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Problem statement
Focus: p-dimensional stationary process w(t) −→ spectral density Φ(z)

Main question
Can we model the dynamics of w(t) as the output of a dynamic network?

I ... But first, what is a dynamic network?
I How many networks can model w(t)?
I Are there network models that we should “prefer”?
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Dynamic networks

Rationale

I Each wj(t) = combination of past values of wi (t), i 6= j
↪→ gain understanding of observed phenomenon via topology

I ... Plus a noise component ≡ how wj(t) differs from wi (t)

Applications

I Econometrics: how stock price wi influences price wj
I Brain networks: how brain area wi influences area wj

What is exactly the role of noise?
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Related work

Identifiability
Find conditions such that a network is uniquely determined from spectral data

↪→ Weerts et al. (2018), Hendrickx et al. (2018)

Dynamical structure function (DSF)
Connect representations in state space (manifest + latent variables) to
transfer-function ones

↪→ Goncalves & Warnick (2008), Hayden et al. (2016)

Topology reconstruction
Find connections among network components from data

↪→ Materassi & Innocenti (2010), Materassi & Salapaka (2012)
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Innovation model
Characterization of w(t)
Innovation Model (IM) of w(t):

w(t) = Γ(z)ε(t)

with:
I ε(t) white noise, E[ε(t)ε(t)>] = Λ
I Γ(z) ∈ Cp×p such that (≡ canonical spectral factor):

I Φ(z) = Γ(z)ΛΓ∗(z)
I Γ(z) and Γ−1(z) are stable
I Γ(∞) = Ip

ε(t) = innovation of w(t)
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Dynamic network model

Definition: Dynamic Network Model (DNM)

w(t) = G̃(z)w(t) + H̃(z)ẽ(t)

with:
I G̃(z) ∈ Cp×p is such that

I G̃ii (z) = 0, for any i = 1, . . . , p
I G̃ij(z), i , j = 1, . . . , p, i 6= j is a strictly causal transfer function

I H̃(z) ∈ Cp×p is such that H̃(∞) = Ip
I ẽ(t) is white noise

Definition
An Innovation–driven DDM (IDNM) is a DNM with ẽ(t) = ε(t)
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Diagonal dynamic network model

Definition: Diagonal Dynamic Network Model (DDNM)

w(t) = G(z)w(t) + H(z)e(t)

with:
I G(z) ∈ Cp×p is such that

I Gii (z) = 0, for any i = 1, . . . , p
I Gij(z), i , j = 1, . . . , p, i 6= j is a strictly causal transfer function

I H(z) ∈ Cp×p is such that
I Hii (z) is such that Hii (∞) = 1
I Hij(z) = 0 i , j = 1, . . . , p, i 6= j .

Definition
An Innovation-driven DDNM (IDDNM) is a DDNM with e(t) = ε(t).

6 / 13



Diagonal dynamic network model

Definition: Diagonal Dynamic Network Model (DDNM)

w(t) = G(z)w(t) + H(z)e(t)

with:
I G(z) ∈ Cp×p is such that

I Gii (z) = 0, for any i = 1, . . . , p
I Gij(z), i , j = 1, . . . , p, i 6= j is a strictly causal transfer function

I H(z) ∈ Cp×p is such that
I Hii (z) is such that Hii (∞) = 1
I Hij(z) = 0 i , j = 1, . . . , p, i 6= j .

Definition
An Innovation-driven DDNM (IDDNM) is a DDNM with e(t) = ε(t).

6 / 13



Diagonal dynamic network model

Definition: Diagonal Dynamic Network Model (DDNM)

w(t) = G(z)w(t) + H(z)e(t)

with:
I G(z) ∈ Cp×p is such that

I Gii (z) = 0, for any i = 1, . . . , p
I Gij(z), i , j = 1, . . . , p, i 6= j is a strictly causal transfer function

I H(z) ∈ Cp×p is such that
I Hii (z) is such that Hii (∞) = 1
I Hij(z) = 0 i , j = 1, . . . , p, i 6= j .

Definition
An Innovation-driven DDNM (IDDNM) is a DDNM with e(t) = ε(t).

6 / 13



Diagonal dynamic network model

Definition: Diagonal Dynamic Network Model (DDNM)

w(t) = G(z)w(t) + H(z)e(t)

with:
I G(z) ∈ Cp×p is such that

I Gii (z) = 0, for any i = 1, . . . , p
I Gij(z), i , j = 1, . . . , p, i 6= j is a strictly causal transfer function

I H(z) ∈ Cp×p is such that
I Hii (z) is such that Hii (∞) = 1
I Hij(z) = 0 i , j = 1, . . . , p, i 6= j .

Definition
An Innovation-driven DDNM (IDDNM) is a DDNM with e(t) = ε(t).

6 / 13



Examples of innovation-driven networks

IM:

w(t) =

Γ11 Γ12 Γ13
Γ21 Γ22 Γ23
Γ31 Γ32 Γ33

 ε(t)

DNM:

w(t) =

 0 G̃12 0
G̃21 0 0
0 G̃32 0

w(t) +

H̃11 H̃12 H̃13
H̃21 H̃22 H̃23
H̃31 H̃32 H̃33

 ε(t)

DDNM:

w(t) =

 0 G12 0
G21 0 0
0 G32 0

w(t) +

H11 0 0
0 H22 0
0 0 H33

 ε(t)

Which of these networks are “unique”?
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Innovation-driven representations: Properties

Proposition
A DNM such that
(i) H̃−1(z), H̃−1(z)G̃(z) and (I − G̃(z))−1H̃(z) are stable
is an IDNM, i.e. ẽ(t) = ε(t)
The converse is not true: It is only for DDNMs

Proposition
For a DDNM, the following two conditions are equivalent:
(i) H−1(z), H−1(z)G(z) and (I − G(z))−1H(z) are stable
(ii) e(t) = ε(t), i.e. the model is an IDDNM
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Construction of an IDDNM
Proposition

I Any stationary process w(t) admits an IDDNM representation
I The relation (G(z), H(z))←→ Γ(z) is

Gij(z) = −
([

Γ−1(z)
]

ii

)−1 [
Γ−1(z)

]
ij

Hii (z) =
[
Γ−1(z)

]
ii

=⇒ an IDDNM is unique

We can build a unique dynamic network driven by
innovation from spectral data
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Two-node case

If p = 2, then

G12(z) = Γ−1
22 (z)Γ12(z) H11(z) = Γ11(z)− Γ12(z)Γ−1

22 (z)Γ21(z)
G21(z) = Γ−1

11 (z)Γ21(z) H22(z) = Γ22(z)− Γ21(z)Γ−1
11 (z)Γ12(z)

−→ Expression of Anderson & Gevers (1981) for feedback representation of processes
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Two-node network

Problem
How to transform network in the left (DNM) to network in the right (DDNM)?
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Transformation
Proposition
Fix e(t) = ẽ(t). DNM −→ DDNM via

G21 = H̃21 + H̃11G̃21

H̃11 + H̃21G̃12
G12 = H̃12 + H̃22G̃12

H̃22 + H̃12G̃21

H1 = (H̃11 + H̃21G̃12)
(1− G̃12G̃21)

− (H̃21 + H̃11G̃21)(H̃12 + H̃22G̃12)
(1− G̃12G̃21)(H̃22 + H̃12G̃21)

H2 = (H̃22 + H̃12G̃21)
(1− G̃12G̃21)

− (H̃12 + H̃22G̃12)(H̃21 + H̃11G̃21)
(1− G̃12G̃21)(H̃11 + H̃21G̃12)

.

Implications: identifiability with confounding variables

P.M.J. Van Den Hof, A.G. Dankers, H.H.M. Weerts. From closed-loop identification to dynamic
networks: generalization of the direct method IEEE CDC 2017
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Conclusions and open questions

Summary

I New insights on dynamic network modeling of stationary processes
I Diagonal noise =⇒ Unique model
I Particularly interesting when noise ≡ innovation

Open questions

I Relation with other models (Materassi, Goncalves, ...)?
I Can we use the results for estimation?
I How to include reference signals?
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