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Abstract

Due to the modelling error a model-based controller gen-
erally works better with the model than with the modelled
plant. This difference between the performances can be made
small by wlecting a model that is accurate at the cloewd loop
relevant frequencies. In this paper it is shown that an itera-
tive approach of identification and control design can lead to
a model that is much better suited for feedback design than a
model resulting from a plain open loop identification. In this
iteration each identification is performed such that a certain
closed loop criterion function is minimised. Each control de-
sign step employs the latest identified model to construct an
LQG compensator. The performance requirements are grad-
ually increased during the iteration.

1 Introduction
The desip of a linear control system is frequently based on a model of
the plant under consideration. A model is never an exact description
of the system, and due to the model error the controller will not work
as well with the plant as it does with the model. Obviously the model
error should be tuned towards the control objective. The need of a high
accuracy near the cro-over fiequency is well recopized. The open
question is how large the model error may be at other frequencies.
An ad hoc solution to this problem is obtained e.g. in [1], which

addresses a control problem with a prspecifed bandwidth. In [3] sys-
tem identification is studied in combination with the minimum variance
control problem. The model-based controller is compared with the op-
timal controller that would have been designed, if the plant had been
known exactly. The difference between these two controllers can be
minimized by an optimal experiment and prediction error identifica-
tion. In [8] the prediction error method is applied as well, but there a
desired sensitivity is used as a weighting function for open-loop iden-
tification.

Instead of using plant knowledge or desired feedback transfer func-
tion matrices, we intend to identify a model that accurately describes
the closed-loop relevant system properties for some given compensator.
The resulting model is subsequently used to design a new compensator
with slightly increased performance requirements. The rationale is
that the model will still be a good representation of the plant for a
new compensator, provided that it differs not too much from the pre-
vious one. Therefore the performance improvement that is achieved
for the model is expected to be achieved for the modelled system as
well. Next a new identification is carried out in order to obtain a model
that accurately describes the system for the new compensator, and the
entire procedure is repeated until a satisfactory controller performance
is accomplished. In this paper we show that, at least under favourable
circumstances, such an iterative scheme can bring about a model for
high-performance control design that cannot be obtained from open
loop considerations alone. As exposed in [9] such an iterative scheme
is actually necessary for high performance control design.
This paper describes the application of the above scenario to identi-

fication of an approximate model for LQG feedback design. We utilize
the prediction error identification method, [6], and the concept of a
performance criterion as introduced in [3]. A closed loop performance
criterion is defined and the design variables of the prediction error
method are chosen such that this criterion function is actually mini-
mized by the identification procedure. This makes the identification
criterion compatible with the LQG control objective. Similar develop-
ments have been established in [13] for LQ control design. The LQG
objective has also been addressed in [2], but there the identification
procedure minimizes a model error that pertains to robust stability

rather than to robust performance. The main results of the current
paper have been derived in [4] and are exposed in more detail in [5].
The outline of the paper is as follows. In the next section the pre-

diction error identification procedure i summarized. In setion 3 we
define the closed loop performance criterion of concern. In section 4 we
adjust the prediction error method such that this criterion function is
actually minimized. Then in setion 5 we consider an example in which
the iterative scheme is put into practise for a particular LQG control
objective. In section 6 we discus the results and we make some gen-
eral obervations concerning the interplay between identification and
control desip. The paper ends with a summary and conclusions.

2 Prediction Error Identification
In this ection we adopt the relevant aspects of prediction error iden-
tification from [6].

Consider a discrete-time representation of a linear, time-invariant
SISO system with additive stochastic disturbances

S: y(t) = Go(q)u(t) + v(t) = Go(q)u(t) + Ho(q)e(t), (1)

where Go(q) is the deterministic and Ho(q) the stochastic part of the
plant; u(t) and y(t) are respectively the input and output at time t
and e(t) is discrete white noise with zero mean value; q is the shift
operator: qu(t) = u(t + 1).
We choose a model set in which the determistic part is parametrized

independently from the stochastic part,

M y(t) = G(q,p)U(t) + H(q, c(t). (2)
G(q, p) and H(q,q) are defined analogously to Go(q) and Ho(q). We
do not asume that the true system $ is in the model set M. For
notational convenience we write B = [p i] for the parameter vector and
we introduce

To(q) = [ Go(q) Ho(q)], T(q, ) = [G(q, p) H(q,q]) (3)
The sgal E(t) in (2) is the one step ahead prediction error. It can
be filtered with a stable linear filter L(q), which yields the filtered
prediction error ef(t, ) = L(q)c(t, 9). For SISO systems filtering the
prediction error is equivalent to filtering the input u and the output
y with filter L(q). An estimate of 0 is obtained by minimizing the
quadratic norm of the filtered prediction error with respect to 9

1N-1
lo= argmin~Zq(te)

0 (t ,
=

)
t--

(4)

with N the number of samples. This yields the estimate T(q, 9).
In [6] it is shown that under weak conditions the asymptotic param-

eter estimate is given by

lim i= r = argmin E4'(t,9) w.p. 1. (5)

This can be given the frequency domain interpretation

= argminj'2Xed,p, f*wt(e-iwp,l w

P= | p,(6)IL(e )12 (

7 = arg minj T(c p', 17)I(w)f'7(e, p) ))1,7) ,

where Tis the model error defined as

T(q, O)= T(q, ) - To(q)

(7)

(8)
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Fig. 1: System in cled loop

and 9(w) is the spectrum

f(w)=[ 4,(w) *(w) 1oL4.,w) lt(w) I'

I{IG(e", A(D))Ci(e"') Go(etW)}eW |tF (L)+
+1 H|1 + G(eiw ,KD))C2(e") I + Go(eiw)C2(e) 1

1 + G(e"-,AD))C2(Se) 1 + Go(ew)C2(eY9 "7
(12)

where the argument D has been added to emphasize the dependency of
the identification result on the design variables. This criterion function
is snall if the closed loop of the model is close to the cloed loop of the
system in respect of the spectra of the sigals F and i that drive the
feedback system. The followg proposition gives a useful alterative
exprewion for Jl(D).
Proposition 3.1 ([5]) The performance criterion J1(PD) sastisfis

J(D) =

= 11
+G( ( )) dw

where t(q, 9) is givns by e tion (8), and according to fiure I tke
Signa Q(t) stifies

(9)

with 4,,(w) the spectrum of 1(t) and t.(w) the crow-spectrum of
u(t) and e(t).
The filter L(q), the input spectrum t.(w) and the crow-spectrum

9,.(w) dictate the fiequency distribution of the model error (see [12]
for details). As these desin variables are at our disposal, we can choose
them such that the model is optimal in view of the intended use. We
signify the design variabks as

D = {L(q),tdw),..(w)}. (10)

The spectrum ,,(w) can be specified by an open loop input design,
but a nonzero 9,(w) can be realized only by introducing feedback in
the identification. Of course one can not assig t(w) as this would
be in contradiction with the nature of a noise. We will not consider
the noise model as being a part of the design variables, but as the
stochastic part of the model that is to be fitted to the sytm.

3 A Closed Loop Performance Criterion
In this section we will define a closed loop performance criterion to
measure the model's capacity to describe the controlled operation of
the plant. We will define the criterion function for a fixed controller,
irrespective of the applied control design technique. At a later stage
this controller will be determined by means of LQG feedback design.
We consider the closed loop configuration of figure 1, in which the

plant is controlled by the fixed two-component controler (C1, C2). The
feedback syskm is driven by an external disturbance v and an external
reference signal F, which are assumed to be mutually uncorrelated. The
bars represent the operational conditions under which the model must
appropriately describe the plant.
The output y satisfies

i(t) = Go(q)CI(q) -+t 1 + Ho(q) e(t).
l+CGo(q)C2(q) r()I + GD(q)C2(q) (11)

A similar equation can be written down for the model by replacing
Go(q) and Ho(q) with G(q, p) and H(q,,). The model is a good closed
loop description of the system if the error terms

G(q, p)Cl(q Go(q)CI(q)
1 + G(q, )C2(q) 1 + Go(q)C2(q)

and
H(q,7 HO(q)

1+ G(q, )C2(q) - + Go(q)C2(q)
are small in an H2 sense. Analogously to the minimum variance ex-
ample in [6], we define a closed loop performance criterion Ji(D) as
2r times the variance of the difference between the system output (t)
and the one obtained using the model, i.e.

J1(D) =

(14)u(t) = 1 + Ci(q) !F(t) - Ho(q)C2(q)c(t)I+O(q)2(q) I + Ga(q)C2(q)~
and *(w) satisfies

(im = f t"(w) *s(w)14I96(w) *t,(w) J* (15)

We want to choose the desin variables such that this performance
criterion Jl(D) is minimized. More precisely we want to determine the
optimal desigp variables

=D,,pt=arg inJ(P).ID
(16)

If the identification is carried out accordin to this optimal choice of
design variables, then the resulting model is an optimal closed loop
description of the system.

4 Optimal Identification Strategy
In this section we wiI derive the optimal choice of design variables
such that the closed loop performance criterion Jl(D) defined in (12)
is minimized. First we recapitulate some theory presented in [3], where
the general scalar criterion JG(D),

JG(D) = / T(et, D(D))C(w)7T(et @(D)) dw,
_

(17)

has been introduced as a measure for the model quality. In here C(w)
is a 2 x 2 Hermitian weighting matrix that describes the relative impor-
tance of a good fit at different frequencies depending on the intended
use of the model.

For the number of samples increasing to infinity, it is shown in (3]
that w.p. 1,

lim J (D) = JBs(D) J T(cr(P))C(w)T(c,r(D)) dw,N--o-o
(18)

where JB is a bias-contribution to the performance criterion JG- We
consider the optimization problem

PD.pt = argminJ(D).p (19)

In [3] this optimization problem is solved by matching the criterion
function (18) to the criterion that is minimized in the identification
procedure (6). In this way it is achieved that the identification (6)
actually performs the desired minimization (18). It should be noted
that the minimization (7) with respect to the stochastic part does not
contribute to the minimization of the above performance criterion JB.
In [3] this is accounted for by adopting a fixed-noise model such that
the parameter vector qi is empty and (7) vanishes. Here we formu-
late a slightly more general result for the case of an independently
parametrized noise model.
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Theorem 4.1 ([5]) The optimal choice of design vanrables (19) with
respect to the deterministic part of thc model (6) is given by

U'Q =ctCi(w)= Cll(), IL.(-e"912 '1.t(W) =C C2(W),JH(ei-,q*)Il IH(ei,r)12
(20)

where C is the ith row, jth column entry of C and c is an arbitrary
positive congsnt.

We intend to apply this resfult to the situation of the performance
criterion (13). his can however not be done straightforwardly. The
reason is that the criterion function JG in (17) is quadratic in the
model error, while j1 is not a quadratic criterion function as the cor-
responding weight C(w) would depend on C(q, ,(D)). We proceed by
first introducing the auxiliary quadratic performance criterion A2 as

J2(D) =

= L| -i+ -
G -e-CdTiI2(c DD))+(w)fl,(e D)) dw,

(21)
where G is ome fixed model. This eriterion function is quadratic in
the model error, with the (constant) weighting matrix C(w) given by

Collecting data in
operational conditions

r

Y I

WM±1

"q;U,g

1y

filter r s |

I1

C(W)= - W) -Q
11 + Cp(e""w)C24#'fl22

So theorem 4.1 can be straightforwardly applied to find

D2,6pt = arg minA}()ID

(22)

(2 3)

Next we define the discrepancies 61(w) and C6(w) as

61() = --
-

I

II +G1(e'-j(ciC4)12 1 + G(w',(Pi,1,,))C2(e"wj)2'
)(24)

-2i( +
= G(t16'VD2,,pt))C2(ew)12 +

(25)
which are of use in the next theorem.

Theorem 4.2 ([5]) Consider the performance criterion defined by
(12). If the number of samples tends to infinity then the choice of
desiga variables

L14w (q) =

D21o= '1,,'t,(w) = (W) (26)
I *ue,ot(w) ='1.w)

converges to the optimal solution D1,,, if 61z(w) and 6(w) convergc to
zero, i.e.

lrm Jj(V2.t)-Jj(V,ipt)=0. (27)

This means that the choice of the design variables (26) generally is
a good choice, and it is even the best possible deign (in a quadratic
error sense) if both 6i and 62 vanish. From equation (25) it follows that
62 is small if Gj(q) is close toG(q, (V2,4)), which is the result of the
identification conducted according to theorem 4.2; more specficaly,
the corresponding sensitivity functions have to be similar. This dis-
crepancy 62 can be calculated afterwards. Moreover it can be reduced
to an arbitrarily small value by an iterative procedure. In eh step of
this iteration GJ is chosen as the identification result of the previous
step. This means that the filter Lpt(q) is determined iteratively. From
equation (24) it follows that Xi is small if 0f(q) is close to the (un-
known) optimal identification result G(q, gVD,4,pt)). This discrepancy
61 cannot be determined precisely, but it is small if for example the
modelling error is made sufficiently small, i.e. if both G(q, M(Dj,.p))
and G(q, N(2,qpt)) (or equivalently Gf) are close to the real system
Go(q).

Let us now discus the optimal design given by theorem 4.2. It
states that the input spectrum (and the crow-spectrum of noise and
input) in the identification experiment should be the same as those
in the operational conditions (figure 1), which means identification
in closed loop. The data collected under operational conditions have

ufI prediction error I

identification
4 4

y ;(t) = G(q,p)$j(t) + H(q,p)4(t)

Fig. 2: Optimal identification strategy

to be properly filtered in order to obtain the optimal model. The
interpretation of the optima identification is that it include a weight
at those fequencies where the closd loop of the plant is cls to the
stability margin (ii contains much energy) and/or where the cled loop
of the model is cloe to the stability margin (L,,t(q) has a lJge gain).
The complete identification procedure is visualized in figure 2. No-

tice that no knowlge is required of the external reference signal f(t)
nor of the noise 0(t) in order to carry out this identification. We also
notice that in the identification procedure no perfect knowledge of the
true system To(q) is required, which is a very attractive property.

5 Application to LQG Feedback Design
The theory ofthe previous sections has been developed without making
asumptions about a specific controller deign method. In the example
of this section we wil employ one particular controler design proce-
dure, vis. LQG feedback design. We shortly summarize the relevant
topics. For a more detailed discusion the reader is referred to e.g. (7].

Consider the continuous time SISO modelM for which a controller
has to be designed

M z = Ac+Bu.+rw
b = CZ+v (28)

where w and v are sero-mean white noises with covariance matrices

E{wwT}=W>O, E{vJ}=V>O, E{uvT}=O. (29)

The signal urn is the control signal to the model and A.t is the output
of the model. Now the LQG problem is to devise a feedback control
law which minimize the cost function

i. T
1

2'_
}

T U)dJ,G=lim E inm~~fJ(T--co Tj (30)

with Q a positive semi-definite weighting matrix and R a positive
defiite weighting matrix.
There are several weighting matrices that we can freely choose. We

want to investigate the impact of the identification procedure on the
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quality of the resulting controller and not the impact of the design
weight. Therefore we pragmatically fix the weighting matrices,

r=B, W=1, V=C, Q=CTC, R=c (31)

Then the LQG criterion function becomes

JLQG = lirm E{4 J; (l(t) +cum(t))dt} (32)

and it implies that the white noise w is assumed to be additive at
the input u,,,. The latter is equivalent to stating that a white noise
external reference signal r enters at the input. This actually determines
the operational conditions in the figures 1 and 2, i.e. Ci(q) = 1 and f
is white noise.
The parameter c is the only design variable that is left and we will

use it to establish the performance requirements on the controller. A
relatively small value of c gives less weight to u,,, in the criterion func-
tion, and the output is assumed to be disturbed less, which gives rise to
a tighter feedback loop. This will generally also lead to less robustness,
even though no LQC controller optimizes robustness at all.
Now we apply the optimal identification procedure derived in the

previous sections in combination with this fixed controller desip pro-
cedure, i.e. we perform an iteration of identification and feedback de-
sign. We use low order models and noise-free simulations in order to
emphasize the effects due to undermodelling. We compare the outcome
of the iteration with the result of a direct open loop identification.
We consider the fifth order system shown in figure 3. In the same

fiure the result of the open loop identification of a strictly proper third
order output error model is given, for a white noise input signal. The
low-frequency fit appears to be very good. Next we design an LQG
controller for the model, choosing c = 0.0002. In figure 4 the resulting
closed loops are given of the controller implemented on the model and
on the system. It turns out that the controller destabilizes the system!
Apparently the model identified in open loop does not describe the
relevant closed loop properties of the system sufficiently well.
We now want to identify a third order model that gives an optimal

closed loop description of the system, using the identification scheme
of figure 2. We do this in an iteration of identification and feedback
design. First we design a low-performance controller (c = 0.0004) for
the model identified in open loop. Then we identify in closed loop
with a proper filtering, using the designed controller and the open loop
identification result. Next we design a new controller for the resulting
model with increased performance requirement (c = 0.0003). Then we
conduct a new identification and we design a controller with c = 0.0002.
We repeat this last step till there is no significant change in controler
or model.

Altogether four iterations were sufficient to reach the final result.
Bode plots of the resulting controllers are shown in figure 5, which dis-
plays the increasing control action. Figure 6 reveals that the resulting
optimal model has a poor open loop fit. The closed loops of the final
controller implemented on the optimal model (designed loop) and on
the system are depicted in figure 7. The controller designed for the
optimal model gives a satisfactory, stable performance for the system.
Finally in figure 8 open loop stepresponses are shown of the true sys-
tem, of the model identified in open loop and of the optimal model. We
remark that the optimal model has a bad open loop step response fit,
but it is nevertheless more suited for feedback design than the model
identified in open loop.

6 Discussion
In the example of the previous section it has been shown that for
LQG controller design the optimal identification scheme of figure 2
yields a model that is superior to a model obtained by a simple open
loop identification. This means that a combined iterative approach of
identification and controller design can lead to results that are better
than those obtained from open loop considerations alone. The iterative
aspect is essential, because a model is needed for controller design and
knowledge of the controller is needed in order to identify a good model.
The motivation for the applied iterative approach is, as already has

been argued, that a model optimal for a certain controller will be close
to optimality for a slightly different controller. This explains why the

procedure converged in the example of the previous section. However
it also means that the procedure might very well diverge if in each
iteration the performance requirement is increased too much. For in
that case optimality is completely lost for the new controller. Presently
it is unknown under what conditions convergence can be guaranteed.
In the example of the previous section the controller update has simply
been carried out by trial and error.
We now take a closer look at the criteria that are minimized in the

identification and the controller design procedure. In the LQG con-
troller design procedure the quadratic criterion JLQG in (32) is mini-
mized. For a high performance controller (c = 0.0002 for example) the
contribution of f y4(t) dt dominates this criterion function. The ex-
ternal reference signal is white noise so that the LQG controller design
procedure actually (approximately) minimizes

JLQG(G)= I|G(I + C2G)-'1. (33)

In the identification procedure the quadratic criterion J1 in (12) is
minimi. As the external reference during identification is white
noise, this means that the identification procedure minimizes

J1 = B|G(I + CG)-'1 _ G(I + C2trF1112-
Using the triangle inequality we obtain

JLQG(G) = VG(I + C2G)-' 112 < JTLQ(G) + T1,

(34)

(35)
which means that the criterion value JLQG(G) is bounded. Moreover,
if the model is a good description of the system, JLQG(G) will be close
to JLQG(G), which implies that in that case the controller C2 is nearly
optimal for the system. This topic of matching criteria in identification
and control design is further elaborated in [9].

Finally we remark that identification in closed loop may be trouble-
some if there is noise present in the loop, as is practicaly always the
case. If the noise model is too simple to represent the noise, then the
deterministic part of the model can not be estimated consistently, see
[10]. There are two ways to tackle this problem. The first approach is
to use a sufficiently parametrized noise model (using e.g. Box-Jenkins
instead of output error models). The scnd approach is to "decouple"
the deterministic and noise contribution for instance by the two-step
procedure proposed in [11].

7 Conclusions
Based on asyroptotic results for prediction error identification a scheme
has been developed to identify a model that gives an optimal closed
loop description of the controlled system under investigation. The
procedure consists of data collection in operational conditions and af-
ter that the data are filtered properly. The identified model can be
used for feedback design. This is carried out in an iterative proce-
dure of identification and controller design. In each iteration step a
new model is identified, which is then used to design a new controller
for increased performance requirements. In an example the procedure
has succesfully been applied to design a high-performance LQG feed-
back controller. The identification procedure turns out to be superior
to straightforward open loop identification. This arises from the fact
that the identification minimizes a criterion that is compatible with
the LQG objective.
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