Estimating Cutting Forces in Micromilling by Input Estimation from Closed-loop Data

Rogier S. Blom
Paul M.J. Van den Hof

Delft University of Technology

July 7th, 2008
Outline

1. Background and challenge
2. Problem statement
3. Approach to input estimation from closed-loop data
4. Simulation results
5. Conclusions
Outline

1. Background and challenge
 - Micromilling with Active Magnetic Bearings spindles

2. Problem statement

3. Approach to input estimation from closed-loop data

4. Simulation results

5. Conclusions
Micromilling with Active Magnetic Bearing spindles

Micromilling milling with tools with diameter $< 0.5\,mm$

Applications medical purposes, micro-electronics, etc.

Challenge Use active nature of AMB spindles for Process Monitoring and Control

Comparison of micro-endmill (0.2mm) and normal endmill (1.0mm)

Close-up of micromilling machine
Challenge

Control current signal

Displacement sensor

AMB Controller

Displacement signal

Magnetic coils

Micro-endmill
Challenge

Example of cutting forces in micromilling
Challenge

Cutting force estimation

Observe the cutting forces that arise during micromilling from the signals of the Magnetic Bearings.
Outline

1 Background and challenge

2 Problem statement
 - Design of cutting force estimator

3 Approach to input estimation from closed-loop data

4 Simulation results

5 Conclusions
Problem statement

- G: Model of the open-loop AMB spindle dynamics (MIMO, unstable)
- K: Controller and current amplifier
- u_1: Currents through the magnetic coils
- u_2: Cutting forces acting on tooltip
- $y_{1,2}$: Measurements of currents, displacements
- $v_{1,2}$: Measurement noise on currents, displacements (white)
Problem statement

Objective: Using
- model of plant G
- information on spectrum of the unknown input u_2
design linear filter F on $y_{1,2}$ to create $\hat{u}_2(t)$ such that

$$\mathbb{E}|\hat{u}_2(t) - u_2(t - N)|^2$$

is minimized for fixed lag $N \geq 0$.

- G: Model of the open-loop AMB spindle dynamics (MIMO, unstable)
- K: Controller and current amplifier
- u_1: Currents through the magnetic coils
- u_2: Cutting forces acting on tooltip
- $y_{1,2}$: Measurements of currents, displacements
- $v_{1,2}$: Measurement noise on currents, displacements (white)
Outline

1. Background and challenge

2. Problem statement

3. Approach to input estimation from closed-loop data
 - Known $K(z)$
 - No explicit information on $K(z)$

4. Simulation results

5. Conclusions
Input estimation from closed-loop data, known $K(z)$

If $K(z)$ is known, input y_1 is not needed.
Input estimation from closed-loop data, known $K(z)$

If $K(z)$ is known, input y_1 is not needed

Denote:
- Φ_{u_2}: spectrum of u_2
- Φ_{y_2}: the spectrum of y_2
- $\Phi_{u_2y_2}$: the cross spectrum between u_2 and y_2

The causal Wiener filter

Let the canonical spectral factorization of Φ_{y_2} be given by

$$\Phi_{y_2} = MRM^*$$

with M minimum phase.

The filter causal F that minimizes $\mathbb{E}|Fy_2 - u_2(t - N)|^2$ is given by

$$F = \{z^{-N}\Phi_{u_2y_2}M^{-*}\} + R^{-1}M^{-1}$$
Input estimation from closed-loop data, known $K(z)$

\[y_2 = S(G_2 u_2 + v_2) \]
\[S = (I + G_1 K)^{-1} \]

It is easily derived that:

1. $\Phi_{u_2 y_2} = \Phi_u G_2^* S^*$
2. $\Phi_{y_2} = S(G_2 \Phi_u G_2^* + R_{v_2}) S^*$
Input estimation from closed-loop data, known $K(z)$

It is easily derived that:
- $\Phi_{u_2y_2} = \Phi_u G_2^* S^*$
- $\Phi_{y_2} = S(G_2 \Phi_u G_2^* + R_{v_2}) S^*$

Causal Wiener filter for closed-loop data

Factorize $G_2 \Phi_u G_2^* + R_{v_2} = TRT^*$ such that ST minimum phase. Then:

$$\Phi_{y_2} = (ST)R(ST)^*$$

With this it follows that

$$F = \left\{ z^{-N} \Phi_u G_2^* T^{-*}(z) \right\} + R^{-1} T^{-1}(z) S^{-1}(z)$$
Input estimation from closed-loop data, known $K(z)$

Causal Wiener filter for closed-loop data

Factorize $G_2 \Phi_u G_2^* + R_{v_2} = T R T^*$ such that $S T$ minimum phase. Then:

$$\Phi_{y_2} = (S T) R (S T)^*$$

With this it follows that

$$F = \{ z^{-N} \Phi_u G_2^* T^{-*}(z) \} + R^{-1} T^{-1}(z) S^{-1}(z)$$

How to proceed:

- step 1. Find factorization $G_2 \Phi_u G_2^* + R_{v_2} = T R T^*$
- step 2. Find causal part of $z^{-N} \Phi_u G_2^* T^{-*}(z)$
Step 1. Factorization of $G_2 \Phi_u G_2^* + R_{v_2}$ using state space realization

- Let a realization of G be given by \(\begin{pmatrix} A & B_1 & B_2 \\ C & 0 & 0 \end{pmatrix} \)

Conditions

- A not necessarily Hurwitz
- (A, B_1) and (A, B_2) stabilizable, (A, C) detectable
- \(\begin{bmatrix} A - \lambda I & B_2 \\ C & 0 \end{bmatrix} \) has full column rank for all $\lambda \in \mathbb{C}$, $|\lambda| \geq 1$
Step 1. Factorization of $G_2\Phi_u G_2^* + R_{v_2}$ using state space realization

- Let a realization of G be given by
 \[
 \begin{pmatrix}
 A & B_1 & B_2 \\
 C & 0 & 0
 \end{pmatrix}
 \]

- Let $\Phi_{u_2} = G_u R_u G_u^*$ be the canonical spectral factorization with minimal realization of G_u given by
 \[
 \begin{pmatrix}
 A_u & B_u \\
 C_u & 0
 \end{pmatrix}
 \]

- Define cascaded system $G_2 G_u$, which has realization
 \[
 \begin{pmatrix}
 A_c & B_c \\
 C_c & 0
 \end{pmatrix} = \begin{pmatrix}
 A_u & 0 & B_u \\
 B_2 C_u & A & 0 \\
 0 & C & 0
 \end{pmatrix}
 \]
Step 1. Factorization of $G_2 \Phi_u G_2^* + R_{v_2}$ using state space realization

With this, we can obtain the desired factorization

$$G_2 \Phi_u G_2^* + R_{v_2} = (G_2 G_u) R_u (G_u^* G_2^*) + R_{v_2}$$

$$= [C_c (zI - A_c)^{-1} L + I] R[*]^*$$

$$= TRT^*$$

with

- $L = A_c P C_c R^{-1}$,
- $R = R_{v_2} + C_c P C_c^T$, and
- P the unique p.d. solution of the DARE

$$P = A_c P A_c^T + B_c R_u B_c^T - L R L^T.$$
Step 2. Deriving the causal filter

\[F = \{ z^{-N} G_u(z) R_u G_c(z)^* T^*(z) \} + R^{-1} T^{-1}(z) S^{-1}(z) \]

- Split \(W(z) \) in a causal and anti-causal part: \(W(z) = W_1(z) + W_2(z) \)
- Then \(\{ z^{-N} W(z) \}_+ = z^{-N} W_1(z) + \{ z^{-N} W_2(z) \}_+ \)
- \(\{ z^{-N} W_2(z) \}_+ \) can be found by truncating the Laurent expansion of \(W_2(z) \)
No explicit information on $K(z)$

- S is the only factor in F that depends on $K(z)$

$$\hat{u}_2 = (z^{-N} W_1(z) + \{z^{-N} W_2\}_+) R^{-1} T^{-1}(z) S^{-1} y_2$$
No explicit information on $K(z)$

- S is the only factor in F that depends on $K(z)$

$$\hat{u}_2 = (z^{-N} W_1(z) + \{z^{-N} W_2\}_+) R^{-1} T^{-1}(z)(I + G_1 K) y_2$$
No explicit information on \(K(z) \)

\[S \text{ is the only factor in } F \text{ that depends on } K(z) \]

\[\hat{u}_2 = (z^{-N} W_1(z) + \{z^{-N} W_2\}_+) R^{-1} T^{-1}(z) (I + G_1 K) y_2 \]

If \(v_1 \) negligible, \(y_1 = -K(z)y_2 \). With this:

\[\hat{u}_2 = (z^{-N} W_1(z) + \{z^{-N} W_2\}_+) R^{-1} T^{-1}(z) \begin{bmatrix} -G_1 & I \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \]
No explicit information on $K(z)$

- S is the only factor in F that depends on $K(z)$
 \[
 \hat{u}_2 = (z^{-N}W_1(z) + \{z^{-N}W_2\}_+) R^{-1} T^{-1}(z)(I + G_1 K)y_2
 \]

- If v_1 negligible, $y_1 = -K(z)y_2$. With this:
 \[
 \hat{u}_2 = (z^{-N}W_1(z) + \{z^{-N}W_2\}_+) R^{-1} T^{-1}(z) \begin{bmatrix} -G_1 & I \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}
 \]

- This filter is optimal for any $K(z)$
Outline

1. Background and challenge
2. Problem statement
3. Approach to input estimation from closed-loop data
4. Simulation results
 - Simulation with Simulink
5. Conclusions
Results: Simulation with Simulink

- Simulation performed based on parameters of micromilling setup in laboratory
- Open loop AMB system modeled using first principles
- Cutting forces are simulated using model from the micromilling literature
Results: Simulation with Simulink

First test:
- Rotational speed is 10,000 rpm, $T = 25\mu s$
- Random walk model for input spectrum
- Input estimator constructed for $N = 0$ and $N = 40$

Results:
- Filter for $N = 40$ outperforms filter for $N = 0$
- Estimator for $N = 0$ appears to yield delayed estimation results
Error analysis

Observe that the estimation error for $N = 0$ consists of two terms:

$$e = \hat{u}_2 - u_2 = (F_2 G_2 - I)u_2 + F_2 v_2$$
Error analysis

Observe that the estimation error for $N = 0$ consists of two terms:

$$e = \hat{u}_2 - u_2 = (F_2 G_2 - I)u_2 + F_2 v_2$$

- $|F_2 G_2| \approx I$ for lower frequencies
- Then $F_2 G_2$ acts as a pure delay for those frequencies if the group delay

$$\tau_g = -\frac{d}{d\omega} \arg F_2 G_2(e^{j\omega})$$

is constant in that frequency range.
Error analysis

Observe that the estimation error for \(N = 0 \) consists of two terms:

\[
e = \hat{u}_2 - u_2 = (F_2 G_2 - I)u_2 + F_2 v_2
\]

- \(|F_2 G_2| \approx 1\) for lower frequencies
- Then \(F_2 G_2 \) acts as a pure delay for those frequencies if the group delay

\[
\tau_g = -\frac{d}{d\omega} \arg F_2 G_2(e^{j\omega})
\]

is constant in that frequency range.
Error analysis

Estimation error for $N > 0$:

$$e = \hat{u}_2 - z^{-N}u_2 = (F_2G_2 - z^{-N}I)u_2 + F_2v_2$$

- Estimation error decreases for increasing N
- Key question: do both terms of e decrease for increasing N?

Plot of $\sqrt{\frac{1}{k} \sum_k e^2}$ for increasing N
Error analysis

Estimation error for $N > 0$:

$$ e = \hat{u}_2 - z^{-N}u_2 = (F_2 G_2 - z^{-N}I)u_2 + F_2 v_2 $$

Plot of $\sqrt{\frac{1}{k} \sum_k e^2}$ for increasing N

Plot of $\|\sigma_v F_2\|$ for increasing N
The effect of delay

Observations

- Specifying a filter without lag \((N = 0)\) results in a filter with a lag.
- Specifying a filter with this lag, results in a filter with better performance.
- Specifying a filter with a larger lag, improves the results even further.
Results: Improved spectral model of input

Second test:
- Rotational speed 50,000 rpm;
- Φ_u has high density at frequencies related to the rotational speed;
- Filter derived for $N = 0$ and $N = 40$.

Results:
- Filter with lag again performs better
Outline

1. Background and challenge
2. Problem statement
3. Approach to input estimation from closed-loop data
4. Simulation results
5. Conclusions
Conclusions

- An optimal input estimator was developed to estimate the cutting forces in micromilling from AMB signals
- No additional sensors are needed
- No knowledge on the AMB controller is needed, if exact measurements of the control currents are available
- The estimator has an adjustable delay allowing to trade off the estimation error against the lag
- There exists a minimum delay that can be attained
- Estimation results can be improved by using a priori information on the spectral content of the cutting forces.