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Introduction – dynamic networks 

Decentralized process control
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Autonomous driving

www.envidia.com

Smart power grid

Hydrocarbon reservoirs

Pierre et al.  (2012)

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)



Introduction
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Overall trend:

• (Large-scale) interconnected systems
• With hybrid dynamics 
• Distributed / multi-agent type monitoring, control and optimization 

problems
• Data is “everywhere”, big data era
• Model-based operations require accurate/relevant models
•  Learning models from data (including physical insights when available)



Introduction

Distributed / multi-agent control: 

With both physical and communication links between 
systems      and controllers 
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How to address data-driven modelling problems in such a setting? 



Introduction

The classical (multivariable) identification problems[1] :

Identify a model of      on the basis of measured signals 
(and possibly   ), focusing on continuous LTI dynamics.
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[1] Ljung (1999), Söderström and Stoica (1989), Pintelon and Schoukens (2012)

We have to move from a simple and fixed configuration
to deal with structure in the problem.



Early contributors
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Topology detection: Materassi, Innocenti, Salapaka, Yuan, Stan, Warnick, Goncalves, 
Sanandaji, Vincent, Wakin, Chiuso, Pillonetto 
exploring Granger causality, Bayesian networks, Wiener filters

Here: focus on structural aspects in identification setups.  

Subspace algorithms for spatially distributed systems with 
identical modules (Fraanje, Verhaegen, Werner), or
non-identical ones (Torres, van Wingerden, Verhaegen, Sarwar, Salapaka, Haber)



Data-driven modeling in linear dynamic networks7

• Introduction and motivation
• How to model a dynamic network?
• Single module identification 
• Global network identification 
• Physical networks
• Extensions - Discussion

Contents
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Dynamic networks for data-driven modeling



9

Network models

D. Materassi and M.V. Salapaka (2012)                      www.momo.cs.okayama-u.ac.jp                       E.A. Carara and F.G. Moraes (2008)                                       P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019)

R.N. Mantegna (1999)                                                     D. Koller and N. Friedman (2009)                             P.E. Paré et al (2013)                                                                           E. Yeung et al (2010)
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Network models
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State space representation [1]

Module representation [2]

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…

[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,… 



Dynamic network setup 
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module
ri external excitation
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Dynamic network setup 
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module
ri external excitation
vi process noise
wi node signal

G76



Dynamic network setup 

16

Assumptions:
• Total of L nodes
• Network is well-posed and stable
• Modules are dynamic LTI, may be unstable
• Disturbances are stationary stochastic and 

can be correlated

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Dynamic network setup
Setup covers the situation of bilaterally coupled (physical) systems:
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G1 G2

G3 G4



Dynamic network setup 
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Many new data-driven modeling  
questions can be formulated

Measured time series:



Model learning problems
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Under which conditions can we estimate the topology and/or 
dynamics of the full network?



Model learning problems
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How/when can we learn a local module from data 
(with known/unkown network topology) ?    Which signals to measure?



Model learning problems
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Where to optimally locate sensors and actuators?



Model learning problems
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Same questions for a subnetwork



Model learning problems
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How can we benefit from known modules?



Model learning problems
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Fault detection and diagnosis; detect/handle nonlinear elements



Model learning problems
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Can we distribute the computations?

w1 w2

w6 w7
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Dynamic network setup 
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• Identification of a local module 
(known topology)

• Identification of the full network
• Topology estimation
• Identifiability
• Sensor and excitation allocation
• Fault detection 
• User prior knowledge of modules
• Distributed identification
• Scalable algorithms

Measured time series:

Many new data-driven modeling  
questions can be formulated



Dynamic network setup - graph
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5 1 2 4 3

Nodes are vertices; modules/links are edges

Extended graph: 
including the external signals
and disturbance correlations



Application: Networks of (damped) oscillators
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• Power systems, vehicle platoons, 
thermal building dynamics, …

• Spatially distributed

• Bilaterally coupled

• No central coordination ⟹
local identification problems



Single module identification - Example
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G10
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Decentralized MPC 
2 interconnected MPC loops

Gudi, R. D. and Rawlings, J. B. (2006). Identification for decentralized model predictive control. AIChE Journal, 52(6):2198-2210.

Target:
Identify interaction dynamics

Addressed by Gudi & Rawlings (2006) 
for the situation (no cycles) 
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• Introduction and motivation
• How to model a dynamic network?
• Single module identification 
• Global network identification 
• Physical networks
• Extensions - Discussion
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Single module identification



Single module identification
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For a network with known 
topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Single module identification
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Naïve approach: identify based on       and       : in general does not work.  



Single module identification
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Identifiying is part of a 
4-input, 1-output problem 

If noises      are correlated
it may even be part of a 
MIMO problem  
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Single module identification
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0

Input signals will be correlated:
similar as in a closed-loop situation 

What is required for 
identifiability / data informativity? 

Identifiying is part of a 
4-input, 1-output problem 

Ability to distinguish between models 
independent of id-method

Information content of signals
dependent on id-method 



Single module identification
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Generic identifiability: 

[1] Weerts et al., Automatica 2018, CDC 2018
[2] Bazanella et al. CDC2017; Hendrickx et al., IEEE-TAC, 2019. 

[3] Dankers et al., TAC 2016
[4] Shi et al., IFAC 2020 submitted.

Identifiying is part of a 
4-input, 1-output problem 

All parallel paths, and loops around the output, plus input 
should have an independent external signal    or



Single module identification
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0

[1] Dankers et al., TAC 2016
[2] Hendrickx et al., IEEE-TAC, 2019. 

[3] Gevers et al. SYSID 2018
[4] Bazanella et al., CDC2019 

Which node signals to measure?

Dependent on • signals uncorrelated or not
• Excitation conditions satisfied 

through   - and/or   -signals     

Typical solution: • One additional measured signal for each parallel path/loop 
• Additional signals if excitation is through    signals  

[5] PVdH, Ramaswamy, CDC2019
[6] Shi et al., IFAC 2020 submitted.

• Variation in available algorithms / options



one signal per parallel path/loop:
With a 3-input, 1 output model we can
consistently identify

Single module identification

When excitation is through disturbance signals    : 
• dealing with confounding variables, [1][2] i.e. 

correlated disturbances on inputs and outputs

38

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009
[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017.

w1 w2

wc

G21

vc

0

0

• can be addressed by adding inputs/outputs to 
the estimation problem [3]

[3] PVdH et al, CDC 2019



Single module identification
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Typical solution: 

• MISO (sometimes MIMO) estimation problem
• to be solved by any  (closed-loop) identification algorithm, e.g. direct/indirect method



Machine learning in local module identification
• MISO identification with all modules parameterized
• Brings in two major problems :

 Large number of parameters to estimate 
 Model order selection step for each module (CV, AIC, BIC)

• For 5 modules, combinations = 244,140,625

• We need only the target module. No NUISANCE!

40

Gji +
vj

wj

Gjk

Gjk

Gjk

wi

wk   

Hj

ej

rj

1

wk   2

wk   p

1

2

p

Increases variance
Computationally challenging
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Machine learning in local module identification
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[1] Everitt et al., Automatica 2017.    
[2] K.R. Ramaswamy et al., CDC 2018.

Maximize marginal likelihood of output data:   𝜂̂𝜂 = argmax
𝜂𝜂

𝑝𝑝 𝑤𝑤𝑗𝑗; 𝜂𝜂
𝜂𝜂 ≔ 𝜃𝜃 𝜆𝜆𝑗𝑗 𝜆𝜆𝑘𝑘1 … 𝜆𝜆𝑘𝑘𝑝𝑝 𝛽𝛽𝑗𝑗 𝛽𝛽𝑘𝑘1 … 𝛽𝛽𝑘𝑘𝑝𝑝 𝜎𝜎𝑗𝑗2

⊤

• smaller no. of 
parameters

• simpler model order 
selection step

• scalable to large 
dynamic networks

• simpler optimization 
problems to estimate 
parameters



Numerical simulation
 Identify 𝐺𝐺31 given data
 50 independent MC simulation
 Data = 500



Summary single module identification

• Path-based conditions for network identifiability (where to excite?)

• Graph tools for checking conditions

• Degrees of freedom in selection of measured signals – sensor selection

• Methods for consistent and minimum variance module estimation, and
effective (scalable) algorithms

• A priori known modules can be accounted for

43
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• Introduction and motivation
• How to model a dynamic network?
• Single module identification 
• Global network identification 
• Diffusively coupled physical networks
• Extensions - Discussion

Contents



Full network identification

45

Under which conditions can we estimate the topology and/or 
dynamics of the full network?



Network identifiability

blue = unknown
red   = known

Question:   Can different dynamic networks be distinguished from each other from
measured signals w , r ?

46



Network identifiability

The identifiability problem: 

47

The network model:

can be transformed with any rational : 

to an equivalent model: 

Nonuniqueness,  unless there are structural constraints on  

[1] Weerts, Linder et al., Automatica, 2020, to appear.
[2] Bottegal et al., SYSID 2017



Network identifiability

48

Consider a network model set:

representing structural constraints on the considered models: 
• modules that are fixed and/or zero (topology)
• locations of excitation signals
• disturbance correlation

Generic identifiability of        :
- There do not exist distinct equivalent models
- for almost all models in the set. 

[1] Weerts et al., SYSID2015; Weerts et al., Automatica, March 2018; 
[2] Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019. 



Conditions for identifiability              rank conditions on transfer function  

Example 5-node network

49

w5 w1G15 w4G21 w3G34

G12 G23

G53

v1 v2 v3r4

w2

r5

2 vertex-disjoint paths → full row rank 2

For the generic case, the rank can be calculated by a graph-based condition[1],[2],[3] :

Generic rank = number of vertex-disjoint paths

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019

The rank condition has to be checked for all nodes.

Full row rank of

[3] van Waarde et al., ArXiv, 2018.



Synthesis solution for network identifiability
Allocating external signals for generic identifiability:  
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Tree with root in green Cycle with outgoing trees;
Any node in cycle is root

Pseudo-trees:

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

1. Cover the graph of the network model set by a set of disjoint pseudo-trees

Edges are disjoint and all out-neighbours of a node are in the same pseudo-tree 

2. Assign an independent external signal (    or    ) at a root of each pseudo-tree. 

This guarantees generic identifiability of the model set.  
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5 1 2 4 3

5 1 2 4 3Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2

All indicated modules are parametrized
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee 
generic network identifiability

Where to allocate external excitations for network identifiability?

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2
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Where to allocate external excitations for network identifiability?

21

97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           that are input to parametrized link

[1] X. Cheng, S. Shi and PVdH, CDC 2019. 

Pseudo-tree
merging

algorithm [1]

• Known (nonparametrized) links do not need to be covered



Summary identifiability of full network 

Extensions:
• Situations where not all node signals are measured [1]

54

Identifiability of network model sets is determined by

• Presence and location of external signals, and
• Correlation of disturbances
• Topology of parametrized modules

• Graphic-based tool for synthesizing allocation of external signals

[1] Bazanella, CDC 2019. 



Algorithms for identification of full network 
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[1] Weerts, Galrinho et al., SYSID 2018

(Prediction error) identification methods will typically lead to large-scale 
non-convex optimization problems

Convex relaxation algorithms are being developed[1] as well as machine 
learning tools



Topology identification
• Topology resulting from full dynamic model

• Alternative: non-parametric models (Wiener filters [1]) 
or kernel-based approaches [2][3]

• modeling module dynamics by Gaussian processes,

kernel with 2 parameters for each dynamic module

56

• Optimizing likelihood of the data as function of parameters and topology:

• Forward-backward search over topologies + empirical Bayes (EM) for parameters

[1] Materassi & Innocenti, TAC 2010.
[2] Chiuso & Pillonetto, Automatica, 2012.

[3] Shi, Bottegal, PVdH, ECC 2019



Topology identification
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50 MC realizations of network with  6 nodes. 

[1] Shi, Bottegal, PVdH, ECC 2019



Neurodynamic effect of listening to Mozart music
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Identifying changes in network connections
in the brain, after intensely listening for
one week

[1] R. van Esch, S. Shi, A. Bernas, S. Zinger, A. Aldenkamp, PVdH, 2019



Algorithms for identification of full network 
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[1] Deistler et al., EJC, 2010.
[2] Zorzi and Chiuso, Automatica 2017.

Particular feature for larger networks: 

Modeling disturbances as a reduced rank process:
(cf dynamic factor analysis[1])

H

e

v
• Optimization becomes a constrained quadratic problem

with ML properties for Gaussian noise
• Reworked Cramer Rao lower bound
• Some parameters can be estimated variance free  regularization effect

Consequences for estimation[3]:

[3] Weerts et al., Automatica dec 2018.
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Physical networks



Back to the basics of physical interconnections
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Resistor

𝐼𝐼 =
1
𝑅𝑅

𝑉𝑉1 − 𝑉𝑉2

Spring
1
𝑅𝑅
𝐹𝐹 = 𝐾𝐾 𝑥𝑥1 − 𝑥𝑥2

1
𝑅𝑅

In connecting physical systems, there is often no predetermined 
direction of information [1]

w1 w2G21

Example: resistor / spring connection in electrical / mechanical system:

Difference of node signals drives the interaction:   diffusive coupling

[1] J.C. Willems (1997,2010)



Diffusively coupled physical network

63

Equation for node j:   



Mass-spring-damper system
• Masses 𝑀𝑀𝑗𝑗
• Springs 𝐾𝐾𝑗𝑗𝑗𝑗
• Dampers 𝐷𝐷𝑗𝑗𝑗𝑗
• Input 𝑢𝑢𝑗𝑗

𝑀𝑀1
𝑀𝑀2

𝑀𝑀3

𝑤̈𝑤1
𝑤̈𝑤2
𝑤̈𝑤3

+
0

𝐷𝐷20
0

𝑤̇𝑤1
𝑤̇𝑤2
𝑤̇𝑤3

+
𝐾𝐾10

0
0

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

+
𝐷𝐷13 0 −𝐷𝐷13

0 𝐷𝐷23 −𝐷𝐷23
−𝐷𝐷13 −𝐷𝐷23 𝐷𝐷13 + 𝐷𝐷23

𝑤̇𝑤1
𝑤̇𝑤2
𝑤̇𝑤3

+
𝐾𝐾12 + 𝐾𝐾13 −𝐾𝐾12 −𝐾𝐾13
−𝐾𝐾12 𝐾𝐾12 0
−𝐾𝐾13 0 𝐾𝐾13

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

=
0
𝑢𝑢2
0

64

polynomial  



Mass-spring-damper system
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polynomial  

This fully fits in the earlier module representation: 

with the additional condition that: 

polynomial  
symmetric, diagonal



Module representation
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Consequences for node interactions:

• Node interactions come in pairs of modules
• Where numerators are the same

Framework for network identification remains the same

• Symmetry can simply be incorporated in identification



Identification of one physical interconnection
Identification of two modules 𝐺𝐺𝑗𝑗𝑗𝑗 and 𝐺𝐺𝑘𝑘𝑘𝑘

Local network identification

67



Immersion conditions
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For simultaneously identifying two modules in one interconnection: 

The parallel path and loops-around-the-output condition, now
simplifies to:

Measuring/exciting all neighbouring nodes of       and       leads to a solution

E.E.M. Kivits et al., CDC 2019.



Summary physical networks

• Physical networks fit within the module framework (special case)

- no restriction to second order equations

• Earlier identification framework can be utilized

• Local identification is well-addressed (and stays really local)

• Framework is fit for representing cyber-physical systems 
(combining physical bi-directional links, and cyber uni-directional links).

69
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Extensions - Discussion



Extensions - Discussion
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• Including sensor noise [1]

• Errors-in-variabels problems can be more easily handled in a network 
setting

[1] Dankers et al., Automatica, 2015.

• Distributed estimation (MISO models) [2]

• Communication constraints between different agents
• Recursive (distributed) estimator converges to global optimizer (more slowly) 

[2] Steentjes et al., IFAC-NECSYS, 2018.

• Experiment design [3],[4]

• design of least costly experiments

[3] Gevers and Bazanella, CDC 2015. 
[4] Morelli, Bombois et al., ECC 2019; 



Summary

• Dynamic network modeling:

intriguing research topic with many open questions

• The (centralized) LTI framework is only just the beginning

• Further move towards data-aspects related to distributed control

• and large-scale aspects

• and bring it to real-life applications 

72
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