Model structures for identification of linear parameter-varying (LPV) models

Paul M. J. Van den Hof

October 19, 2009, Chinese Academy of Sciences, Beijing, China

Joint work with Roland Tóth and Peter S.C. Heuberger
Delft University of Technology

Oldest and largest of 3 Technical Universities in the Netherlands:
Delft – Eindhoven - Twente

Founded in 1842 as an engineering school

Now: 5000 employees, of which 2700 scientists, 15,000 students, distributed over 8 engineering faculties:

- Electrical, Math, Comp. Science
- Aerospace Engineering
- Applied Sciences
- Mechanical, Maritime, Mat. Eng.
- Civil Engin., Earth Sciences
- Industrial Design
- Techn. Policy Making and Manag
- Architecture
Delft
Delft Center for Systems and Control

University wide center and department within Mechanical Engineering

- 16 scientific (tenured) staff
- 40 PhD students
- 15 Postdocs
- 40 MSc students / year

- BSc programs ME, EE, AP,
- MSC programs ME, EE, AP
- 3TU MSc Systems and Control
- PhD programme DISC
Fundamentals:
• Modelling, control and optimization of complex, non-linear and hybrid systems
• Signal analysis, signal processing and data-based modelling (identification for control)

Mechatronics and Microsystems:
• Automotive systems
• Microfactory
• AFM nano-positioning
• Smart optics systems
• Electron microscopes
• Robotics

Traffic and Transportation:
• Discrete event and hybrid systems
• Distributed multi-agent systems
• Optimal adaptive traffic control
• Advanced driver assistance systems

Sustainable Industrial Processes:
• Increase of scale in process operation
• More flexibility in operation
• Economic optimization under operating constraints
• Process intensification
• Towards model-based process management
• Hydrocarbon reservoir optimization; crystallization
Model structures for identification of linear parameter-varying (LPV) models

Paul M. J. Van den Hof

October 19, 2009, Chinese Academy of Sciences, Beijing, China

Joint work with Roland Tóth and Peter S.C. Heuberger
Contents

• Questions related to LPV identification
• Model structures for LPV systems
• An orthonormal basis function approach
• Example
Modern control & identification

Challenges of nonlinear systems

- Expand the scope beyond the current LTI framework
- Handling systems in different operating regimes
- Attractive structure: LPV for systems with “regime”-dependent (linear) dynamics
- Advanced tools for control synthesis
- Several algorithms for LPV model identification
- LPV identification is not solved yet in a structural way
LPV systems

The concept
LPV model structures

Discrete time

- **LPV framework (SISO)**, \(p(k) : \mathbb{Z} \rightarrow \mathbb{P} \)
 - State-space models

 \[
 x(k+1) = A(p(k))x(k) + B(p(k))u(k) \\
 y(k) = C(p(k))x(k) + D(p(k))u(k)
 \]

- Input-output models, \(n_a \geq n_b > 0 \)

 \[
 y(k) = - \sum_{i=1}^{n_a} a_i(p(k))y(k-i) + \sum_{j=0}^{n_b} b_j(p(k))u(k-j)
 \]

Usually, use is restricted to **static (nonlinear) maps** \(p(k) \leftrightarrow \theta(k) \)
Issues in LPV identification

- Approaches to the identification problem
 - Local approach
 - Identify local linear models (for fixed scheduling $p(k) = \bar{p}_i$)
 - Use global data to interpolate into an LPV model
 - Global approach
 - Determine a global LPV model structure
 - Use global data to estimate an LPV model

Both PE and subspace approaches can be followed
Issues in LPV identification
(cont’d)

- What are the appropriate model structures?
- How can they be defined?
- What are the criteria to select them?
- Many more questions related to
 - Estimation accuracy
 - Experiment design
 - Validation
 - etc.
LPV model structures

- State-space models

\[
\begin{align*}
 x(k + 1) &= A(p(k))x(k) + B(p(k))u(k) \\
 y(k) &= C(p(k))x(k) + D(p(k))u(k)
\end{align*}
\]

- Input-output models, \(n_a \geq n_b > 0 \)

\[
y(k) = -\sum_{i=1}^{n_a} a_i(p(k))y(k - i) + \sum_{j=0}^{n_b} b_j(p(k))u(k - j)
\]

- **Question:** are these structures equivalent (as in the LTI case)?

- **Answer:** In general not, if you restrict \(p \mapsto \theta \) to be static; dynamic \(p \)-dependencies are generally required \cite{TotthEtAl,ECC2007}
LPV model structures

Example:

• State-space model

\[
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}(k + 1) = \begin{bmatrix}
 0 & a_1(p(k)) \\
 1 & a_2(p(k))
\end{bmatrix}\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}(k) + \begin{bmatrix}
 b_1(p(k)) \\
 b_2(p(k))
\end{bmatrix} u(k)
\]

\[y(k) = x_2(k)\]

• Input-output model,

\[
y(k) = a_2(p(k - 1))y(k - 1) + a_1(p(k - 2))y(k - 2) + b_2(p(k - 1))u(k - 1) + b_1(p(k - 2))u(k - 2),
\]
LPV model structures

• **Consequence 1**
 • Mapping estimated IO models to SS or vice versa, while retaining a static dependence of the scheduling functions introduces (substantial) error.

• This points to the need to either
 • Estimate the LPV model in the same model structure where information on the (static) effect of \(p \) is available, or
 • Include a dynamic map \(p \mapsto \theta \) in the model structure
LPV model structures

• Consequence 2
 • We need appropriately defined notions of equivalence between LPV systems (and definitions of LPV systems as a start)

 Note: transfer function is not available for this notion of equivalence as the systems is time-varying

 Notion of equivalence is well-defined in terms of \mathcal{B}

• Solution: through Willems’ behavioral framework:

 Time axis, $T = \mathbb{Z}$

 Scheduling space, $P \subseteq \mathbb{R}^{n_P}$

 Behavior, $\mathcal{B} \subseteq (W \times P)^T$

 Signal space, $W = \mathbb{R}^{n_W}$
LPV model structures

- **Generic representation** of an LPV system behavior:

\[
\sum_{i=0}^{n_\xi} (r_i \diamond p)q^i w = 0 \quad \text{or} \quad (R(q) \diamond p) w = 0
\]

where \(r_i \diamond p \) represents any quotient of homeomorphic functions of \(p \) and shifted versions of \(p \).

Result: LPV system equivalence, canonical forms in SS and IO form, etc., Taking account of dynamic phenomena in \(p \) and \(w \).

(Tóth et al., ECC 2009)
LPV model structures

- Additional aspects:
 - In linear PE identification we benefit from linearity-in-the-parameters;
 Can this be maintained?
 - Interpolating local linear state space models is hard when McMillan degree varies over local models;
 Can we accommodate this?
An OBF approach

Orthonormal basis functions

• For local linear models: $F(z) \approx \sum_{i=0}^{n_f} w_i \phi_i(z)$

• Generation of the OBFs
 • By a set of stable poles: $\Xi_n = \{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{D}$
 • By a stable all-pass (inner) function: $G'_b(z) = \prod_{i=1}^{n} \frac{1 - z \lambda_i^*}{z - \lambda_i}$

Choice of poles determines rate of convergence of the series expansion

(Heuberger et al., Springer, 2005)
An OBF approach

Opportunities for LPV models

\[y = \sum_{i=0}^{n_f} w_i(p) \phi_i(q) u \]

- Scheduling of coefficients \(w_i \) retains linearity-in-the parameters
- If basis can be chosen (globally) fixed, interpolation of local models becomes interpolation \(\{ w_i(\bar{p}_j) \}_{j=1,...,n_l} \) \(\bar{p}_j \) constant scheduling point belonging to local model \(j \)
- No problem with interpolation of models with different McMillan degrees

Question: How to choose the global basis functions \(\phi_i(q) \)?
An OBF approach

Selection of basis functions

• Identify a number of local linear models in several in different regimes \hat{p}_j
• Plot all identified poles in the complex plane
• Cluster the poles in groups and find optimal cluster centers (basis poles)
• So as to minimize a distance measure that is relevant for the (worst case) length of the resulting series expansions
An OBF approach
Kolmogorov n-width theory

• Worst-case modeling:
 • Result (Oliveria e Silva, 1996):
 • $G_b(z)$ an inner function
 • Let K be the set of systems with poles in the region
 \[\{ z \in \mathbb{D} \mid |G_b(z^{-1})| < \rho \} \]
 • The OBFs, generated by $G_b(z)$ are optimal for K in the n-width sense
An OBF approach

Kolmogorov n-width theory

- The inverse n-width concept:
 - Given a region of poles: Ω
 - Try to approximate it as
 \[
 \Omega \approx \Omega(\Xi_n, \rho) = \{ z \in \mathbb{D} \mid |G_b(z^{-1})| < \rho \}
 \]
 \[
 \rho = \text{decay rate of the expansion}
 \]
 - The n optimal OBFs are obtained through
 (Kolmogorov measure minimization)
 \[
 \min_{\Xi_n \subset \mathbb{D}} \rho = \min_{\Xi_n \subset \mathbb{D}} \max_{z \in \Omega} |G_b(z^{-1})| = \min_{\Xi_n \subset \mathbb{D}} \max_{z \in \Omega} \left| \prod_{i=1}^{n} \frac{z - \lambda_i}{1 - z \lambda_i^*} \right|
 \]
An OBF approach

Clustering based OBF selection
An OBF approach

Example of clustering

30 poles

(a) $m = 8, c = 5$

(b) $m = 8, c = 8$
An OBF approach

LPV-OBF model structures

- The following global model structure results:
 - Static p-dependence is linearly parametrized (e.g. polynomial, splines)
 - Estimation through linear regression (OE-form)
An OBF approach

LPV-OBF model structures

- Different alternatives:

Different results due to the finite expansion and the static p-dependence
Example

- LPV system \mathcal{S} with I/O representation:

\[
a_0(p(k)) y(k) = b_1(p(k)) u(k-1) - \sum_{l=1}^{5} a_l(p(k)) y(k-l)
\]

\[
\begin{align*}
a_0(p) &= 0.58 - 0.1p, \\
a_1(p) &= -\frac{511}{860} - \frac{48}{215} p^2 + 0.3(\cos(p) - \sin(p)), \\
a_2(p) &= \frac{61}{110} - 0.2 \sin(p), \\
a_3(p) &= -\frac{23}{85} + 0.2 \sin(p), \\
a_4(p) &= \frac{12}{125} - 0.1 \sin(p), \\
a_5(p) &= -0.003, \\
b_1(p) &= \cos(p).
\end{align*}
\]

with $P = [0.6, 0.8]$.

Identify \mathcal{S} with W-LPV and H-LPV OBF models!
Example

System output

Output error

Global identification of \mathcal{S}

<table>
<thead>
<tr>
<th>model</th>
<th>SNR</th>
<th>MSE</th>
<th>BTF</th>
<th>VAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-LPV</td>
<td>15 dB</td>
<td>0.0572</td>
<td>83.69%</td>
<td>97.34%</td>
</tr>
<tr>
<td>H-LPV</td>
<td>15 dB</td>
<td>0.0973</td>
<td>78.72%</td>
<td>95.48%</td>
</tr>
</tbody>
</table>

7 OBFs

Data: $p \in \mathcal{U}(0.6, 0.8), \ u \in \mathcal{U}(-1, 1)$

500 samples long

Noise: $v_e \in \mathcal{N}(0, 0.5)$

output additive
Conclusions

- **LPV models:**
 - Intermediate step between nonlinear and LTI models.
 - Effective engineering tool for dealing with nonlinear systems.

- **LPV model structures for identification** are studied and basic structures and phenomena have been clarified.

- **OBF’s** provide a powerful tool for parametrizing relevant classes of LPV systems.

- There is work to be done on completing the picture of a general framework for LPV identification.
Further reading

