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Abstract: In dynamic network identification a major goal is to uniquely identify the topology
and dynamic links between the measured node variables. It is common practice to assume that
process noises affect every output in multivariable system identification, and every node in
dynamic networks with a full rank noise process. For many practical situations this assumption
might be overly strong. This leads to the question of how to handle situations where the process
noise is not full rank, i.e. when the number of white noise processes driving the network is strictly
smaller than the number of nodes. In this paper a first step towards answering this question
is taken by addressing the case of a dynamic network where some nodes are noise-free, and
others are disturbed with a (correlated) process noise. In this situation the predictor filters that
generate the one-step-ahead prediction of the node signals are non-unique, and the appropriate
identification criterion leads to a constrained optimization problem. It is assessed when it is
possible to distinguish between models on the basis of this criterion, leading to new notions of
network identifiability. It appears that a sufficient condition for network identifiability is that
every node signal in the network is excited by an external excitation signal or a process noise
signal that is uncorrelated with other node excitations.

Keywords: System identification, dynamic networks, network topology detection, reduced rank
noise process, identifiability

1. INTRODUCTION

Interesting topics in the system identification field are
the problems of topology detection and identification of
dynamics in a dynamic network setting. In this setting the
topology refers to the (boolean) interconnection structure
in the network. Multiple authors have developed meth-
ods to perform identification in dynamic networks (Torres
et al., 2015; Van den Hof et al., 2013; Dankers, 2014),
and topology detection (Chiuso and Pillonetto, 2012; Yuan
et al., 2011; Sanandaji et al., 2011; Materassi and Sala-
paka, 2012). In these publications the general setup is as
follows: the dynamic network consists of dynamic links
between (measured) node variables, (known) external ex-
citation signals and unknown stochastic process noises.
External excitation signals are not incorporated in all
the methods. For all of the methods it is assumed that
the process noise variables affecting different nodes are
mutually uncorrelated, and that each node is affected by
a process noise variable. This type of noise is referred to
as a full-rank mutually uncorrelated process noise.

In many practical situations it can be unrealistic to assume
full rank and uncorrelated process noise. An example of
such a situation is ship modeling where multiple variables
are affected by only one disturbance, the waves, see (Lin-
der, 2014). In a situation like this, the spectral density
matrix of the noise will typically be singular. Also in the

classical closed-loop network, see Figure 1, with a noise-
disturbed plant output and a controller output that is
noise-free, the vector noise process will be singular. In
(Weerts et al., 2015) the question has been addressed
whether models (topology and dynamics) can be distin-
guished from each other for the case of networks with
correlated full rank process noise. It has been shown in
that paper that uniqueness of the detected topology is
essentially an identifiability issue and that because of the
noise correlations all node variables need to be treated si-
multaneously. Rather than decomposing the problem into
several MISO problems, this requires the handling of a
MIMO problem. The analysis in (Weerts et al., 2015) is
however no longer valid in case the noise is of reduced
rank.

In the current paper we treat the most simple situation of
a reduced rank noise process, namely a network where part
of the nodes are noise-free, and the remaining nodes are
contaminated by a full rank process noise, while it is known
up front which nodes are noise-free. The main question
to address is: In the considered situation of a dynamic
network with (some) given noise-free nodes, under what
conditions (on external excitation, network topology and
model structures) can we distinguish between two network
models on the basis of measured signals?



In the identification literature little attention is paid to
rank reduced noise processes, even though the classical
closed-loop system (Figure 1) has this property. Closed-
loop identification methods typically work around the
issue by either replacing the external excitation signal
r by a stochastic noise process, as e.g. in the join-IO
method (Caines and Chan, 1975), or by only focussing
on identifying the plant model (and not the controller), as
e.g. in the direct method. In econometrics dynamic factor
models have been developed to deal with the situation of
rank reduced noise (Deistler et al., 2015).

In the full rank noise case it is rather obvious that unique
estimates can be obtained from network transfers that
describe the mappings from external excitation signals to
measurable node signals. In the singular noise case this
is not obvious. Therefore we will set up a framework for
identification in the singular situation, that we expect to
be valid not only for the situation of noise-free nodes,
but also for the more general situation of singular process
noise.

In our approach we first formally define the network (sec-
tion 2), after which the identification setup is formulated
(section 3). The predictor is derived, and it is shown that
the predictor filters are not unique due to the presence
of noise-free nodes. An appropriate -constrained- identifi-
cation criterion is introduced to deal with the noise-free
signals and the resulting nonuniqueness of the predictor
filters. In section 4, network identifiability is addressed
and analyzed, after which two illustrative examples are
provided (section 5). The Proofs of the results in this paper
are collected in the appendix.

2. DYNAMIC NETWORK SETTING

In this paper a dynamic network consisting of L scalar
internal variables or nodes wj , j = 1 · · ·L is considered.
Only the first p nodes are affected by noise. This leads to
a network defined by the equation[

wa(t)
wb(t)

]
=

[
G0
aa(q) G0

ab(q)
G0
ba(q) G0

bb(q)

]
︸ ︷︷ ︸

G0(q)

[
wa(t)
wb(t)

]
· · ·

+

[
R0
a(q)

R0
b(q)

]
︸ ︷︷ ︸
R0(q)

r(t) +

[
H0
s (q)
0

]
︸ ︷︷ ︸
H0(q)

e(t),

(1)

where:

• G0
aa∈Rp×p(z), G0

ab∈Rp×(L−p)(z), G0
ba∈R(L−p)×p(z),

G0
bb ∈ R(L−p)×(L−p)(z) are proper rational transfer

function matrices;
• nodes wa ∈ Rp, wb ∈ RL−p;
•
[
H0

s (q)
0

]
e(t) is the process noise affecting the nodes

wa, it is modeled as a realization of a stationary
stochastic process with rational spectral density;
• e(t) ∈ Rp, a stationary white noise process with

diagonal covariance matrix Γ > 0;
• R0

a ∈ Rp×K(z), R0
b ∈ R(L−p)×K(z), K ∈ N0;

• r(t) ∈ RK , it is the quasi-stationary external ex-
citation variable that can directly or indirectly be
manipulated by the user.

The diagonal of G0
aa(q) and G0

bb(q) is 0, i.e. nodes are not
connected to themselves directly. There are no algebraic
loops in the network, i.e. when individual elements of
G0(q) are denoted by G0

ninj
(q) then for any sequence

n1, · · · , nk: limz→∞G0
n1n2

(z)G0
n2n3

(z) · · ·G0
nkn1

(z) = 0.
Nodes wa are affected by noise, and nodes wb are noise-
free. H0

s (q) is square, monic, stable and stably invertible,
H0
s ∈ Rp×p(z). Note that limz→∞H0

s (z) = I, such that the

innovations process of the network is e0(t) := [I 0]
T
e(t)

where e0 ∈ RL which is in line with the definition of the
innovations process in (Caines, 1987). For convenience we
will denote the internal and external variables as

z(t) =

[
wa(t)
wb(t)
r(t)

]
.

The topology of the network is defined as the set of indices
that represent which interconnections in the network are
nonzero.

Definition 1. Set N represents the boolean topology of
(1), it is defined by

N =
{

(ni, nj) | ∃ z such that Gni,nj
(z) 6= 0

}
,

where ni and nj indicate the specific interconnection

ni, nj ∈ {1, 2, · · · , L}.

For a dynamic network with noise-free nodes as in (1), the
resulting identification problem then becomes to identify
the topology and/or the network dynamics {G0, H0, R0}
on the basis of measured node variables {wj , j = 1, · · ·L}
and external variables {rk, k = 1, · · ·K}. In this paper
we will identify the topology through identification of the
dynamic networks {G0, H0, R0}.
We assume that it is known which nodes of a network
are noise-free such that the network can be written in the
form described above. In practice it is possible to estimate
the covariance of noise in a network, hence it is possible
to determine which nodes are noise-free. We can use that
information to partition the nodes into the noisy wa and
noise-free wb groups.

3. NETWORK PREDICTOR AND IDENTIFICATION
CRITERION

In this section a prediction error identification setup is
presented that is suited for dealing with the situation of
noise-free nodes. This setup will be used to identify the
network dynamics. All node signals in the network are
treated symmetrically, i.e. no distinction is made between
input and output node signals. First we define the one-
step-ahead predictor as follows:

Definition 2. The one-step-ahead predictor is defined for
j = 1, · · · , L as

ŵj(t|t− 1) := E
{
wj(t) | wt−1

j , wti ∀ i 6= j, rt
}

where wti := {wi(0), · · · , wi(t)} and rt := {r(0), · · · , r(t)}.

Although algebraic loops are not allowed, transfer func-
tions without delay are allowed, which leads to the pre-
dictor expression above. Due to the non-square noise filter
H0 the expressions for the predictor will be different from
the classical full rank case. This is shown in the following
result.



Proposition 3. The one-step-ahead predictor of (1) is de-
termined by the set of equations[

ŵa(t|t− 1)
ŵb(t|t− 1)

0

]
=

Waa(q) Wab(q) War(q)
0 I 0
G0
ba G0

bb − I R0
b

 z(t) (2)

with

Waa(q)=
[
I−H−1

s (q)
(
I−G0

aa(q)
)]
,

Wab(q)=
[
H−1
s (q)G0

ab(q)
]
,

War(q)=
[
H−1
s (q)R0

a(q)
]
.

While the predictions ŵa and ŵb are unique, see also
the orthogonal projection theorem (Caines, 1987), the
predictor filters are not unique, due to the deterministic
relationship between the signals wa, wb and r in z, induced
by the noise-free nodes, and reflected in the third equality
of (2). It may look incorrect that the one-step-ahead
prediction of wb(t) is wb(t) itself, but this is caused by
the noise-free relation in (1), where wb(t) can be described
in a noise-free relationship based on past values of wa,
wb and r, conforming to the predictor expression (2). By
combining the third row in (2) with any one of the other
two, different expressions for the predictor filters result.
The set of equations (2) can equivalently be described
by pre-multiplying both sides of the equation with an
invertible matrix

S(q) :=

[
I 0 A(q)
0 I B(q)
0 0 I

]
,

with A(q) and B(q) any rational matrices of appropri-
ate dimensions. The pre-multiplication does not change
the left-hand side, but the filters on the right-hand side
do change. Next to the basic expressions for Waa, Wab

and War, as present in Proposition 3, we can e.g. also
construct a version where Wab = 0 by taking A(q) =
−H−1

s G0
ab(G

0
bb − I)−1.

For purpose of identification a network model will be
parametrized through a model structure M defined as

M := {G(q, θ), H(q, θ), R(q, θ), θ ∈ Θ},
with

G(q, θ) =

[
Gaa(q, θ) Gab(q, θ)
Gba(q, θ) Gbb(q, θ)

]
,

H(q, θ) = Hs(q, θ),

R(q, θ) =

[
Ra(q, θ)
Rb(q, θ)

]
where all matrices have the same dimensions as their
nonparameterized counterparts.

We make the assumption that the model structureM only
contains models that do not contain any algebraic loops,
i.e. any sequence n1, · · · , nk:

lim
z→∞

Gn1n2(z, θ)Gn2n3(z, θ) · · ·Gnkn1(z, θ) = 0

for all θ. A parameterized predictor for wa(t) can then be
constructed as:

ŵa(t|t− 1, θ) = [Waa(q, θ) Wab(q, θ) War(q, θ)] z(t) (3)

with the three filters parametrized in any of the forms that
conforms to the of equations (2) pre-multiplied by S(q).

Since the expression for ŵb(t|t−1) in (2) does not directly
lead to a parametrized version of this predictor, we will
pre-multiply (2) with S(q), with B(q) = I. Then ŵb(t|t−1)
is parameterized by taking the summation of the two last
equations in (2), leading to

ŵb(t|t− 1; θ) = (4)

[Gba(q, θ) Gbb(q, θ) Rb(q, θ)] z(t) for all t.

This choice guarantees that the parametrized transfer
functions Gba, Gbb and Rb appear in the prediction error,
and thus can be identified. Note that with this parameter-
ization ŵb(t|t− 1; θ) is not necessarily equal to wb(t).
The related prediction error is defined by[

εa(t, θ)
εb(t, θ)

]
:=

[
wa(t)
wb(t)

]
−
[
ŵa(t|t− 1, θ)
ŵb(t|t− 1, θ)

]
. (5)

When choosing an identification criterion we need to
properly weigh the contributions of both prediction errors
εa and εb. For minimum variance reasons the respective
weights should be inversely proportional to the innovations
variance related to each term. Since wb is noise-free,
the resulting weight for the term εb should be infinite.
Accordingly we need to choose an identification criterion
with a constraint, formulated as:

J (z,M) =

{
arg
M(θ)

min
θ∈Θ

Ē εTa (t, θ)Λεa(t, θ)

subject to: εb(t, θ) = 0 for all t.

}
, (6)

with Λ a strictly positive definite matrix of appropriate
dimensions. In this definition J is a set containing the
models M(θ) which satisfy the constraint and minimize
the cost function. The constraint optimization problem
(6) is the natural identification method for dealing with
noise-free nodes.

In this identification setup we have so far neglected the
possible effect of non-zero initial conditions, that could
render the formulated constraint infeasible. This issue
can be resolved by parametrizing the unknown initial
conditions too, and including them in the parameter vector
θ, see e.g. Pintelon and Schoukens (2012).

In the next section it will be analyzed under which
conditions network models can be distinguished in this
identification setup.

4. NETWORK IDENTIFIABILITY

Models can typically be distinguished from each other
through measurement data, if they have different prop-
erties in view of the induced prediction errors that are
used as a basis for identification. In the classical situation
of full rank process noise, this is typically reflected in
different predictor filters. In the current situation however,
the predictor filters are non-unique, and so they cannot
directly serve as a basis for deciding whether two net-
work models can be distinguished on the basis of data.
Therefore we need a more detailed analysis and some new
concepts for characterizing when network models can be
distinguished. In the setup to be presented, the general
question will be whether the identification criterion can
distinguish between the models in M. The setup that is
being presented here is expected to be applicable also to
the general situation of having singular noise processes



(not necessarily having noise-free nodes). First we formal-
ize when two models can be distinguished by the criterion.

Definition 4. (J-equivalent models (Van den Hof, 1994)).
Two models M1,M2 ∈ M are J-equivalent within M,

denoted M1
J∼M2, if for all possible data sequences z 1 ,

M1 ∈ J(z,M)⇔M2 ∈ J(z,M).

In other words: two J-equivalent models always appear
together in the solution set of an identification problem
(if one of them appears, the other appears also and
vice versa). As a result two J-equivalent models can not
be distinguished from each other by the identification
criterion J , no matter what the data set is. This notion
of J-equivalent models leads to a natural definition of
network identifiability.

Definition 5. (Global network identifiabilitity). A network
model structure M is globally network identifiable in
M0 ∈ M with respect to the identification criterion J ,
if for any model M1 ∈M it holds that

{M1
J∼M0} =⇒M1 = M0.

A network model structure M is globally network identi-
fiable, if it is globally network identifiable in every model
M0 ∈M with respect to J .

Equality of models is to be interpreted as the dynamics
of the models being equal. The presented identifiability
concept has some relation to the classical notion of system
identifiability (Ljung, 1976) that operates under a criterion
and on transfer function level as well. However unlike
that classical notion, the above concept is not based on
consistency of the estimates, and therefore not based on
a particular data-generating system. It is closely related
to the notion of discriminability of model sets (Van den
Hof, 1989). It is also different from the classical notion of
identifiability ((Ljung, 1999)) as it is not concerned with
uniqueness of parameters, but rather with uniqueness of
models in the form of their transfer function representa-
tion.

Proposition 6. A sufficient condition for a model set M
to be globally network identifiable in M0 with respect
to J , is that there exists a data sequence z such that
J(z,M) = {M0} 2 .

This result follows directly from the definition of network
identifiability. There must exist some data sequence such
that the solution is a singleton, hence this model M0 is not
J-equivalent to any other model in M. The importance
of this property is that it implies that topology and
dynamics of M0 can be distinguished from other topologies
and dynamics. We are now going to formulate conditions
under which the property of Proposition 6 holds. For this
purpose we choose a particular data sequence, namely a
data sequence z that is generated by M0 through (1) in
which r is persistently exciting of a sufficiently high order.

1 This refers to all possible quasi-stationary stochastic processes
z = [wT

a wT
b rT ]T that can be generated by w = G(q)w + H(q)e +

R(q)r with G,H,R being linear, time-invariant filters satisfying the
usual conditions, e a white noise, and r quasi-stationary.
2 In line with the classical definitions for full rank noise prediction
error methods, a data sequence z that leads to a singleton J(z,M)
can be called informative for a globally network identifiable model
set M with respect to criterion J .

Proposition 7. Consider a data sequence z generated by
M0, where M0 has the form (1), then J(z,M) = {M0} if
the following implication holds true:

ŵb(t|t− 1; θ1) = wb(t) ∀t
Ē[ŵa(t|t− 1; θ1)− ŵa(t|t− 1; θ0)]TΛ·
· [ŵa(t|t− 1; θ1)− ŵa(t|t− 1; θ0)]=0

⇒M(θ1)=M(θ0)

(7)

The condition (7) can be interpreted as a condition that
warrants that the data sequence used for identification is
sufficiently informative for the model structure considered.
Informativity of data is usually defined as a condition
like (7) but then without the constraint on ŵb, see Ljung
(1999). Because of the noise-free nodes, the additional
constraint needs to be added.

Under the influence of the constrained identification cri-
terion J (6), we can now rewrite the predictor filters
into a form that becomes unique, and therefore can be
used as an appropriate basis for analyzing global network
identifiability. This is done by substituting the constraint
ŵb(t|t− 1, θ) = wb(t) into the expression for the predictor
for wa, and removing wb as a predictor input.

Proposition 8. Under the constraint ŵb(t|t−1, θ) = wb(t),
the predictors for the network can be rewritten as[

ŵa(t|t− 1, θ)
ŵb(t|t− 1, θ)

]
= P (q, θ)

[
wa(t)
r(t)

]
, (8)

where

P =

[
Paa(q, θ) Par(q, θ)
Pba(q, θ) Pbr(q, θ)

]
,

with (omitting arguments q, θ)

Paa = I −H−1
s (I −Gaa) +H−1

s GabPba,

Par = H−1
s Ra +H−1

s GabPbr,

Pba = (I −Gbb)−1Gba,

Pbr = (I −Gbb)−1Rb.

The predictor for the network has been restructured into
a filtered version of wa and r only. Because of the noise-
free character of wb, this signal can indeed be discarded
as input to the predictor filters. Since the node signals wa
are driven by a full rank noise process, this makes this
representation of the network predictor filters unique. In
contrast with the earlier predictor expression (3), the input
signals to the predictor now constitute a full rank process
(provided that r is sufficiently exciting), and therefore
informativity of the data to estimate P (q, θ) uniquely is
guaranteed. As a consequence of this, we can now specify
the conditions for global network identifiability under
criterion J , in terms of the predictor filters P (q, θ).

Corollary 9. A network model structure M is globally
network identifiable in M0 := M(θ0) with respect to the
identification criterion J (6) if for all models M(θ1) ∈ M
the following implication holds

P (q, θ1) = P (q, θ0)⇒M(θ1) = M(θ0).

In the particular situation that we consider here, i.e.
a number of indicated nodes that are noise-free, the
predictor filters in the above corollary are uniquely related
to the transfer functions that map the external signals
(r, e) in the network to the internal network nodes wa, wb).



Proposition 10. Consider the network model structureM,
and define

T (q, θ) := (I −G(q, θ))−1

[
Hs(q, θ) Ra(q, θ)

0 Rb(q, θ)

]
.

being the parameterized transfer function from

(
e
r

)
to(

wa
wb

)
3 . Then for any θ1, θ2 ∈ Θ

P (q, θ1) = P (q, θ2)⇔ T (q, θ1) = T (q, θ2).

This proposition shows that in the condition of Corollary
9, the matrices P (q, θ) can equivalently be replaced by the
matrices T (q, θ). On the basis of the above results we can
now formulate the conditions for verifying global network
identifiability of a model structure.

Theorem 11. A network model structureM(θ) is globally
network identifiable with respect to identification crite-
rion J (6) if there exists a nonsingular and parameter-

independent transfer function matrix P̃ ∈R(K+p)×(K+p)(z)
such that[

Hs(q, θ) Ra(q, θ)
0 Rb(q, θ)

]
P̃ (q) = [D(q, θ) F (q, θ)]

with D(θ) ∈ RL×L(z), diagonal and full rank for all θ ∈ Θ,
and F (θ) ∈ RL×(p+K−L)(z).
In the case that the off-diagonal terms of G(q, θ) are
fully parametrized and all transfer functions in M(θ)
are parametrized independently 4 the condition is also
necessary.

Given the result of Proposition 10, the proof of this
theorem is similar to the proof of Theorem 2 in Weerts
et al. (2015). One of the important consequences of this
theorem is formulated in the next corollary.

Corollary 12. A network model structureM(θ) is globally
network identifiable with respect to J if every node signal
in the network is excited by either an external excitation
signals r or a noise signal v, that is uncorrelated with the
excitaton/noise signals on the other nodes.

Uncorrelated excitation can come from noise or external
variables, although on the noise-free nodes it must come
from an external variable. The condition in Theorem 11
can be relaxed when considering a model structure with
structure restrictions in G. A theorem for such structure
restricted models can be formulated in a similar fashion
by using Theorem 2 from Weerts et al. (2015).

5. ILLUSTRATIVE EXAMPLES

5.1 Closed-loop system

One of the very simple examples to which the results of
this paper apply is the situation of a single-loop feedback
system, with a disturbance signal on the process output,
and a reference input at the process input (controller
output), see Figure 1.

3 Strictly speaking it is the transfer function from

(
ε
r

)
to

(
wa

wb

)
.

4 i.e. parameters used in one transfer function entry are different
from parameters used in any other transfer function entry.

Fig. 1. Simple classical closed-loop configuration.

The process output y will take the role of node variable
wa, while the process input u will be represented by the
(noise-free) wb. When parametrizing process G(q, θ) and
controller C(q, θ), as well as noise model v(t) = H(q, θ)e(t)
and the fixed reference filters Ra(q) = 0, Rb(q) = 1, it
appears that the essential identifiability result of Theorem
11 is reflected by the matrix[

Hs(q, θ) Ra(q, θ)
0 Rb(q, θ)

]
=

[
Hs(q, θ) 0

0 1

]
.

This matrix is square and equal to the diagonal matrix
D in the theorem. Since it is square we have that matrix
F will have dimension 2 × 0. The conditions of Theorem
11 are satisfied with P̃ = I, and therefore the closed-
loop system is globally network identifiable w.r.t. J . This
implies that a consistent estimates of G0 and C can be
obtained, when identified simultaneously.

In this closed-loop example we treat all signals w sym-
metrically in a direct-method approach, meaning that all
internal variables, wa and wb, are predicted. We identify
both G and C, which is in contrast with the classical direct
method that identifies only G0. The joint-IO method for
closed-loop identification has symmetric treatment of all
signals as well. Our method however allows for the noise
on the input node to be replaced by a known external
excitation signal.

5.2 Network example

In this example we analyze the 5 node network of Figure
2 where the noises on nodes 1 and 2 are correlated. The

G0
15 +w1

v1

G0
21 +w2

v2

G0
12

+w4

r4

G0
34 +w3

v3

G0
43

+w5

r5

G0
53

Fig. 2. 5 node network.

nodes are labeled such that the last two are noise-free.
Process noise will be modeled by[

v1(t)
v2(t)
v3(t)

]
=

[
H11(q, θ) H12(q, θ) 0
H21(q, θ) H22(q, θ) 0

0 0 H33(q, θ)

]
︸ ︷︷ ︸

Hs(q,θ)

[
e1(t)
e2(t)
e3(t)

]



such that dynamic correlation can be represented. The
condition of Theorem 11 is checked by attempting to
diagonalize the matrix

H11(q, θ) H12(q, θ) 0 0 0
H21(q, θ) H22(q, θ) 0 0 0

0 0 H33(q, θ) 0 0
0 0 0 1 0
0 0 0 0 1


by postmultiplication with some filter P̃ (q) which does not
depend on θ. Due to the correlated noise it is not possible
to diagonalize the matrix in this way. In case some external
excitations are added to nodes 1 and 2 we can make the
problem identifiable.

6. CONCLUSIONS

In this paper extensions of identification methods for net-
works where the process noise is of a reduced rank are
considered. The predictor for these networks is by defi-
nition unique, while the predictor filters contain degrees
of freedom. By using a constrained identification criterion
it is shown that conditions under which unique estimates
are obtained are similar to the case of full rank noise. The
introduced concepts of uniqueness are J-equivalence which
describes when two models can not be distinguished by an
identification criterion, and global network identifiability
w.r.t. a criterion which describes that there are no distinct
J-equivalent models in a model set. These generalized no-
tions allow the treatment of identification criteria that go
beyond the classical prediction error schemes. We consider
the network identification problem under fully symmetric
treatment of variables.

7. APPENDIX

7.1 Proof of Proposition 3

For constructing ŵa we follow the same reasoning as in the
classical prediction error framework by writing the first
part of equation (1) in innovation form, by decomposing

H0
s (q)e(t) = (H0

s (q)− I)e(t) + e(t) (9)

and substituting (dropping arguments (q)):

e(t)=(H0
s )−1)

((
I−G0

aa

)
wa(t)−G0

abwb(t)−R0
ar(t)

)
,

for the first term in (9) into the expression for wa(t) in
(1), leading to :

wa(t) =G0
aawa(t) +G0

abwb(t) +R0
ar(t) +

+(H0
s − I)(H0

s )−1
[
(I −G0

aa)wa(t)+

−G0
abwb(t)−R0

ar(t)
]

+ e(t). (10)

Taking conditional expectation, according to Definition 2
then shows that

ŵa(t|t− 1) = Waa(q)wa(t) +Wab(q)wb(t) +War(q)r(t),

with

Waa(q) = I − (H0
s )−1(q)

(
I −G0

aa(q)
)
,

Wab(q) = (H0
s )−1(q)G0

abq),

War(q) = (H0
s )−1(q)R0

a(q).

The expression for wb is

wb(t) = G0
bawa(t) +G0

bbwb(t) +R0
br(t). (11)

Taking conditional expectation then leads to

ŵb(t|t−1) = G0
bawa(t) +G0

bbwb(t) +R0
br(t) = wb(t), (12)

which is equivalently reflected in the second and third
equation of (2). 2

7.2 Proof of Proposition 7

Let z be generated by M0 = M(θ0), and thus given by (1)
with r persistently exciting of a sufficiently high order, and
denote V̄a(θ) := ĒεTa (t, θ)Λεa(t, θ). Then for all models
M(θ1) ∈ M with θ ∈ Θ, that satisfy the constraint
εb(t, θ1) = 0 ∀t, it can be shown that V̄a(θ1) ≥ V̄a(θ0),
provided that there are no algebraic loops in the network
that involve variables in wa.

In order to find the conditions under which the estimated
model is unique, i.e. J(z,M) = {M0}, we analyse the
difference term V̄a(θ1) − V̄a(θ0), similarly as in Ljung
(1999)[Proof of Theorem 8.3].

Lemma 13. Under the considered conditions, including
the absence of algebraic loops in the network around
variables wa, V̄a(θ1) = V̄a(θ0) if and only if

Ē[ŵa(t|t− 1; θ1)− ŵa(t|t− 1; θ0)]TΛ · · ·
· · · [ŵa(t|t− 1; θ1)− ŵa(t|t− 1; θ0)] = 0.

Proof:

V̄a(θ1)−V̄a(θ0) = ĒεTa(t, θ1)Λεa(t, θ1)−ĒεTa(t, θ0)Λεa(t, θ0)

= Ē[εa(t, θ1)− εa(t, θ0)]TΛ[εa(t, θ1)− εa(t, θ0)] +

−2ĒεTa (t, θ0)ΛεTa (t, θ0) + 2ĒεTa (t, θ1)Λεa(t, θ0)

= Ē[εa(t, θ1)− εa(t, θ0)]TΛ[εa(t, θ1)− εa(t, θ0)] +

+2Ē[εa(t, θ1)− εa(t, θ0)]TΛεa(t, θ0).

Analysing the second term on the right hand side, we
can use the fact that εa(t, θ0) = e0(t) being a white
noise process. The difference term Ē[εa(t, θ1)− εa(t, θ0)] is
equal to Ē[ŵa(t|t − 1; θ1) − ŵa(t|t − 1; θ0)]. If this latter
expression is dependent on data up to t − 1 only, it
will be uncorrelated to e0(t) and the second term above
will be 0. This is enforced by requiring that the network
and its parametrized model do not have any algebraic
loops around node variables in wa, thereby enforcing that
Ewa,i(t)e0,j(t) = 0, for all i, j. Under this condition the
result of the Lemma holds true. 2

The result of the Proposition now holds as the formulated
implication now guarantees that there is a single model
M0 ∈M that is identified in J(z,M). 2

7.3 Proof of Proposition 8

The parameterized predictor expression ŵb is obtained by
pre-multiplying the predictor with S(q) as in section 3

ŵb = wb +B
(
Gbawa + (Gbb − I)wb +Rbr

)
.

When we substitute wb = ŵb and we have B = I then it
follows that

ŵb = (I −Gbb)−1(Gbawa +Rbr) (13)



As a result:
ŵb = Pbawa + Pbrr (14)

with

Pba = (I −Gbb)−1Gba,

Pbr = (I −Gbb)−1Rb.

The parameterized predictor expression ŵa is obtained by
pre-multiplying the predictor with S(q) as in section 3

ŵa = [Waa Wab War] z(t) +A [Gba (Gbb − I) Rb] z(t).

When we substitute wb = ŵb and use (14) then it follows
that

ŵa = Waawa +Wab (Pbawa + Pbrr) +Warr + 0,

the term that contains A has become equal to 0 showing
that the predictor can be written as

ŵa = Paawa + Parr (15)

with,

Paa = I −H−1
s (I −Gaa) +H−1

s GabPba,

Par = H−1
s Ra +H−1

s GabPbr.

7.4 Proof of Corollary 9

For proving this result we analyse the implication in
Proposition 7. By definining P̃ij(θ1) := Pij(θ1) − Pij(θ0),
the two conditions on the predictors can be rewritten by

[P̃ba(θ1) P̃br(θ1)]

[
wa(t)
r(t)

]
= 0 ∀t

Ē
[
[P̃aa(θ1) P̃ar(θ1)]

[
wa(t)
r(t)

]]2

= 0.

Since the data z in Proposition 7 is chosen to be generated
by M0 with r persistently exciting of a sufficiently high
order and since wa is disturbed by a full rank noise process,
these equations imply that P̃ (θ1) := P (θ1)−P (θ0) = 0. As
a result the implication in the corollary guaranteess that
the implication in Proposition 7 is true, and therefore the
sufficient condition for global network identifiability in M0

is satisfied.

7.5 Proof of Proposition 10

Equivalence of T and P is shown via the block matrix
inverse. Define that T consists of

T (q, θ) =

[
T11(q, θ) T12(q, θ)
T21(q, θ) T22(q, θ)

]
with the dimensions of the blocks of P . Equivalence is
shown by taking the following 4 steps

(1) T11(q, θ1) = T11(q, θ2)⇔ Paa(q, θ1) = Paa(q, θ2),
(2) T12(q, θ1) = T12(q, θ2)⇔ Par(q, θ1) = Par(q, θ2),
(3) T21(q, θ1) = T21(q, θ2)⇔ Pba(q, θ1) = Pba(q, θ2),
(4) T22(q, θ1) = T22(q, θ2)⇔ Pbr(q, θ1) = Pbr(q, θ2).

The matrix inversion lemma is used on (I − G) to define
the block inverse[

E(q, θ) F (q, θ)
K(q, θ) L(q, θ)

]
= (I −G)−1,

where (omitting arguments q, θ for the rest of the proof)

E := (I −Gaa −Gab(I −Gbb)−1Gba)−1,

F := E Gab(I −Gbb)−1,

K := (I −Gbb)−1Gba E,

L := (I −Gbb)−1 +K E−1 F.

We have that

T =

[
E F
K L

] [
Hs Ra
0 Rb

]
. (16)

The blocks of T can be written as

T11 = EHs,

T12 = ERa + FRb,

T21 = KHs,

T22 = KRa + LRb.

(1) The equality I − T−1
11 = Paa holds such that step 1

holds.
(2) Writing out the equality

T−1
11 T12 =H−1

s E−1ERa+H−1
s E−1EGab(I−Gbb)−1Rb

shows that T−1
11 T12 = Par such that step 2 holds when

step 1 holds.
(3) Writing out the equality

T21T
−1
11 = (I −Gbb)−1GbaEHsH

−1
s E−1

shows that T21T
−1
11 = Pba such that step 3 holds when

step 1 holds.
(4) Writing out T22 − T21T

−1
11 T12 gives

KRa+LRb−KHsH
−1
s E−1

(
ERa+FRb

)
= LRb−KE−1FRb.

Then substitute L as

LRb−KE−1FRb =
(
(I −Gbb)−1 + KE−1F

)
Rb−KE−1FRb

such that we can see that T22 − T21T
−1
11 T12 = Pbr.

Then step (4) holds when steps 1-3 hold, which proves
the assertion.
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