . 0)Pg™)

erence signelz(r) = ¢, (¢) with dimensionrg = 2n. Note =Adalg . 0)

that the consistency result is valid under the condition that =A™~ 0O)P(g 1)+ Blg 1. 0)0@@ ™). (14)
Gy is contained in the chosen model set; it does not require Using the relatiom =u 4 Cy or equivalentlyPr = Pu+ Qy,

exact modeling of the noise mod#&} and it allows the con- it follows that

troller C to be nonlinear and/or time-varying. 1 .
e(t,0)=A(qg . O Pq H)y@)

— B(g L 0P Hu).

which alternatively can be written as

o Ez(t)p" (1) is nonsingular,
o Ez(t)vo(r) =0.

3.2. Closed-loop extended IV method

An extended IV estimate dk is obtained by generalizing _ T
the so-called basic IV estimates @by prefiltering the data ~ £€(> ) =) — ¢ ()0, (15)
and by using an augmented mstrum.em e R" (n, > 2_n) where (1), 3" (t) given by (8)=(9), and the prefilte (¢)
so that (10) leads to an over-determined set of equations thabarticularly chosen ak(q) = P(¢—1). Then the tailor-made
IV estimate off is determined as the solution to the set of
equations

N
_ 1 ~
1The notationE[.] = limy_ 0o & SN LEL] is adopted from the ~— — E e(t, Oy F)n) =0, (16)
prediction error framework oEjung (1999) N =1
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wherey (1) = F o, (t) denotes the vector of instruments, and 3.5. Tailor-made and extended IV identification
F € R?"*’8 g user-chosen matrix with rank: 2
The choicerg = 2n, F = I, leads to a simple basic IV 3.5.1. Unification

estimator applied to the closed-loop system, taking instru- In order to analyze the variance properties of the estima-
ments as 2 delayed samples of the reference signal, that is tors presented above, they are positioned in the framework
supposed to be persistently exciting of sufficiently high or- of extended IV estimators. All estimators discussed so far
der. Forrg > 2n, the matrixF constructs 2 instruments out ~ can simply be interpreted as a special form of extended IV
of rp delayed reference samples, by taking particular lin- estimator. The most complicated one is the BELS estimator
ear combinations. Again a basic IV method results, but now specified by the particular choice of instruments determined

with a particular choice of instruments. by F in (17) and referring to the situation > n only. For
this latter estimator an alternative formulation can be given,
3.4. BELS method as shown in the next Proposition.

The so-called bias-eliminated least-squares method Proposition 1. The tailor-made IV estimates presented in
(BELS) as proposed byheng and Feng (1995Fheng Section$8.3and3.4related to the particular situatiom > n,
(1996) has been shown to be a particular form of tailor- 7#=7+m and with the particular choice of F given {17),
made IV estimatorGilson and Van den Hof, 2001It has satisfies
two different formats, dependent on the relation between T A 2
n (model order) andn (controller order). Form<n, the  Uiv(N)=arg ff(}lnHR(p,(p(N)@— R(p,y(N)HQ (21)
BELS estimator is equivalent to the tailor-made estimate
er]th rg=2n and F = éz,, Form>n, it is obtained by  \ith Ié(p,q)(N) — %Zfil 0, (3T (@), Ié(pry(N) — 1N
choosingrg =n +m an SN 0, (05(1), and

_ T pT ) pT -1
F=M'Ry o (N) (R, o (N)Rq, ¢ (N)™ D 0 (R g KT , )t € ROFmx(m) (22)

with Ry o (N) = 1/N YL 0, 0@l (), and M € Consequently it is equivalent to an extended IV estimator
ROHm+re)x2n g fyll-column rank matrix dependent on  (13) with
controller dynamics only and specified as
e instrument vector(r) = ¢, () with dimensionn, =

M = P. Qc) c R(n—i—m+r3)><2n’ (18) rp =.n+m, L

0 P e prefilter L(g) = P(¢™Y),

' e weighting matrixQ (22).

whereP., Q. € R"T™>" gre Sylvester matrices expanded

by [l p1 -+ pul” andlgo g1 - gu]" respectively, given  proof. A full proof is added in the appendix.
in (2), i.e.

1 0 ... 0 - As a result, all considered IV methods can be unified in
) ) . an extended IV framework, where the estimator is specified
pr e e by Eq. (13) with particular choices of the design parameters
: T z(t), L(g) andQ, as summarized in the following overview:
Fe=|pm -1 (19) e closed-loop basic IV (Section 3.1); =2n, z(1) =, (¢)
0o . m withrg=2n,L=1,0=1,
: . o e tailor-made IV (Section 3.3)1, =2n, z(1) = F(q) ¢, (1)
o ..o with rg =2n, L=P(g™ %), 0 =1,
B Pm = e BELS in casen <n (Section 3.4): special case of the
and P. € R™*" is given by P. but expanded with a zero tailor-made IV wheref” = I andrp = 2n,
matrix: e BELS in casemn > n (see Proposition 1y, =n + m,
2(t) = @, (1) with rg =n +m, L = Pi¢g™h, 0=
P = [ Fe ] . (R, o Rp o) 7"
O(rB—n—m)xn

The matrixM satisfies 3.5.2. Covariance property

() = MTgoC(t) (20) The asymptotic distribution of the parameter (13) esti-
mated by an extended IV type of method has been exten-

for a full description of the relation between BELS and sively investigated in the open-loop conteStiferstrém and

tailor-made 1V, se&ilson and Van den Hof (2001) Stoica, 1989 Moreover, the structure of the closed-loop
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extended IV estimates is identical to that of the open-loop with

estimates, as is shown iBg¢derstrom et al., 198.7As a re- opt 4 c=~ ATt
sult, under the assumptions given in section 3.2 (in particular Friv = 40lEQ ()P R ()],
that instruments and noise are uncorrelated) @pc 9, 0

P r(t) = L(g)p(t) and((z) is the noise-free part ap(r).
is asymptotically Gaussian distributed or (1) @) (1) part ap(1)

The minimum variance can be achieved by the following
IN@ - o) d_litm(o’ Pav) 23) choice of design variables:

with 0* the asymptotic parameter estimate, and the covari- e Q =1 andn, = 2n, i.e. R;3 in (24) is square,

T _ 1
ance matrixPyj is given by o L(g) = —Ho(q)le(q_l):
Py = /0(Rl,0R.5)"*R1,OR.,., OR 5 * 200 = T@aces PO
T -1
X (R QR:5) (24) This can be verified by substitution into (24) and by using
where the fact that
R.p=Ez)p" (1) = Ez(t) L(q) 9" (1), (25) R.5=Ez()L(9)p" (1) =Epr ()L (1).
Rz = Ezr (2] (1), (26) Note that the optimal IV estimator can only be obtained if
~ the true noise modelo(¢ 1) Ho(q)? is exactly known and,
r(t) = Z tiz(t + 1), (27) therefore, optimal accuracy cannot be achieved in practice.
i—o Furthermore, it is interesting to notice that the optimal
~ accuracy is achieved without introducing any additional in-
T(q) = L(q)Ao(g~Y) Ho(q) = Z gl (28) struments#, = 2n), like in the open-loop situation. The in-

troduction of additional instruments will not contribute to
) o reduction of the variance, at least in the ideal situation of an
andT (q) is a monic filter. [J exactly known noise modelo(g 1) Ho(q).

i=0

3.5.3. Remarks

In the situatiom = 2n, the number of unknowns in (13) 5. Approximate implementations
is equal to the number of equation, and the weighting matrix
Q will not influence the optimization. In this situation the In order to give some clues to the closed-loop identifica-
simple choiceQ = I suffices. According to equation (24)  tion method users, it would be interesting to compare the
and under the assumptiaip € ¢, the expression for the  extended IV method with the optimal IV one. However, as

covariance matrix of this estimate then S|mp||f|es to the latter cannot be achieved in practice, approximate im-
Puy = )vOR:-leTzT RZ—(?)T. (29) pleme_ntatlons of the op_tlmal IV method will be considered.
@ For this purpose one will need to take care that
4. Optimal closed-loop IV e a model ofAgHp is available in order to construct the

prefilter L(g) and the instruments(z),
The choice of the instrumentst), of n,, of the weight- e a first model 0fGp(g) is needed to compute the noise
ing matrix Q and of the prefilter.(¢) may have a consid- free part of the regressar(z).

erable effect on the covariance matrfxi,. In the open- ] ) o
loop situation the lower bound of,i, for any unbiased The choice of the instruments and prefilter in the IV method

identification method is given by the Cramer-Rao bound, affects the asymptotic variance, while consistency proper-
which is specified in, e.d.jung (1999)andSoderstrém and t|f-zs. are generically gecured. This s_uggests that _mlnor.de—
Stoica (1983)Optimal choices of the above-mentioned de- V|at|o_ns fro_m the optimal value (which is not gvanable in
sign variables exist so thak,, reaches the Cramer-Rao practlce) will only cause ;epond-order effects in thg .result—
bound. For the closed-loop case, this type of reasoning is notiNg accuracy. Therefore, it is considered to be sufficient to
viable for IV estimates, as the objective of reaching mini- US€ consistent, but not _necessarily effi_cie_nt estimates of the
mum variance conflicts with the restriction that instruments dynamics and of the noise when constituting the instrument
and noise should be uncorrelated. However it has been showrnd the prefilterijung, 1999. o

in Soderstrom et al. (1987hat there indeed exists a min- Additionally for obtaining the necessary preliminary mod-
imum value of the covariance matri®.y, as a function of els a restriction is made to linear regression estimates in or-
the design variables(r), L(q) andQ, under the restriction der to keep computational procedures simple and tractable.

thatz(z) is a function of the external signalz) only: -
ont 2 Although AgHg is referred to as “noise model” it also involves
Pyiy > Pxie knowledge ofGg through its denominatosg.
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5.1. First alternative (M2, M3)

Several bootstrap IV methods have been proposed in the
open-loop situation, in an attempt to approximate the op-
timal IV method, see e.groung (1976) Soderstréom and
Stoica (1983)xandLjung (1999) The first solution consists
of extending one of these algorithms to the closed-loop situ-
ation; here the IV4 method.jung, 1999 will be considered.

The only difference between open- and closed-loop cases is

that in the latter, also the input is correlated with the noise.
Therefore, the instruments have to be uncorrelated with the
noise part ofu(z) but correlated with the noise-free part
of u(z).

Method M2 (clivd)

Stepl. Write the model structure as a linear regression

3, 0) = )T, (30)
Estimate6 by a least-squares method and @@talong
with the corresponding transfer functi@m (¢).

Step2. Generate the instrumenis(r) as

C(q)G
1) = SO 31)
1+ C(g9)Gi(q)
ur(t) = —————r(1) (32)
1+ C(g9)Gi(q)

() ==t = 1) - = 1(t — n)
it —1) i — ],

z1(¢) can be seen as an estimation of the noise-free part
of the regresson(t). Determine the IV estimate df in
(30) as

02=R_;R.,y. (33)
The corresponding estimated transfer function is given by
Ga(q) = Ba(q™Y)/A2(g™h), of ordern.

Step3. Letw(t)=A2(q 1) y(t)—B2(g~Y)u(r) and postulate
an AR model of order 2 for w(t): L(g)w(t) = e().
EstimateL(q) using a least-squares method and denote
the result byL(q).

Step4. Generate the instrumenis(r) as

X C(@)Ga(q)
()= ——L2ZD (34)
T I c@ba)
fio(t) = ——————r(1) (35)
1+ C(g)Ga(q)

2(1) = [=F2(t = 1) - - = Fa(t — n)
it — 1) it —m)]".

M. Gilson, P. Van den Hof / Automatica 41 (2005) 241249

Using these instruments(z) and the prefilteri(q), de-
termine the IV estimate df in (30) as

A

Octiva = Iéz_z:}/lr ﬁzzyrv (36)
where
@7 (1) = L(@)ot) andyr (1) = L(g)y (7). 37)

The asymptotic covariance matrix of the final estimates
Is the Cramer-Rao bound, provided the true noise model is
an autoregression of orden 2

Method M3 (clivd — armasel)

The method above can be improved by using a more so-
phisticated noise modeling procedure, e.g. by replacing the
third step of the M2 algorithm by tharmasel proce-
dure developed iBroersen (2002)including an appropriate
order selection step. This procedure consists of estimating
several autoregressive models of different orders and in ap-
plying a nonasymptotic order selection criterion based on
estimates of prediction error expectation.

5.2. Second alternative (M4)

Noise and process models have to be known in order to
construct the instruments and the prefilter. Since, the sec-
ond order statistical property is not of crucial importance, a
simple solution consists in estimating these models by us-
ing a high-order least-squares estimator. The result will be
obviously biased but a bias in the first step does not lead to
a bias in the final model.

Method M4 (cliv3)

Stepl. Write the model structure as a linear regression
(30), and estimaté@ by a high-order least-squares method.
_The resulting élA leads to process and noise models
G1(g) = Bi(g™Y)/A1(¢™Y), Ha(q) = 1/A1(q7Y), respec-
tively.

Step2. The prefilterL(q) = A1(¢~1)Hi(g) = 1 by con-
struction, due to the ARX model structure. Compute the
noise-free part of the regressor

o) =[-y1(t =1 - —y1(t — n)
i1t — 1) dg(t —n)]"
with y1(¢) andz1(r) computed as in equations (31)—(32).
Generate the instruments as
2(0) = {[A1(g HHi(@)1 70T (1))

Step3. Using the instrumeni(¢) and the prefilteri(q),
determine the IV estimate in (30) as

~

Ociiva =

(38)

R, R (39)

o7
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Fig. 2. Bode amplitude plots of the process (black) and of the estimates (grey)

6. Example

The following numerical example is used to compare the

Summary of methods:
M1: tailor-made IV {iv)/BELS withm > n, see Section 3.3;
M2: bootstrap IV €liv4), see Section 5.1;

performances of the proposed approaches. The process td13: bootstrap IV with automated noise model identification

be identified is described by Eq. (1), where

0.5¢71
Go(g) = %gq—l’ n=1, (40)
0.0012+ 0.000% 1 — 0.0015~2
— =2 41
€@ =05 006561+ 046562 " - (4D
1— 15651+ 1.045 2 —0.333g; 3
Ho(g) = == &l il (42)

1-235 1+20% 2— 06675 3

r(t) is a deterministic sequence (realization of a random bi-
nary signal) an@dg(z) is a white noise uncorrelated witir).

(clivd-armase), see Section 5.1;

M4: bootstrap IV with high-order least-squarei\(3), see

Section 5.2;

M5: basic closed-loop IV.

For illustration purposes, all of these methods are compared
to a benchmark which consists of applying the true noise
and process models for generating the prefilter and the in-
struments.

The process parameters are estimated on the basis of
closed-loop data sequences of lenyyth-1000. Monte Carlo
simulation of 100 experiments has been performed for a
signal to noise ratio

Py d

SNR =10 Iog(? (45)

):15d3

where P, denotes the power of the sigrnaland y, is the

The process parameters are estimated by means of the methygise-free output signal.

ods M1-M4. Moreover, the results from the basic closed-
loop IV method developed b8dderstrom et al. (198@re

In Fig. 2 the Bode diagrams of the 100 models identified
by the six methods are represented. Furthermore, the fol-

also analyzed. These methods referenced as M5, consists Ofpwing function is computed and representedFig. 3 for
using the delayed version of the reference signal as instru-gach algorithm

ments; the estimate is thus given by

N “lrn

Octv = [Z C(r)qﬂ(t)} [Z C(my(t)} , (43)
=1 t=1

() =[r@t) r@t—1) r(t —2m1". (44)

1 MC )
_ oy A i
g(w) = el 1;21 |Go(e™) — G (e7)]

(46)

whereMC denotes the number of Monte Carlo experimenta-
tions andék(e"”) the transfer function estimated during the
kth Monte Carlo experimentatiofrigs. 2and 3 show that

M3 gives the best results (no bias, lower standard-deviation),
really close to those of the benchmark. The two approxi-
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35 minimal value requires the knowledge of the true system pa-
rameters and is, therefore, not reachable in practice. Several
3| . . methods have thus been developed to determine the design
, \\f M1 M2 — parameters which allow to approximate the optimal closed-
25| M3 ... i loop IV estimator. These methods have been compared to
,"l|v|5 M4 --- the recently suggested Tailor-made IV methods and BELS
ol 27N Benchmark— - methods which are known to lead to unbiased plant esti-
N N mates in closed loop. However, to arrive at estimates with
151 ;o A attractive variance properties it is preferable to apply boot-
strap IV methods as considered in this paper.
1+t
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frequeng
Fig. 3. Average frequency response erggt) for several IV methods;
results are averaged over 100 Monte Carlo experiments. Appendix A.
Table 1 Proof of Proposition 1. Using (15), the solution to (16) can
Norm be written as
Method Bench. M1 M2 M3 M4 M5
(tiv) (clivd)  (armase)  (cliv3)  (cliv) . N 1rw
Norm  1.921  4.766 2.893  2.223 2591 3685 ()i, (N) = [Z n(;)g,ﬁ(,)} [Z ﬂ(f)?(f)} .
=1 t=1

With (20) the expression (17) fd¥ can be written as
mate versions of the optimal IV algorithm (M3, M4) and the
closed-loop IV method (M5) g_ive better results than the pro- g — 1@; @(ﬁ%% Iél-w 1L
posed extended IV (M1) in this case. Moreover, the method " T
based on the least-square high-order model (M4) seems to _ . . ~
be more appropriate than the extension of the IV4 method Substitutingy (1) = F¢, (1) into the expression fofliv (N),
to this closed-loop case (M2). and using (8) then delivers
Furthermore, the two norm of the difference between the . T A T 1a g
real and estimated transfer functions is also computed for 0iv =Ry, (R, ¢, Ry o) Ry, 5]

each method R}, 5(Rp o Ry o) Ry 5. (48)
1 McC . . .
Norm= C 2/ 1Go(€?) — G1(€”))2 do. (47) The structure of this expression is
k=1 R

o _ _ Oy = (ATQA)ATOB (49)
The results are given ifiable 1and confirm the previous
graphic results: the bootstrap methods considered in the pawith
per give better results than the extended IV technique.

A=Rp,p. Q=Rpp Ry ,)" B=Ry,5. (50)

having the structure of a solution to a weighted least-squares
problem. As a resul@,iv is the solution to the extended IV
Several IV and IV-related estimators for closed-loop sys- problem

tem identification have been studied and set in an extended
IV framework. An explicit expression for the covariance ma-
trix of estimation errors is given and it is then shown that
a minimal value of this covariance matrix can be achieved
for a particular choice of instruments and prefilters. This With weighting matrixQ given by equation (50).

7. Conclusion

‘ 2

0 (51)

0,y = arg min ‘ ’I?(pr@@ — Ry,
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