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Abstract: Identifying single modules that are embedded in a linear dynamic network is an
identification problem that has been addressed with different techniques. Prediction error
identification methods provide sufficient conditions in terms of the selection of an appropriate
set of node signals to be measured, an appropriate identification method (e.g. direct or indirect
method), and a data-informativity condition, for arriving at consistent and possibly minimum
variance module estimates. The question whether at all it is possible to identify a unique
module estimate from data, is treated by the concept of identifiability, that is independent
of the identification method chosen, and independent of the particular experiment that is done,
i.e. independent of the design of the signals. In this presentation we will analyse the relation
between these two principal concepts, and show that the data-informativity conditions that are
used for a particular identification method are composed of two components: an identifiability-
induced component, that is independent of the identification method, and a data-informativity

condition that is induced by the particular identification method.
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1. INTRODUCTION

Linear dynamic networks are structured systems that are
composed of interconnected linear time-invariant systems.
Typically a dynamic network induces a graph, with ver-
tices and edges, that represents the topology of the net-
work. Often a network is represented in a state-space form
with states as node signals represented by the vertices
in the graph, and the state transitions as links or edges
in the graph. However in an identification setting, where
not all states of a system are typically measured, it has
appeared to be attractive to represent the network in a
graph that has (measured) node signals as vertices, and
dynamic transfer functions on the links/edges. The basic
setting of Dynamic Structure Functions that was intro-
duced in Gongalves and Warnick (2008), was generalized
to a stochastic estimation and identification setting in
Van den Hof et al. (2013), and has been adopted by several
different authors.

In this setting a dynamic network is built up out of L
scalar internal variables or nodes wj;, j =1,...,L, and K
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external variables v, k = 1,... K. Each internal variable
is described as:

L
wi(t) =Y Galgywi(t) + Ri(q)r;(t) +v;(t) (1)
e
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where ¢! is the delay operator, i.e. ¢~ 'w;(t) = w;(t —1);

e (;; are proper rational transfer functions, referred to
as modules.

e r; are external variables that can directly be manipu-
lated by the user and that may or may not be present;
if r; is not present it is replaced by r; = 0.

e v; is process noise, where the vector process v =
[v1 -+ vr]T is modelled as a stationary stochastic pro-
cess with rational spectral density ®,(w), such that
there exists a white noise process e = [e;---er]7,
with covariance matrix A > 0 such that v(t) =
H(q)e(t), where H is square, stable, monic and
minimum-phase.

When combining the L node signals we arrive at the full
network expression
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which results in the matrix equation:



w= Gw+ Rr + He, (2)

where by construction the matrix G is hollow, i.e. it has
diagonal entries 0.

The single module identification problem to be considered
is the problem of identifying one particular module Gj;(q)
on the basis of measured time-series of a subset of variables
in w, and possibly 7.

2. IDENTIFICATION METHODS

We can distinguish two main different approaches for
addressing the single module identification problem, where
the target module is indicated by G ;.

(1) A direct method, that is based on selecting a particular
set of predictor input signals wy, k& € D, and a set
of predicted output signals wy, £ € Y, with i € D,
j € Y, and estimating a dynamic model based on a
prediction error:

e(t,0) = H(q,0)  [uy(t) — G(g,O)wn(t)], (3)
where G(q,0) and H(q, ) are parametrized transfer
function matrices. The target module is then em-
bedded in the model G(g, ), and the objective is to
estimate the target module consistently and possibly
with minimum variance.

(2) An indirect method, that is based on selecting a
particular set of external excitation signals r, k € U,
and a set of predicted outputs wy, £ € ), and inputs
wg, k € D that are used in a predictor model, leading
to

e (t,0) = wy(t) — T(q, 0)n(t) (4)
en(t, p) = wo(t) — Tn(q, p)rua(t). ()

Since T;, and T, are mappings from external signals
(r) to internal signals (w), a processing step is nec-
essary to recover the target module Gj; from an esti-
mated T’s. Consistency of the target module estimate
is the typical objective. Different variations of indirect
methods exist, including two-stage and instrumental
variable (IV) methods.

The direct method provides asymptotically efficient esti-
mates (i.e. consistency and minimum variance for the iden-
tification setup) whereas the indirect method and its vari-
ations typically provide consistent estimates but - without
the use of particularly parametrized noise models - not
with minimum variance. This is attributed to the fact that
in the indirect method, without dedicatedly parametrized
noise models, only the excitation-signal dependent part
of the node signals is used for variance reduction, thus
not effectively using excitation through the process noise
signals.

Note that in both cases it seems natural to only choose
a one-dimensional output vector w, if our target is the
estimation of a single module. However the flexibility in
using more than one output can be used in both methods
to account for excitation limitations, or to go beyond
consistency requirements and achieve minimum variance
results.

3. SINGLE MODULE IDENTIFIABILITY

Generic identifiability of a single module Gj; in a network
model set M = {G(0), H(0), R(0),A(0)} is defined by the
property that the transfer function 7" from present external
signals r and e, to measured node signals w generically
induce a unique representation of the module Gj; in the
model set, see e.g. Weerts et al. (2018); Hendrickx et al.
(2019); Shi et al. (2019). This property can be verified
on the basis of path-based conditions on the graph of
the network. It is dependent on the location of external
excitation signals (r) and disturbances (e), and on the set
of in-neighbors w,; of w; in the network, that are input
to parametrized modules G 1. Let U be the set of external
signals that are non-parametrized in the expression for
wj, and let B, denote the maximum number of vertex
disjoint paths from the set ¢ to W;. Then G ; is generically
identifiable in M if and only if there exists a disconnecting
set Wy from U U {w;} to W;\{w;} such that

hioswaufuwr = Wal + 1,
see Shi et al. (2019).
Note that this identifiability property is not dependent
on a particular identification method (direct or indirect).
In this way it is a necessary condition for having the
possibility of arriving at a consistent estimate of the target
module, irrespective of the method chosen.

4. DATA-INFORMATIVITY CONDITIONS FOR
CONSISTENT MODULE ESTIMATES - DIAGONAL
NOISE SPECTRUM

4.1 The direct method

The first results for consistent estimates of network mod-
ules were provided in Van den Hof et al. (2013), where the
situation was considered of networks having diagonal noise
spectrum @, (w), i.e. the noise on different node signals
being uncorrelated. This leads to a multiple input single
output identification setup. The sufficient condition on the
experimental data to warrant consistency of the direct
method was formulated in terms of a positive definite
spectral density:

®,(w) >0 for a sufficient number of frequencies w,

where 7 is a vector signal composed of the output node
signal w; and all predictor input node signals wy. If D is
chosen to be equal to W;, as in Van den Hof et al. (2013),
(i.e. all in neighbours of w; are used as predictor input),
then this data-informativity condition concerns all chosen
in-neighbours. It has been shown in later work, Dankers
et al. (2016), that this situation can be relaxed to selecting
wp such that all parallel paths and loops around the output
are blocked by a measured signal. It appears that this
condition can exactly be formulated by the construction
of a disconnecting set as in the previous section, where we
can select wp := wyy, U{w;} as the set of predictor inputs.
This leads to a data-informativity condition for the direct
method that is based on 7 = Wy, ugw,,w,}- '

It can be verified that the spectrum condition is equivalent
to requiring that there exist |[W;| 4+ 1 vertex disjoint paths

1 Note that in the reduced input case, D # W;, the data-
informativity conditions do not guarantee the absence of confounding
variables, which is required for consistent module estimates.



from the external signals (r and e) in U to the predictor
input signals wp together with a persistence of excitation
condition on the external excitation signals in ¢/. Note that
this excitation condition is a sufficient condition for any
type of linear dynamics to be estimated, i.e. for any order
of the underlying system. As such it is a data-informativity
condition that is sufficient generically. For lower order
models less conservative conditions can be derived, but in
general are less insightful, see e.g. Gevers and Bazanella
(2015).

4.2 The indirect method

For the indirect method the data-informativity conditions
for consistency are closely related. In this situation we also
choose wp := wyy,, U {w;}. According to the conditions for
identifiability, there are || external signals that should
provide excitation for estimating the matrices T;, and Tp.
In the most common situations this will require |D| inde-
pendent measured excitation signals r that are persistently
exciting. This implies that if the conditions for single
module identifiability are satisfied, then the additional
data-informativity condition for consistency of the indirect
method, is that all external signals in U are measured
excitation signals r that are persistently exciting, so that
they can serve as inputs in the estimation problems (4)-

().
4.3 Comparison

Comparing the data-informativity conditions of the two
methods confirms the known difference that the direct
method benefits from noise excitation of the network (it
exploits both 7 and ed components in If), while the indirect
method relies on excitation through measured excitation
signals r, thus requiring more “expensive” experiments.

5. EXTENSION TOWARDS A NON-DIAGONAL
DISTURBANCE SPECTRUM

In the situation of networks where the disturbance spec-
trum is allowed to be non-diagonal, the situation becomes
more involved. The single module identifiability result
stays invariant, but the data-informativity results for the
different estimation methods will change, in particular for
the direct method.

For the direct method, the identification setup now be-
comes a MIMO setup, where correlations between distur-
bance signals are treated by including multivariate noise
models, as in (3), and where the predicted node signals
wy, and the predictor inputs wp, might have common node
signals wg that appear in both signal vectors (Ramaswamy
and Van den Hof (2019)). The data-informativity condi-
tion for consistent estimation results of the direct method
now become (Ramaswamy and Van den Hof (2019)):

®,.(w) >0 for a sufficient number of frequencies w,

where £(t) = [w, (t) & (1) wo(t)]T, & s the vector
of innovation signals related to node signals wy, when
all non-measured signals are removed from the network
(immersed), and w, is the output signal of the target
module Gj; to be identified, if this signal is not included
in wg; otherwise it is void.

Denote with w,,, the set of measured node signals w, U w,
having n,, components.

Similar as for the situation in Section 4, the data-
informativity condition can now be formulated in terms
of path-based conditions that depend on the presence
of external excitation signals, that have particular path-
based properties in the topology of the network model
set, that guarantee that the data required for the direct
identification method is sufficiently informative.

In the considered situation the path-based conditions
amount to having n,, vertex disjoints paths from external
excitation and noise signals, excluding &, to the node
signals w,,. So apparently the consequence is that when
node signals appear in both input and output of the
estimation problem, then the corresponding disturbance
signal that connects to that node can not serve as an
external signal that contributes to data-informativity. This
also leads to the conclusion that in considered situation
there need to be at least |Q| external excitation signals r
to provide data-informativity.

These path-based conditions then merge the single module
identifiability conditions presented in Section 3 that are
method-independent, with additional conditions for data-
informativity that are induced by the choice of identifica-
tion method.

For the indirect identification method, the setup and
results remain the same as for the situation with diagonal
disturbance spectrum, as presented in Section 4.

6. CONCLUSIONS

Identifying a local module that is embedded in a dynamic
network, requires several conditions to be satisfied, among
which the two most important ones: network identifiability
and data-informativity. Network identifiability conditions
are typically independent of the identification method cho-
sen, while the additional data-informativity requirements
are dependent on the identification method. Direct and in-
direct identification approaches lead to different conditions
in this respect. Both concepts (identifiabiality and data-
informativity) can be cast in a generic context in terms of
path-based conditions formulated on the external signals
that are present in the network (excitation signals and
noises).
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