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Abstract— For consistent or minimum variance estimation
of a single module in a dynamic network, a predictor model
has to be chosen with selected inputs and outputs, composed
of a selection of measured node signals and possibly external
excitation signals. The predictor model has to be chosen in such
a way that consistent estimation of the target module is possible,
under the condition that we have data-informativity for the con-
sidered predictor model set. Consistent and minimum variance
estimation of target modules is typically obtained if we follow
a direct method of identification and predictor model selection,
characterized by the property that measured node signals are
the prime predictor input signals. In this paper the concept of
data-informativity for network models will be formalized, and
for the direct method the required data-informativity conditions
will be specified in terms of path-based conditions on the
graph of the network model, guaranteeing data-informativity
in a generic sense, i.e. independent on numerical values of the
network transfer functions concerned.

I. INTRODUCTION

In our current days scientific and technological environ-
ment many dynamical systems that are being considered are
interconnected dynamic subsystems. Therefore, the research
community involved in data-driven modeling of systems has
shown an increasing interest in the problem of identifying a
local (single) module in an interconnected dynamic network
of which the interconnection structure (topology) is given.
In [1] this problem has been formalized in a prediction error
identification setting where local subsystems are described
by linear dynamic systems in the form of transfer functions,
based on the work of [2]. Classical methods for closed-
loop identification have been generalized to be applicable
in this network situation, typically leading to multiple-input
single output type of estimation problems where the target
module is embedded in a larger predictor model, and where
consistency of the target module estimate is obtained. Re-
ducing the number of to be measured node signals has been
addressed in [3], [4]. For direct methods of identification,
further specification of these results has been established by
handling confounding variables and correlated disturbances
and by deriving minimum variance results [5], [6]. This
has led to a so-called local direct method of single module
identification [7], that provides different scenarios for the
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selection of node signals to be measured, and different ways
to determine the predictor model. For indirect methods of
identification consistency results for local module estimates
are provided in [1], [8].

Separate from the introduction of identification methods
to identify single modules, the question of single module
identifiability has been considered in [9], [10], [11], [12],
[13], showing that identifiablity, being independent of the
identification method chosen, puts conditions on the presence
and location of external signals in the network, and the
measurability of node signals in the network. However the
single module identifiability problem has so far been solved
only for restricted situations: assuming that either all nodes
in the network are excited [9], [10] or all are measured [11],
[13], or limiting the acquired information from the network
to the transfers from measured external excitation signals
to internal node signals, and thus neglecting information
from (to be estimated) spectral densities of non-measured
disturbance signals [12]. The direct and indirect identification
methods typically start from a limited set of measured node
signals and a selected set of measured external excitation
signals, to determine whether a consistent and/or minimum
variance estimate of the target module can be obtained.
For all of these methods data-informativity conditions need
to be satisfied for arriving at consistent module estimates.
While for indirect methods these conditions can typically
be phrased in terms of persistence of excitation conditions
on external excitation signals, see e.g. [8], for direct methods
they are typically formulated in terms of a spectral condition
on node signals in the network, and thereby harder to
interpret for the user who has to set up an experiment. This
has also been addressed in [14] where it has been highlighted
that the typical spectral conditions will often be conservative
in case of modules with finite model order.
Direct methods for single module identification have the
advantage that they provide minimum variance estimation
properties. And since they can effectively exploit the excita-
tion properties of nonmeasured disturbance signals, they have
conditions on the presence of measured external excitation
signals that are less strict than those for indirect methods.
In this paper we are going to address the situation of the
direct method [7], and we are going to reformulate the data-
informativity conditions for this method in terms of exci-
tation conditions of the external excitation signals, together
with path-based conditions on the topology of the network
model set. In this way the data-informativity conditions
become verifiable by the user, rather than remaining implicit.
After recalling the dynamic network setup in Section II, we



will highlight the different options for selecting predictor
models in Section III. In Section IV data-informativity con-
ditions are specified, for which path-based conditions are
being derived in Section V. The results are illustrated with
examples. The proofs of all technical results are collected in
the appendix.

II. DYNAMIC NETWORKS

Following the setup of [1], a dynamic network is built up
out of L scalar internal variables or nodes wj , j = 1, . . . , L,
and K external variables rk, k = 1, . . .K. Each internal
variable is described as:

wj(t) =

L∑
l=1

l 6=j

Gjl(q)wl(t) + uj(t) + vj(t) (1)

where q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1);
• Gjl are proper rational transfer functions, referred to as

modules. In order to avoid technicalities in this paper
and without loss of generality we will assume that the
modules are strictly proper.

• uj is an input signal, uj(t) =
∑K
k=1Rjk(q)rk(t) with

rk external variables that can directly be manipulated
by the user.

• vj is process noise, where the vector process v =
[v1 · · · vL]T is modelled as a stationary stochastic pro-
cess with rational spectral density Φv(ω), such that there
exists a white noise process e := [e1 · · · eL]T , with
covariance matrix Λ > 0 such that v(t) = H(q)e(t),
where H is square, stable, monic and minimum-phase.

When combining the L node signals we arrive at the full
network expression
w1

w2

...
wL

=


0 G12 · · · G1L

G21 0
. . .

...
...

. . . . . . GL−1 L

GL1 · · · GL L−1 0



w1

w2

...
wL

+R

r1

r2

...
rK

+H

e1

e2

...
eL


which results in the matrix equation:

w = Gw +Rr +He, (2)

where by construction the matrix G is hollow, i.e. it has
diagonal entries 0. The single module identification problem
to be considered is the problem of identifying one particular
module Gji(q) on the basis of measured time-series of a
subset of variables in w, and possibly r.

III. NETWORK ESTIMATION SETUP

We can distinguish two main different prediction error
approaches for addressing the single module identification
problem, where the target module is indicated by Gji.

1) A direct method, that is based on selecting a particular
set of predictor input signals wk, k ∈ D, and a set of
predicted output signals w`, ` ∈ Y , with i ∈ D, j ∈ Y ,
and estimating a dynamic model based on a prediction
error:

ε(t, θ) = H̄(q, θ)−1[wY(t)− Ḡ(q, θ)wD(t)], (3)

where Ḡ(q, θ) and H̄(q, θ) are parametrized transfer
function matrices. The target module is then embedded
in the model Ḡ(q, θ), and the objective is to estimate
the target module consistently and possibly with min-
imum variance.

2) An indirect method, that is based on selecting a partic-
ular set of external excitation signals rk, k ∈ P , and a
set of predicted node signals w`, ` ∈ Y , that are used
in a predictor model, leading to

εY(t, θ) = wY(t)− T̄Y(q, θ)rP(t) (4)

Since T̄Y reflects a mapping from external signals (r)
to internal signals (wY), a processing step is necessary
to recover the target module Gji from an estimated T̄Y .
Consistency of the target module estimate is the typical
objective. Different variations of indirect methods ex-
ist, including two-stage and instrumental variable (IV)
methods.

3) As introduced in [15], the above two methods can
be combined to a generalized approach where both
external signals rP and node signals wD are used as
predictor inputs.

Although the third method provides the most flexibility, here
we will primarily focus on the direct method, in order to limit
the complexity of the exposition.

For this method to arrive at a consistent and minimum
variance estimate of the target module, there are two prime
conditions that need to be satisfied.

1) A predictor model needs to be chosen, on the basis
of which it is possible to reconstruct the target module
Gji from the estimated objects Ḡ and H̄ . The predictor
model (3) is determined by the selection of signals that
appear in wY and wD.

2) For the chosen predictor model, the data appearing in
this model should be sufficiently informative so as to
guarantee that consistent estimates of the objects Ḡ,
H̄ are obtained.

In the sequel of this paper, we recall the results of [7] to
cover the first aspect, while in terms of new results we will
focus on the data-informativity aspects as mentioned in the
second aspect.

IV. DATA-INFORMATIVITY

We consider an estimation setup on the basis of the
network equations

wY(t) = Ḡ(q)wD(t) + R̄(q)rP(t) + H̄(q)ξY(t) (5)

with wY , wD, rP selected node- and excitation signals and ξY
a stationary white noise process.

The one-step ahead predictor for (5) is uniquely defined
through1

ŵY(t) := Ē{wY(t)|wt−1
Y , wtD, r

t
P} = W (q)z(t) (6)

1The notation wt refers to the past information {w(k)}k=−∞,··· ,t−1,t.



with the predictor filter given by

W (q) :=
[
(1− H̄(q)−1) H̄(q)−1Ḡ(q) H̄(q)−1R̄(q)

]
(7)

and

z(t) :=

wY(t)
wD(t)
rP(t)

 . (8)

In line with the corresponding definitions in the prediction
error literature ([16], Definition 8.1), we can now define the
notion of data-informativity for the related network predictor
model.

Definition 1: Consider a set of network signals contained
in z and a network predictor model

ŵY(t, θ) = W (q, θ)z(t)

for a parametrized set of models

M := (Ḡ(q, θ), R̄(q, θ), H̄(q, θ))θ∈Θ.

Then a quasi-stationary data set Z∞ := {z(t)}t=0,··· with
z(t) defined in (8) is informative enough with respect to the
model set M if, for any two predictor models W1(q) and
W2(q) in the model set,

Ē[(W1(q)−W2(q))z(t)]2 = 0

implies that W1(eiω) ≡W2(eiω) for almost all ω. �
In line with ([16], Definition 8.2), we formulate:
Definition 2: A quasi-stationary data set Z∞ is informa-

tive if it is informative enough with respect to the model set
L∗, consisting of all linear time-invariant models.
And in line with ([16], Definition 13.2):

Definition 3: A quasi-stationary signal z is said to be
persistently exciting if Φz(ω) > 0 for almost all ω.

The essential difference with the classical definitions in
[16] is in the composition of the signal vector z(t), being
composed according to (8).

A. Classical open-loop case

The classical open-loop case can be represented by the
situation that in the predictor model, the predictor input is
wD = r. In this case

z(t) :=

[
wY(t)
wD(t)

]
.

The well known sufficient condition for data-informativity is
now [16]:

Φz(ω) > 0 for almost all ω. (9)

For estimating finite-dimensional models, this sufficient con-
dition can be further relaxed2 to be satisfied for a sufficient
number of frequencies ω. The signal vector z contains
both predictor input and predictor outputs. Since there are
output disturbances on wY that are uncorrelated to wD, the
informativity condition simplifies to the condition that wD

should be persistently exciting.

2For the network case and considering MISO models this is also ad-
dressed in [14].

B. Classical closed-loop case: direct method

The direct method for closed-loop systems is characterized
by the situation that in the predictor model
• wY and wD are distinct signals;
• rP is not included in the predictor;
• wD may depend of the present and past samples of wY

(feedback).

It follows that z(t) :=

[
wY(t)
wD(t)

]
and the “open-loop” results

of [16] still apply, i.e. the informativity condition of the data
is represented by the condition (9).

C. The network case: local direct method

When applying the direct identification method in the
network case, a predictor model is constructed with node
signals wD as predictor inputs and wY as predicted outputs.
According to the results in [6], [7], the selection of signals
follows in main line the next reasoning:
• The input wi and output wj of the target module, are

selected in wD and wY respectively;
• All network paths from wi to wj that do not pass

through Gji (parallel paths) pass through a signal wk
that is included in wD;

• All paths from wj to wj (loop around wj) pass through
a signal wk that is included in wD;

• An input signal in wD that is affected by an unmeasured
disturbance that is correlated to an unmeasured distur-
bance on an output in wY , is blocked by an additional
node signal that is included in wD or the input signal in
wD is added to wY .

The last step is applied for dealing with correlated distur-
bances, or confounding variables, i.e. non-measured signals
that affect both the input and output of an estimation
problem. When adding the respective signals to wY a multi-
output predictor model can result, as schematically indicated
in Figure 1. In this setting we distinguish:

Fig. 1. Predictor model for local direct identification; the set of node signals
wQ appears both at the input and at the output of the predictor model.

• wY =

[
wo
wQ

]
; wD =

[
wU

wQ

]
;



• wo = wj or wo is void if wj is present in wQ;
• rP contains those measured external excitation signals

in r that add directly to measured outputs wk, k ∈ Y ,
i.e. for which R̄(q) is a binary (selection) matrix with
known elements, indicating which output signals are
excited by signals rP .

Inputs and outputs are allowed to share some common
signals, while all node signals are allowed to depend on
each other’s (present and) past. According to the consistency
results in [7] the data-informativity conditions now become:

Φκ(ω) > 0 for almost all ω, (10)

with
κ(t) :=

[
wD(t)
ξY(t)

]
and ξY(t) the white noise innovation process that relates to
output wY(t) in (5). In the vector signal κ we collect all the
measured node signals that appear as predictor input, and the
(external) noise terms ξY . The spectrum condition on κ(t)
can then be interpreted as a condition that requires a full
rank spectrum of wD, while using all external signals in the
network except ξY . In other words, ξY can not be used for the
“excitation” of the signals wD, but this excitation has to come
from other external signals in the network. This mechanism
is going to be further elaborated upon in the next Section.

V. PATH-BASED CONDITIONS FOR DATA-INFORMATIVITY
IN THE DIRECT METHOD

A. General results
The condition (10) for data-informativity in the direct

method is compactly formulated, but it is actually implicit
and hard to check for the situation of a dynamic network with
given topology and unknown dynamics. It would be very at-
tractive to formulate this condition in terms of properties and
locations of the external signals in the network (i.e. r and e)
together with topological conditions on the interconnections
structure in the network models that we consider. In order
to achieve this objective, we consider the following Lemma:

Lemma 1: Let x(t) ∈ Rm be a quasi-stationary signal
that is persistently exciting, and let F (z) ∈ R(z)p×m be the
proper rational transfer function of a stable filter. Then the
signal y(t) = F (q)x(t) is persistently exciting if and only if
filter F (z) has rank p over the field of rational functions. �
If we apply this Lemma with x-signals being the external
signals r, e, and y signals being selected node signals w in
the network, then the row rank of the considered transfer
function (r, e) → y would need to be evaluated in order to
make a statement about data-informativity. In line with the
idea of introducing a generic form of identifiability [10], i.e.
independent of particular numerical values of coefficients, we
can use the same generic type of result for data-informativity,
based on the results of [17].

Proposition 1: Consider the situation of Lemma 1. The
property that y(t) is persistently exciting holds generically3

3Generically has to be considered here in terms of a Lebesgue measure
0 of the vector of coefficient values of the rational transfer functions in all
modules of the network.

if in the dynamic network there are p vertex-disjoint paths
between the nodes x and y. This is denoted by bx→y = p.

So, a persistently exciting “input” signal x and a suffi-
cient number of vertex-disjoint paths betwen x and y, will
generically provide a persistently exciting “output” signal y.
This result can be used to translate persistence of excitation
conditions on node signals, to persistence of excitation
conditions on external network signals.

In order to further specify the data-informativity condi-
tions that apply to the direct method, we need some formal
results from [7] that concern the conditions under which the
chosen predictor model will lead to results that leave the
target module Gji invariant in our estimation setup. This
step actually refers to the first set of conditions in Section III,
i.e. the choice of predictor model, and specifies conditions
under which Ḡji(q) = G0

ji(q). Satisfying these conditions
helps to further simplify the topological conditions for data-
informativity.

Theorem 1 (Module invariance result [7]): Let Gji be
the target network module. In the system’s equation (5)
conformable to the network model depicted in Figure 1, it
holds that Ḡji = G0

ji under the following conditions:

a. Every parallel path from wi to wj
4 and every loop

around wj passes through a measured node in wY∪U ,
and

b. U is decomposed into two disjunct sets, U = A ∪ B,
such that there are no confounding variables5 for the
estimation problems wA → wY and wA → wB, and

c. i ∈ {A ∪Q}, and
d. Every path from {wi, wj} to wB passes through a

measured node in wY∪U . �
The interpretation of the decomposition of U into A ∪ B
is that the signals in wB can be used to block the effect
of confounding variables in the estimation problem wA →
wY , while confounding variables in the estimation problem
wB → wY are allowed. As a result the transfer functions
Ḡjk with k ∈ {Q ∪ A} are invariant, i.e. Ḡjk = G0

jk. In
the remaining part of the paper we will assume that the
conditions of Theorem 1 are satisfied.

B. Path-based conditions

The result on vertex-disjoint paths, as formulated in Propo-
sition 1 can now be applied to the particular situation of
condition (10). In this step the consequence of having the
white noise signal ξY in the condition (10) needs to be
translated to conditions on signals in the original network
(2). Since the predictor model in the direct method can only
include excitation signals rP that are added directly (with
transfer 1) to node signals w, we need to specify which r
signals in the original network satisfy this property. Since
the transfers that appear in R̄(q) will be dependent on the
removal of unmeasured nodes, this is a non-trivial step.

4A parallel path is a path from wi to wj that does not pass through Gji.
5A confounding variable for the estimation problem wA to wY is

an unmeasured external or disturbance variable in the network that has
unmeasured paths to both wA and wY .



Proposition 2: Let rP be defined as those r-signals in the
original network that are directly added to a node signal wk
with k ∈ Y , such that:
• if wk ∈ wQ:

1) there exist no unmeasured paths from wk to any
w`, ` ∈ B; and

2) all loops through wk pass through a node in wQ∪U .
• if wk ∈ wo:

3) there exists no direct or unmeasured path from wo
to any wk, k ∈ Q.

Then R̄(q) is a selection matrix. �
Now we can formulate a path-based condition for verifying
the data-informativity.

Theorem 2: Consider a dynamic network with external
signals r and e, and let rP be the r-signals that appear
as predictor input in the setting of the local direct method,
satisfying the conditions of Proposition 2. Consider the signal
vector

η(t) :=

[
rP
xU

]
, with

xU : any r- or e-signal that has a direct or unmeasured path
to a node signal wk, k ∈ U .

Then the transfer function from (r, e) to κ generically has
full row rank if there are nD vertex disjoint paths between
external signals η and wD. �
As a direct result of Proposition 1 we can now formulate the
following Corollary:

Corollary 1: The data-informativity condition (10) for the
local direct method is satisfied if the path-based conditions
of Theorem 2 are satisfied and the present excitation signals
r are persistently exciting. �
When considering the vector η(t) it appears that there
are maximally nU := dim(wU) independent noise signals
available that can excite the predictor input wD(t) while
dim(wD) = nQ + nU . This is a result of the fact that all
of the noises in xU pass through a node in wU . It leads to the
following Corollary.

Corollary 2: There need to be at least nQ external exci-
tation signals r in the network to satisfy the conditions of
Corollary 1. �

The Corollary shows that adding outputs to the predictor
model, i.e. increasing nQ comes at an experimental cost. For
every signal that is added to wQ an extra excitation signal
r needs to be present in the network in order to satisfy the
data-informativity condition.

We will illustrate the results of this Section in two exam-
ples.

Example 1: Consider a classical closed loop system rep-
resented by a two-node network as depicted in Figure 2 with
v1 and v2 being process noises that are correlated. First
we consider the situation of having no external excitation
signals, r1 = r2 = 0. The objective is to identify the target
module G21. We select w1 as input and w2 as output of our
predictor model, but due to the correlation between v1 and
v2, we need to include w1 also as an output. As a result
wY = {w1, w2}, wo = {w2} and wD = wQ = {w1}. Then U

Fig. 2. Classical closed loop example with two node signals and
disturbances v1 and v2 being correlated.

is void. In order to satisfy the data informativity condition
according to Theorem 2, we need to consider vector η(t).
Since U is void and rP is not present, η is an empty vector,
indicating that there are no external signals available for
exciting wD. Therefore the data-informativity condition can
not be satisfied. The two noise signals e1 and e2 constitute
the innovation process ξY and according to the definition of
κ(t) in (10) cannot be used to excite wD. These noise signals
are effectively used to estimate the 2× 2 noise model.

Adding an external excitation signal r1 will not lead to a
signal in rP since the loop through w1 passes only through
wo = w2, and therefore condition 2 of Proposition 2 is not
satisfied. In the predictor model w1 → (w1, w2), r1 cannot
effectively be used for excitation due to the fact that G12

is not modelled, leading to the situation that in the model
the contribution of r1 to w1 is actually represented by (1−
G12G21)−1r1, thus not satisfying the unit transfer that is
required for a signal in rP .

Similarly adding an external excitation signal r2 will not
lead to a signal in rP since there is a direct path from wo =
w2 to wQ = w1, and thus condition 3 of Proposition 2 is not
satisfied. In the predictor model w1 → (w1, w2), r2 cannot
effectively be used for excitation due to the fact that G12

is not modelled, leading to the situation that in the model
the contribution of r2 to w1 is actually represented by (1−
G12G21)−1G12r2, thus not satisfying the unit transfer that is
required for a signal in rP . However, if we include w2 also
as input and model G12 with predictor model (w1, w2) →
(w1, w2), then wD changes to wD = wQ = {w1, w2}. Then
we need two (vertex disjoint) paths from η = rP to wD. With
predictor model (w1, w2)→ (w1, w2), both r1 and r2 lead to
a signal in rP and therefore we need two external excitation
signals r1 and r2 for achieving data-informativity. This result
is in agreement with the observations in [18].

Example 2: Consider the three node network depicted in
Figure 3 with v1 and v3 being disturbance signals that
are correlated. First we consider the situation of having no
external excitation signals, r1 = r2 = r3 = 0. The objective
is to identify the target module G12. According to the local
direct method [7], we have multiple ways to choose the
predictor model. Following the full input case [6], [7], we
choose wY = wo = w1, wA = w2, and then we choose
wB = w3 in order to block the effect of the confounding



Fig. 3. A three node network example.

variable e3 for the estimation problem w2 → w1. In this
setup wQ is void and wD = wU = {w2, w3}. The data-
informativity condition of Theorem 2 now requires two
vertex disjoint paths between {e2, e3} and {w2, w3}. As this
can simply be verified from the graph, the data-informativity
condition is satisfied without any need for external excitation
signals.

When choosing an alternative predictor model, e.g. accord-
ing to the minimum input case algorithm in [7], we choose
wY = {w1, w2} and wQ = w2, i.e. we model w2 as output
also, in order to deal with the confounding variable e3 for
the estimation problem w2 → w1. In this setup wU = wA∪B
is void. In order to satisfy the data informativity condition
according to Theorem 2, we need a path from signal η(t)
to wD = w2. Since U is void and rP is not present, η is
an empty vector, indicating that there are no external signals
available for exciting wD. Therefore the data-informativity
condition can not be satisfied. Adding external signals r1 or
r2 will lead to a signal in η = rp. But, when η = r1 we do
not satisfy the data informativity condition since we do not
have a path from signal η = r1 to wD = w2. When adding r2

as external signal, we satisfy the data informativity condition
since the path-based condition is satisfied. An external signal
r3 cannot contribute to η because of the non-unity transfer
to w2, and hence does not provide data informativity for the
chosen predictor model.

VI. CONCLUSIONS

For consistent identification of a single module that is
embedded in a dynamic network it is necessary that the
signals that constitute the chosen predictor model satisfy
data-informativity conditions. We have formalized the con-
cept of data-informativity for a generalized predictor model
that is suited for dynamic network modeling, and that allows
for signals to appear both as input and as output in a
MIMO predictor model. It generalizes all known situations
of indirect and direct methods in closed-loop systems and
dynamic networks. The conditions for data-informativity
have been specified for a particular identification method,
the local direct method, showing that the conditions can be
satisfied generically by requiring persistence of excitation of
external signals, together with path-based conditions on the
topology of the network model set.
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[2] J. Gonçalves and S. Warnick, “Necessary and sufficient conditions
for dynamical structure reconstruction of LTI networks,” IEEE Trans.
Automatic Control, vol. 53, no. 7, pp. 1670–1674, Aug. 2008.

[3] A. G. Dankers, P. M. J. Van den Hof, P. S. C. Heuberger, and
X. Bombois, “Identification of dynamic models in complex networks
with prediction error methods: Predictor input selection,” IEEE Trans.
on Automatic Control, vol. 61, no. 4, pp. 937–952, 2016.

[4] D. Materassi and M. V. Salapaka, “Signal selection for estimation
and identification in networks of dynamic systems: a graphical model
approach,” ArXiv preprint arXiv:1905.12132, 2019.

[5] A. G. Dankers, P. M. J. Van den Hof, D. Materassi, and H. H. M.
Weerts, “Relaxed predictor input selection rules for handling con-
founding variables in dynamic networks,” IFAC-PapersOnLine, vol.
50-1, pp. 3983–3988, 2017, proc. 20th IFAC World Congress.

[6] P. M. J. Van den Hof, K. R. Ramaswamy, A. G. Dankers, and
G. Bottegal, “Local module identification in dynamic networks with
correlated noise: the full input case,” in Proc. 58th IEEE Conf. on
Decision and Control (CDC), Nice, France, 2019, pp. 5494–5499.

[7] K. R. Ramaswamy and P. M. J. Van den Hof, “A local direct method
for module identification in dynamic networks with correlated noise,”
Tech. Rep., 2019, arXiv:1908.00976. Provisionally accepted by IEEE
Trans. Automatic Control.

[8] M. Gevers, A. Bazanella, and G. Vian da Silva, “A practical method
for the consistent identification of a module in a dynamical network,”
IFAC-PapersOnLine, vol. 51-15, pp. 862–867, 2018, proc. 18th IFAC
Symp. System Identif. (SYSID2018).

[9] A. S. Bazanella, M. Gevers, J. M. Hendrickx, and A. Parraga, “Iden-
tifiability of dynamical networks: which nodes need to be measured?”
in Proc. 56th IEEE Conference on Decision and Control (CDC), 2017,
pp. 5870–5875.

[10] J. Hendrickx, M. Gevers, and A. Bazanella, “Identifiability of dynam-
ical networks with partial node measurements,” IEEE Trans. Autom.
Control, vol. 64, no. 6, pp. 2240–2253, 2019.

[11] H. H. M. Weerts, P. M. J. Van den Hof, and A. G. Dankers, “Single
module identifiability in linear dynamic networks,” in Proc. 57th IEEE
Conf. on Decision and Control (CDC). Miami Beach, FL: IEEE,
2018, pp. 4725–4730.

[12] A. S. Bazanella, M. Gevers, and J. M. Hendrickx, “Network identifi-
cation with partial excitation and measurement,” in Proc. 58th IEEE
Conference on Decision and Control (CDC), 2019, pp. 5500–5506.

[13] S. Shi, X. Cheng, and P. M. J. Van den Hof, “Excitation allocation
for generic identifiability of a single module in dynamic networks: A
graphic approach,” in Proc. 21st IFAC World Congress, 2020.

[14] M. Gevers and A. S. Bazanella, “Identification in dynamic networks:
identifiability and experiment design,” in Proc. 2015 IEEE 54th Conf.
Decision and Control, Osaka, Japan, 2015, pp. 4006–4011.

[15] K. R. Ramaswamy, P. M. J. Van den Hof, and A. G. Dankers, “Gen-
eralized sensing and actuation schemes for local module identification
in dynamic networks,” in Proc. 58th IEEE Conf. on Decision and
Control (CDC), Nice, France, 2019, pp. 5519–5524.

[16] L. Ljung, System Identification: Theory for the User. Englewood
Cliffs, NJ: Prentice-Hall, 1999.

[17] J. van der Woude, “A graph-theoreric characterization for the rank of
the transfer matrix of a structured system,” Mathematics of Control,
Signals, and Systems, vol. 4, pp. 33–40, 1991.

[18] P. M. J. Van den Hof, A. G. Dankers, and H. H. M. Weerts, “From
closed-loop identification to dynamic networks: generalization of the
direct method,” in Proc. 56nd IEEE Conf. on Decision and Control
(CDC). Melbourne, Australia: IEEE, 2017, pp. 5845–5850.

[19] D. Youla, “On the factorization of rational matrices,” IRE Trans.
Information Theory, vol. 7, pp. 172–189, 1961.



APPENDIX

A. Proof of Lemma 1

The spectral density of the output signal is given by
Φy(ω) = F (eiω)Φx(ω)F (eiω)?, with (·)? the complex con-
jugate. For each value of ω in −π ≤ ω ≤ π, this is a matrix
multiplication for which it holds that Φy(ω) > 0 only if
rankR(F (eiω)) = p and Φx(ω) > 0. If rankR(z)(F (z)) = p
then rankR(F (eiω)) = p for almost all ω. Since Φx(ω) > 0
for almost all ω this implies that Φy(ω) > 0 for almost all
ω. If rankR(z)(F (z)) < p then rankR(F (eiω)) < p for all
ω and there will be no value of ω for which Φy(ω) > 0. �

B. Proof of Proposition 2

On the basis of the decomposition of node signals as
defined in section V, we are going to represent the system’s
equations (2) in the following structured form:

wQ

wo
wB

wA

wZ

 =


GQQ GQo GQB GQA GQZ

GoQ Goo GoB GoA GoZ
GBQ GBo GBB GBA GBZ

GAQ GAo GAB GAA GAZ

GZQ GZo GZB GZA GZZ



wQ

wo
wB

wA

wZ



+


HQQ HQo HQB HQA HQZ

HoQ Hoo HoB HoA HoZ

HBQ HBo HBB HBA HBZ

HAQ HAo HAB HAA HAZ

HZQ HZo HZB HZA HZZ



eQ
eo
eB
eA
eZ



+


RQQ 0 0 0 0

0 Roo 0 0 0
0 0 RBB 0 0
0 0 0 RAA 0
0 0 0 0 RZZ



rQ
ro
rB
rA
rZ

 (11)

where, without loss of generality, we make the notation
agreement that RQQ is diagonal, the matrix H is not nec-
essarily monic, and the scaling of the white noise process e
is such that cov(e) = I .

The objective is to rewrite the system’s equations into
a form that is conformable to Figure 1 where the output
variables wY can be written as:

[
wQ

wo

]
=

[
ḠQQ 0 ḠQB GQA

ḠoQ 0 ḠoB ḠoA

]
wQ

wo
wA

wB

+

+

[
H̄11 H̄12 0 0
H̄21 H̄22 0 0

]
ξQ
ξo
ξB
ξA

+ R̄rp (12)

withe the vector ξ representing the innovation process of the
disturbance signals on the measured variables w, with the
submatrix H̄ forming a monic stable and stably invertible
noise model. Subsequently we need to show that R̄ is a
selection matrix. The proof will be executed in a number
of subsequent steps.

Step 1: Removing the unmeasured nodes wZ

Starting with the network representation (11), we eliminate
(immerse) the non-measured node variables wZ from the
equations, by writing the last (block) row of (11) into an
explicit expression for wZ :

wZ=(I−GZZ)−1

 ∑
k∈Q∪{o}∪U

GZkwk+
∑

`∈Q∪{o}∪U∪Z

HZ`w`+uZ

 ,
with U = A ∪ B. By substituting this into the expressions
for the remaining w-variables we obtain

wQ

wo
wB

wA

 =


ĞQQ ĞQo ĞQB ĞQA

ĞoQ Ğoo ĞoB ĞoA
ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+ v̆ + ŭ,

with

v̆ =


H̆QQ H̆Qo H̆QB H̆QA H̆QZ

H̆oQ H̆oo H̆oB H̆oA H̆oZ

H̆BQ H̆Bo H̆BB H̆BA H̆BZ

H̆AQ H̆Ao H̆AB H̆AA H̆AZ


︸ ︷︷ ︸

H̆


eQ
eo
eB
eA
eZ

 ,

ŭ =


RQQ 0 0 0 R̆QZ

0 Roo 0 0 R̆øZ

0 0 RBB 0 R̆BZ

0 0 0 RAA R̆AZ


︸ ︷︷ ︸

R̆


rQ
ro
rA
rB
rZ


︸ ︷︷ ︸
r

. (13)

and where

Ğkh = Gkh +GkZ(I −GZZ)−1GZh (14)

with k, h ∈ {Q ∪ {o} ∪ U}, and

H̆k` = Hk` +GkZ(I −GZZ)−1HZ`, (15)
R̆k` = Rk` +GkZ(I −GZZ)−1RZ`, (16)

with ` ∈ {Q ∪ {o} ∪ U ∪ Z}.
In order to be able to arrive at a term R̄rp in (12) where

R̄ is a selection matrix, we are going to separate the matrix
R̆ in two parts:

R̆ = R̆1 + R̆2

where the term R̆1r is going to be modelled as a disturbance
term, and R̆2r will be used to convert to the explicit term
R̄rp present in (12). This separation is done as follows:

R̆1 =


ŘQQ 0 0 0 R̆QZ

0 Řoo 0 0 R̆oZ
0 0 RBB 0 R̆BZ

0 0 0 0 0

 , and (17)

R̆2 =


R̃QQ 0 0 0 0

0 R̃oo 0 0 0
0 0 0 0 0

0 0 0 RAA R̆AZ

 (18)

while the terms ŘQQ, Řoo, R̃QQ, R̃oo are determined as fol-
lows:



• For each k ∈ Q, if wk satisfies the conditions 1) and
2) of the Proposition, then R̃kk = 1 and Řkk = 0; else
Řkk = 1 and R̃kk = 0.

• If w0 satisfies condition 3) of the Proposition, then
R̃oo = 1 and Řoo = 0; else Řoo = 1 and R̃oo = 0.

We are now going to add the term R̆1r to the disturbance
model.
On the basis of (13), the spectral density of ṽ = H̆e+ R̆1r
is given by Φṽ = H̆H̆∗ + R̆1ΦrR̆

∗
1. Applying a spectral

factorization [19] to Φṽ will deliver Φṽ = H̃Λ̃H̃∗ with H̃ a
monic, stable and minimum phase rational matrix, and Λ̃ a
positive definite (constant) matrix. Then there exists a white
noise process ξ̃ defined by

ξ̃ := H̃−1(H̆e+ R̆1r) (19)

such that H̃ξ̃ = ṽ, with cov(ξ̃) = Λ̃. As a result, (13) can be
rewritten as
wQ

wo
wB

wA

 =


ĞQQ ĞQo ĞQB ĞQA

ĞoQ Ğoo ĞoB ĞoA
ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+H̃


ξ̃Q
ξ̃o
ξ̃B
ξ̃A

+R̆2r.

(20)
Under conditions as formulated in Theorem 1, the noise

model can now be shown to satisfy particular structural
properties.

Lemma 2 (Lemma 3 in [7]): Consider a dynamic net-
work as defined in (13) where the non-measured node signals
wZ are immersed, and let U be decomposed in sets A and B
satisfying Condition (b) in Theorem 1. Then the spectral den-
sity Φṽ has the unique spectral factorization Φṽ = H̃Λ̃H̃∗

with Λ̃ constant and H̃ monic, stable, minimum phase, and
of the form

Λ̃=


Λ11 Λ12 Λ13 0
Λ21 Λ22 Λ23 0
Λ31 Λ32 Λ33 0
0 0 0 Λ44

, H̃=


H̃11 H̃12 H̃13 0

H̃21 H̃22 H̃23 0

H̃31 H̃32 H̃33 0

0 0 0 H̃44


(21)

where the block dimensions are conformable to the dimen-
sions of wQ, wo, wB and wA respectively. �

Step 2: Complying with the system’s structure (12)
For complying with the system’s structure (12) the terms

ĞQo, Ğoo, H̃13 and H̃23 need to removed from the expres-
sions (20)-(21). First we treat the terms in H̃ by premulti-
plying (20) with 

I 0 −Ȟ13 0
0 I −Ȟ23 0
0 0 I 0
0 0 0 I

 (22)

where [
Ȟ13

Ȟ23

]
:=

[
H̃13H̃

−1
33

H̃23H̃
−1
33

]
. (23)

When we only keep the identity terms on the left hand side
of the equation, we obtain the equivalent network equation:
wQ

wo
wB

wA

=

Ğ′QQ Ğ′Qo Ğ

′
QB Ğ

′
QA

Ğ′oQ Ğ′oo Ğ
′
oB Ğ′oA

ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+


H̃ ′11 H̃

′
12 0 0

H̃ ′21 H̃
′
22 0 0

H̃31 H̃32 H̃33 0

0 0 0 H̃44



ξ̃Q
ξ̃o
ξ̃B
ξ̃A



+


R̃QQ 0 0 0 0

0 R̃oo 0 0 0
0 0 0 0 0

0 0 0 RAA R̆AZ



rQ
ro
rB
rA
rZ

 , (24)

with

Ğ′BU = ĞBU − Ȟ13ĞBB + Ȟ13 (25)
Ğ′Q? = ĞQ? − Ȟ13ĞB? (26)

Ğ′o? = Ğo? − Ȟ23ĞB? (27)
Ğ′oU = ĞoU − Ȟ23ĞBB + Ȟ23 (28)
H̃ ′1• = H̃1• − Ȟ13H̃3• (29)
H̃ ′2• = H̃2• − Ȟ23H̃3• (30)

where ? ∈ {Q ∪ {o} ∪ A} and • ∈ {1, 2}.
The next step is now to show that the block elements Ğ′Qo

and Ğ′oo in G can be made 0. This can be done by variable
substitution as follows:

The second row in (24) is replaced by an explicit expres-
sion for wo according to

wo = (1− Ğ′oo)−1[Ğ′oQwQ + Ğ′oBwB + Ğ′oAwA

+ H̃ ′21ξ̃Q + H̃ ′22ξ̃o + R̃ooro]. (31)

Additionally, this expression for wo is substituted into the
first block row of (24), to remove the wo-dependent term on
the right hand side, leading to
wQ

wo
wB

wA

=

Ğ′′QQ 0 Ğ′′QB Ğ′′QA

ḠoQ 0 ḠoB ḠoA
ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+

H̃ ′′11 H̃

′′
12 0 0

H̃ ′′21 H̃
′′
22 0 0

H̃31 H̃32 H̃33 0

0 0 0 H̃44



ξ̃Q
ξ̃o
ξ̃B
ξ̃A



+


R̃QQ R̆′′Qo 0 0 0

0 R̄oo 0 0 0
0 0 0 0 0

0 0 0 RAA R̆AZ



rQ
ro
rB
rA
rZ

 , (32)

with

Ḡo? = (I − Ğ′oo)−1Ğ′o? (33)
H̃ ′′2? = (I − Ğ′oo)−1H̃ ′2? (34)
Ğ′′Q? = Ğ′Q? + Ğ′QoḠo? (35)

H̃ ′′1? = H̃ ′1? + Ğ′QoH̃
′′
2? (36)

R̄oo = (I − Ğ′oo)−1R̃oo (37)
R̆′′Qo = Ğ′QoR̄oo. (38)

Due to these operations, the matrix Ğ′′QQ might not be
hollow, we move any diagonal terms of this matrix to the left



hand side of the equation, and premultiply the first (block)
equation by the diagonal matrix (I−diag(Ğ′′QQ))−1, to obtain
the expression
wQ

wo
wB

wA

=

ḠQQ 0 ḠQB ḠQA

ḠoQ 0 ḠoB ḠoA
ĞBQ ĞBo ĞBB ĞBA

ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+

H̃ ′′′11 H̃

′′′
12 0 0

H̃ ′′21 H̃
′′
22 0 0

H̃31 H̃32 H̃33 0

0 0 0 H̃44



ξ̃Q
ξ̃o
ξ̃B
ξ̃A



+


R̄QQ R̄Qo 0 0 0

0 R̄oo 0 0 0
0 0 0 0 0

0 0 0 RAA R̆AZ



rQ
ro
rB
rA
rZ


︸ ︷︷ ︸

ū

(39)

with

ḠQQ = (I − diag(Ğ′′QQ))−1(Ğ′′QQ − diag(Ğ′′QQ)), (40)

ḠQU = (I − diag(Ğ′′QQ))−1Ğ′′QU (41)

H̃ ′′′1? = (I − diag(Ğ′′QQ))−1H̃ ′′1? (42)

R̄QQ = (I − diag(Ğ′′QQ))−1R̃QQ (43)

R̄Qo = (I − diag(Ğ′′QQ))−1R̆′′Qo. (44)

Step 3: Adjusting the noise model

Since the noise model H̃r :=

[
H̃ ′′′11 H̃

′′′
12

H̃ ′′21 H̃
′′
22

]
is not neces-

sarily monic, stable and minimum phase, we apply spectral
factorization to rewrite

ṽY = H̃r ξ̃Y = H̄ξY . (45)

with H̄ a monic stable and stably invertible rational matrix,
and ξY a white noise process. Therefore an equivalent repre-
sentation of the first two block rows of (39) that maintains
the second order properties of the node signals, is given by

[
wQ

wo

]
=

[
ḠQQ 0 ḠQB ḠQA

ḠoQ 0 ḠoB ḠoA

]
wQ

wo
wB

wA

+

+

[
H̄11 H̄12

H̄21 H̄22

][
ξQ
ξo

]
+

[
R̄QQ R̄Qo

0 R̄oo

] [
rQ
ro

]
. (46)

Step 4: Verifying whether R̄ is a selection matrix
From (46) it follows that

R̄rp =

[
R̄QQ R̄Qo

0 R̄oo

] [
rQ
ro

]
. (47)

First we evaluate the term R̄Qo. With (44) and (38) it follows
that

R̄Qo = (I − diag(Ğ′′QQ))−1Ğ′Qo(I − Ğ′oo)−1R̃oo,

while with (27):

Ğ′Qo = ĞQo − Ȟ13ĞBo.

From condition (d) in Theorem 1 it follows that ĞBo = 0, and
from condition (3) in Proposition 2 it follows that ĞQo = 0.
As a result, Ğ′Qo = 0 leading to R̄Qo = 0.

For the term R̄oo, we have according to (37) that R̄oo =
(I − Ğ′oo)

−1R̃oo, with, by definition, R̃oo ∈ {0, 1}. From
condition (a) and (d) of Theorem 1 it follows that Ğ′oo = 0,
leading to R̄oo ∈ {0, 1}.

Finally, for the term R̄QQ we consider according to (43),
R̄QQ = (I − diag(Ğ′′QQ))−1R̃QQ and from (35):

Ğ′′QQ = Ğ′QQ + Ğ′QoḠoQ,

which when substituting (27) and (28) becomes for k ∈ Q:

Ğ′′kk = Ğkk − Ȟ13ĞBk +

+(Ğko−Ȟ13ĞBo)(I−Ğ′oo)−1(Ğok−Ȟ23ĞBk).

From conditions (2) and (1) in Proposition 2 it follows that
Ğkk = 0 and ĞBk = 0, and from conditions (a) and (d) in
Theorem 1, we have ĞBo = 0 and Ğ′oo = 0. Substituting
this in the previous equation leads to Ğ′′kk = ĞkoĞok. Since
condition (1) of Proposition 2 excludes the possibility that
there is a loop through wk, k ∈ Q that passes through wo,
it follows that Ğ′′kk = 0. With (43) and given the fact that
R̃QQ is a selection matrix, it follows that ḠQQ is a selection
matrix too. This concludes the final part of the Proof. �

C. Proof of Theorem 2

The results of Lemma 1 and Proposition 1 indicate that
the transfer function from external signals to κ generically
has full row rank, if there are nQ + nU + nY vertex disjoint
paths between the external signals and κ.
In the system’s setting with all unmeasured nodes removed,
and with some excitation signals r being encapsulated in
the disturbance process, we first have to determine which
external signals should be considered. According to the term
ũ in system representation (39), the external signals r that
remain as external excitation signals are rP (being the terms
in R̄QQ and R̄oo that are equal to 1), rA, and rAZ := R̆AZrz ,
being the r signals in rZ that have an unmeasured path to a
node signal in wA. These external excitation signals need to
be complemented by disturbances sources.

Characterizing ξ: disturbance sources in the trans-
formed network

When premultiplying (39) with

P =


I 0 0 0
0 I 0 0

−H̃ ′31 −H̃ ′32 0 0
0 0 0 I



where [H̃ ′31 H̃ ′32] = [H̃31 H̃32]

[
H̃ ′′′11 H̃ ′′′12

H̃ ′′′21 H̃ ′′′22

]−1

, while

only keeping the identity terms on the left hand side, we



obtain an equivalent network equation
wQ

wo
wB

wA

 =


ḠQQ 0 ḠQB ḠQA

ḠoQ 0 ḠoB ḠoA
Ğ′BQ Ğ′Bo Ğ′BB Ğ′BA
ĞAQ ĞAo ĞAB ĞAA



wQ

wo
wB

wA

+

+


H̃ ′′′11 H̃

′′′
12 0 0

H̃ ′′21 H̃
′′
22 0 0

0 0 H̃33 0

0 0 0 H̃44



ξ̃Q
ξ̃o
ξ̃B
ξ̃A

+ P ′ū. (48)

where the third equation has been scaled to maintain a
hollow matrix Ğ′BB. The disturbance term in this equation
can, after spectral factorization and creating a monic, stable
and minimum phase noise model, be rewritten into

H̄11 H̄12 0 0
H̄21 H̄22 0 0

0 0 H̄33 0
0 0 0 H̄44



ξQ
ξo
ξB
ξA

 , (49)

showing that ξU is a filtered version of ξ̃U .

Writing the disturbance ξU in terms of external signals
According to (19) we have

ξ̃ = H̃−1(H̆e+ R̆1r) = H̃−1(v̆ + R̆1r). (50)

where H̃ is a monic, stable and minimum phase rational
matrix and v̆ is the process noise on the nodes in the im-
mersed network, i.e. the network that results after removing
the unmeasured node signals. Following Lemma 3 in [7] (see
also Lemma 2), if condition b in Theorem 1 is satisfied, then
H̃ is block diagonal and of the form

H̃ =

[
H̃b 0

0 H̃a

]
; v̆ =

[
v̆Y∪B
v̆A

]
.

where H̃b combines the three block rows and columns related
to the nodes in Q∪ {o} ∪ B = Y ∪ B.

Since H̃b is monic, the matrix inverse definitely has
nonzero diagonal terms, implying that with (50), v̆B is
affecting ξ̃B, and with a similar reasoning v̆A is affecting
ξ̃A. Consequently the disturbance terms that appear in ξ̃U
are given by v̆U , which are the noise signals on wU in the
immersed network (13) with unmeasured nodes removed,
and hence is a filtered version of all signals in e that have a
direct or unmeasured path to a node in wU .

The external excitation signals that appear in ξ̃U can be
analysed from (50) also. Because of the structure of R̆1 as
provided in (17), and the fact that because of monicity of
H̃b the matrix inverse definitely has nonzero diagonal terms,
the external excitation signals appearing in ξ̃B (i.e. the third
row of R̆1r) are: rB and rBZ , being the r signals in rZ that
have an unmeasured path to a node in wB.

Combining the above result, and using the fact that ξU is
a filtered version of ξ̃U it follows that the following external
signals appear in ξU :
• eU : all signals in e that have a direct or unmeasured path

to a node in wU

• rB and rBZ .

Finalizing the proof
The mapping that we need to evaluate for verifying the

number of vertex disjoint paths is given by

(rP , rA, r
A
Z , ξ)→ (wD, ξY).

Since ξY appears on both sides of the mapping, the path
condition can equivalently be formulated for the mapping

(rP , rA, r
A
Z , ξU)→ wD.

Given the external signals that affect ξU as analyzed above,
it is sufficient to evaluate the mapping

(rP , rA, r
A
Z , rB, r

B
Z , e

U)→ wD.

In this mapping, rA, rB unite all r signals that have a direct
path to a node in wU , and rAZ , r

B
Z unite all r signals that have

an unmeasured path to an node in wU . With the definition of
xU in the Theorem, it follows that xU = (rA, r

A
Z , rB, r

B
Z , e

U),
showing that we need to evaluate the mapping: (rP , xU) →
wD. �


