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Introduction – dynamic networks 

Decentralized process control
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Complex machines

Smart power grid

Hydrocarbon reservoirs

Mansoori (2014)

Brain network

P. Hagmann et al. (2008)

Christie, Achenie and Ogunnaike (2014)

Physiological models



Introduction
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Overall trend:

• (Large-scale) interconnected dynamic systems
• Many opportunities for sensing / collecting data
• The scope of control/optimization/diagnostics enlarges (larger systems) 
• The infrastructure for control/optimization/diagnostics becomes distributed:

local actions (multi agents) 
• Data is “everywhere”, big data era, AI/machine learning tools

• Model-based operations require accurate/relevant models
•  Learning and validating models/actions from data
•  Exploiting the available physical information (topology, dynamics, disturbances)



Data-driven modeling in linear dynamic networks4
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Network models
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Network models

D. Materassi and M.V. Salapaka (2012)                      www.momo.cs.okayama-u.ac.jp                       E.A. Carara and F.G. Moraes (2008)                                       P.M.J. Van den Hof et al (2013)
J.C. Willems (2007) X.Cheng (2019)

R.N. Mantegna (1999)                                                     D. Koller and N. Friedman (2009)                             P.E. Paré et al (2013)                                                                           E. Yeung et al (2010)

• scalable, describing the physics
• dynamic elements with cause-effect
• handling feedback loops (cycles)
• combining physical and cyber components
• centered around measured signals
• allow disturbances and probing signals
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Network models
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State space representation

• States as nodes in a (directed) graph
• State transitions (1 step in time) reflected by 
• Transitions are encoded in links
• Ultimate break-down of system structure
• Actuation       and sensing       reflected by 

separate links

For data analytics problems:
• Lump unmeasured states in dynamic modules
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Network models
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State space representation [1]

Module representation [2]

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,…

[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,… 



Dynamic network models - zooming
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Decreasing structural
information

Increasing level of 
detail



Dynamic network setup – Module framework 
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module
ri external excitation
vi process noise
wi node signal

G76
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module
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G76



Dynamic network setup – Module framework 
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Collecting all equations:

J. Gonçalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.



Alternative models
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Bilaterally coupled (two-port) system:

Fully captured in the module-framework

A. Dankers, 2014

G1 G2

G3 G4



Alternative models
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Diffusively coupled networks:
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Diffusively coupled networks

The related graph is bi-directional:



Dynamic network setup – Module framework
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• Estimate or validate a single module/subnetwork 
(known topology)

• Estimate or validate the full network
• Estimate or validate the topology
• Identifiability
• Detect a fault and diagnose its location 
• Exploit active probing (experiment design)
• User prior knowledge of modules/topology
• Scalable algorithms

Sensor locations:

Many data-analytics and data-driven 
modeling challenges appear

Actuator locations:
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Single module identification



Single module identification
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For a network with 
known topology:

• Identify        on the basis of 
measured signals

• Which signals to measure? 
Preference for local 
measurements

• When is there enough 
excitation / data informativity?



Indirect  methods:
• Rely on mappings      

and on sufficient excitation
signals  

Single module identification
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Different types of methods:

Direct methods:
• Rely on mappings      

and use excitation from both
and     signals  



Single module identification
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Conditions for arriving at a consistent model estimate:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity
4. Technical conditions on presence of delays

Path-based conditions on the 
selected signals and the 
network graph



Single module identification
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Conditions for arriving at a consistent model estimate:

1. Module invariance: 

2. Handling of confounding variables 

w1 w2

wp

G21
0

0

wl

PPL condition: all parallel paths and loops 
around the output should be blocked by a 
measured node that is present in 

No correlated disturbances between
and signals in       that are in-neighbors of

w1 w2

wc

G21

vc

0

0



Confounding variables – solutions
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w1 w2

w7

G21

G27

v1 v2

r1

0

0
w6 G26

v6
0

w3 G23
v3

0

Non-measurable       is a confounding variable

Two possible solutions:

add predictor output2. Predict too  

1. Include add predictor input 

• There are degrees of freedom in choosing the predictor model

+

[1] A.G. Dankers et al., Proc. IFAC World Congress, 2017.
[2] K.R. Ramaswamy, IEEE TAC, 2021. 



Data informativity (path-based condition)
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[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019.

[3] VdH et al., CDC 2020.

This is satisfied generically if there are                vertex disjoint paths from all external 
network signals to

+

Data-informativity for estimating              is obtained if 
for almost all    , with                    .   



Single module identification
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Conditions for arriving at a consistent model estimate:

1. Module invariance: 

2. Handling of confounding variables 

3. Data-informativity
4. Technical conditions on presence of delays

Path-based conditions on the 
selected signals and the 
network graph



Single module identification
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Different synthesis algorithms can provide predictor models that satisfy the conditions

Multiple solutions
for either full/partial 
measurement

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] S.J.M. Fonken et al., CDC, 2023.

[3] Control Systems Group TU/e, SYSDYNET Toolbox for MATLAB, 2023, www.sysynet.net.



Summary single module identification

• Path-based conditions that the predictor model should satisfy

• Different algorithms for synthesizing predictor model

• Degrees of freedom in sensor / actuator placement

• Onec a predictor model is constructed, estimation comes down to a 
“classical’’ MISO/MIMO estimation problem

28
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Generic network identifiability



Network identifiability
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Under which conditions can we estimate the topology and/or 
dynamics of the full network?
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5 1 2 4 3

5 1 2 4 3
Two disjoint pseudo-trees

Where to allocate external excitations for network identifiability?

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2

All indicated modules are parametrized

Decompose the network graph in pseudo-trees:
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5 1 2 4 3

5 1 2 4 3
Two independent excitations 
guarantee 
generic network identifiability

Where to allocate external excitations for network identifiability?

[1] X. Cheng, S. Shi and PVdH, TAC 2022. 

w5 w1G15 w4G21 w3G34

G12 G23

G53

w2
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Where to allocate external excitations for network identifiability?

21

97 8

3

65

4
r1 r2

r3 r4

• Nodes are signals      and external signals           that are input to parametrized link

[1] X. Cheng, S. Shi and PVdH, TAC, February 2022. 

Pseudo-tree
merging

algorithm [1]

• Known (nonparametrized) links do not need to be covered
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Modeling considerations



Modeling considerations
• Module framework for dynamic networks (with directed graphs) most 

extensively developed.

35

• Diffusively coupled modelling framework is highly attractive for physical 
systems[1]

• Algorithms available for full network and single connection identification

[1] E.M.M. Kivits and PVdH, TAC, June 2023; CDC 2022, IFAC 2023

• PPL condition simplifies to: measure all neighbours



Modeling considerations

Ultimate challenge
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• Combine both frameworks for cyber (directed) – physical (non-directed) 
systems

• And build the theory for related data-processing steps
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Conclusions



Conclusions
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• Rich framework

• Exploiting structure/topology

• Effective use of prior/physical information on model structures/ parameters

• So far, mainly developed for linear dynamics

• Free choice for actual estimation / machine learning algorithms

• Looking for attractive application opportunities in the biomed eng domain



Algorithms implemented in SYSDYNET MATLAB Toolbox
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Beta-version to be downloaded from www.sysdynet.net

Structural analysis and operations 
on dynamic networks

• Edit and manipulate
• Assign properties to nodes

and modules
• Immersion of nodes, PPL test
• Generic identifiability analysis 

and synthesis
• Predictor model selection for

single module ID

to be complemented with

• estimation algorithms for 
single module and network ID;

• topology estimation
• Network simulation

In cooperation with  

http://www.sysdynet.net/


MATLAB Toolbox
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ERC SYSDYNET Team: data-driven modeling in dynamic networks
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The end



Data-driven modeling in linear dynamic networks44

.

Use cases



Oil reservoir modeling through well testing
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flow rate is 
varied Measuring 

pressure

Errors-in-variables problem in closed-loop setting

M. Mansoori, P.M.J. Van den Hof, J.D. Jansen and D. Rashtchian (2015). SPE Journal, Vol. 20, no. 5, pp. 1005-1027.



Application: Printed Circuit Board (PCB) Testing
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Source: Altium

Detection of
• component failures
• parasitic effects



Neurodynamic effect of listening to Mozart music
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Identifying changes in network connections
in the brain, after intensely listening for
one week (Sonate K448), based on fMRI data

[1] R. van Esch, S. Shi, A. Bernas, S. Zinger, A. Aldenkamp, PVdH, Computers in Biology and Medicine, Vol. 127, December 2020 



Leak detection in gas pipelines with acoustic sensors

48
Slide figures from Arne Dankers, Hifi Engineering Inc., Calgary, Canada (ECC Tutorial session 2021)

• Use operational data to detect changes 
in network model dynamics

• Map model changes to physical causes



Additional projects
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• Distributed identified model-based predictive control of a building climate 
system  (Museum Hermitage Amsterdam)[1]

• Data-driven modeling and control of a 
four-area power network[2]

[1] X. Chen, J.H.A. Ludlage, M. Lazar (2019)

[2] A. Anupama, T.R.V. Steentjes, M. Lazar  (2021)
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