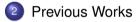
Identifiability in Dynamic Acyclic Networks with Partial Excitation and Measurement

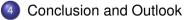
Xiaodong Cheng¹ Shengling Shi² Paul M.J. Van den Hof²

¹ Control Group, Department of Engineering, University of Cambridge, UK ² Control Systems Group, Department of Electrical Engineering, TU Eindhoven, NL

The 2021 European Control Conference (Virtual Conference)


Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks


ECC2021 1/22

Introduction & Problem Setting

Previous Works

3 Main Results

▲□▶▲圖▶▲≣▶▲≣▶ ▲国 ● ● ●

Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

ECC2021 3/22

Introduction – Dynamic Networks

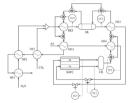
Appear in a wide range of applications

Power network

Chen, "Resilient Distribution Systems With Community Microgrids" 2016

Cooperative robots

Robots in University of Groningen

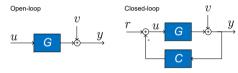

Xiaodong Cheng (Cambridge)

N. Martin et al., IEEE NSE, 2019 Identifiability in Acyclic Networks

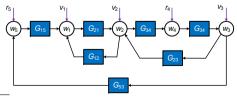
Chemical process

Heo, S., et al. Chemical Engineering Science, 2015

Brain networks



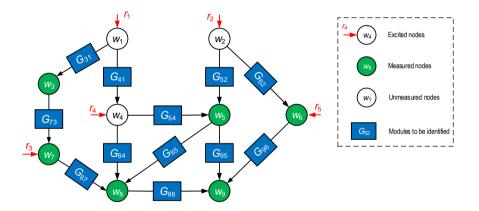
M. R. Knight IEEE Electrification Magazine 2016


ECC2021 4/22

Introduction

- Classical identification problems¹:
 - Identify a model of G based on measured signals u, y (and possibly r)

 How to address identification problems in a network setting? To analyze interconnection structure of the signals.

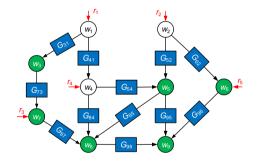

¹Ljung (1999), Pintelon and Schoukens (2012)

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

ECC2021

5/22

Dynamic Acyclic Networks


We concentrate on acyclic networks, i.e. there does not exist a pair of vertices that can reach each other.

Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

ECC2021 6/22

Network Model Setting

A compact form of the overall network:

$$w(t) = G(q)w(t) + Rr(t) + v_e(t),$$

$$y(t) = Cw(t) + v_m(t),$$

- q^{-1} : delay operator
- r(t), y(t): measured external and internal signals
- *R*, *C*: indicate which nodes are excited and measured.

Assume:

- The network is *well-posed* and stable, i.e. $(I G(q))^{-1}$ is proper and stable.
- All the entries of G(q) are proper and stable transfer operators.

ECC2021 7/22

Network Identifiability

• From measurement data (r, y), we obtain transfer function:

$$T_{\mathcal{C},\mathcal{R}} = C \underbrace{(I-G)^{-1}}_{T} R$$

²Weerts et al., SYSID2015; Weerts et al., Automatica, 2018; ³Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019.

Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

・ロ・・母・・ヨ・・ヨ・ ヨ・ シック

ECC2021

8/22

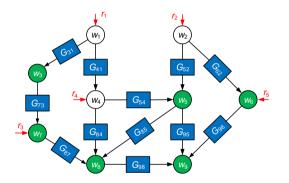
Network Identifiability

• From measurement data (r, y), we obtain transfer function:

$$T_{\mathcal{C},\mathcal{R}} = C \underbrace{(I-G)^{-1}}_{T} R$$

- Consider a network model set $\mathcal{M} := \{M(q, \theta) = (G(q, \theta), R, C), \theta \in \Theta\}$, Identifiability² of \mathcal{M} : all the models (i.e. the entries of *G*) in \mathcal{M} can be distinguished from $T_{\mathcal{C},\mathcal{R}}$.
- Generic identifiability³: almost all models in M can be distinguished from T_{C,R} (excluding parameters that are in a subset of ⊖ with Lebesgue measure zero)

²Weerts et al., SYSID2015; Weerts et al., Automatica, 2018; ³Bazanella, CDC2017; Hendrickx et al., IEEE-TAC, 2019.


Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

ECC2021

8/22

Problems

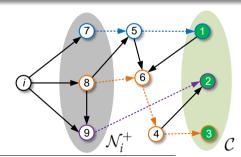
Under what conditions, the network model set is generically identifiable?

Which nodes are measured/excited to achieve generic identifiability.

Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

Previous Works



▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

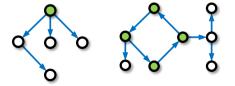
Full Excitation - Path-Based Condition

Lemma (Path-based condition)

All transfer functions leaving node *i* is generically identifiable if and only if there are $|\mathcal{N}_i^+|$ vertex disjoint paths from \mathcal{N}_i^+ to \mathcal{C} . The model set \mathcal{M} is generically identifiable, if the condition holds for all $i \in \mathcal{V}$.

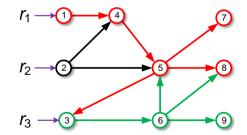
- all the nodes are excited
- C: the set of measured nodes
- *N*⁺_i: the set of the out-neighbors of node *i*;

⁴Van der Woude, 1991, Hendrickx, Gevers & Bazanella, CDC 2017, Weerts et al., CDC 2018 😑 🛌 🤕


Full Measurement - Pseudotree-Covering Condition

Lemma (Pseudotree-Covering Condition⁴)

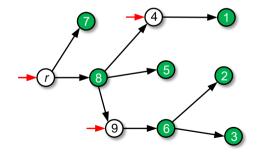
The network model set \mathcal{M} is generically identifiable if all the edges can be covered by a set of disjoint pseudotrees, and a root of each pseudotree is excited.


Identifiability in Acyclic Networks

Pseudotrees: A connected directed graph with maximal indegree 1

Xiaodong Cheng (Cambridge)

⁵Cheng et al., CDC2019; Cheng et al., IEEE-TAC2021


2 Th

ECC2021 12/22

Partial Excitation/Measurement - Trees

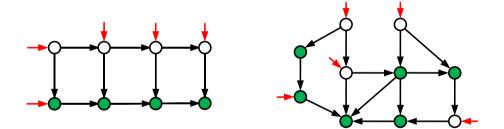
Lemma (Trees⁵)

A tree is generically identifiable if and only if its root is excited, all the leaves are measured, and the internal nodes are either excited or measured.

⁶Bazanella et al., CDC2019

- root: the node has no in-neighbors
- leaf: the node has no out-neighbors
- internal nodes: the nodes that are neither root nor leaves

Xiaodong Cheng (Cambridge)


Identifiability in Acyclic Networks

ECC2021 13/22

1.4 2 1.4 2 1

General Acyclic Networks with Partial Excitation/Measurement

The above methods cannot be applied to acyclic networks:

Problem

How to determine (generic) identifiability in acyclic networks?

Xiaodong Cheng (Cambridge)

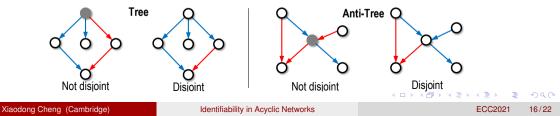
Identifiability in Acyclic Networks

・ロト・日本・日本・日本・日本・今日の

ECC2021

14/22

2 Previous Works



|▲□▶▲圖▶▲≣▶▲≣▶ | 重||||の��

Disjoint Trees and Disjoint Anti-Trees

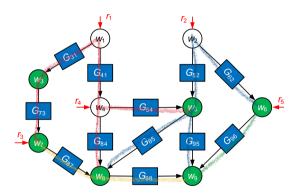
- Two trees (anti-trees) are **disjoint** if they do not share common edges, and all the edges leaving from (pointing to) a node are in the same tree (anti-trees).
- Any acyclic network can be decomposed into a set of disjoint trees or anti-trees

Generic Identifiability Condition

Theorem (Tree/Anti-tree covering)

Suppose that the underlying graph \mathcal{G} is acyclic with $\mathcal{V} = \mathcal{R} \cup \mathcal{C}$. Then, \mathcal{M} is generically identifiable if either of the following two conditions holds:

- G can be decomposed into a set of disjoint trees, and for each tree, its root is excited and all the leaves are measured.
- G can be decomposed into a set of disjoint anti-trees, and for each anti-tree, its root is measured, and all the leaves are excited.



Xiaodong Cheng (Cambridge)

ECC2021 17/22

Main Results

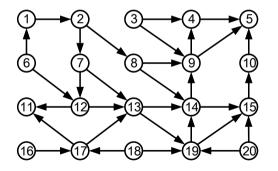
Example

all the edges are covered by four trees \checkmark roots are excited \checkmark leaves are measured \checkmark

\Rightarrow identifiability

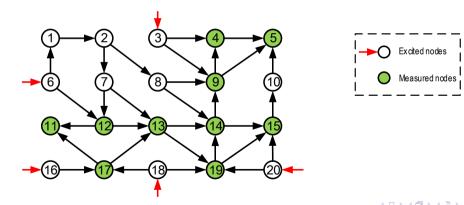
Xiaodong Cheng (Cambridge)

Identifiability in Acyclic Networks

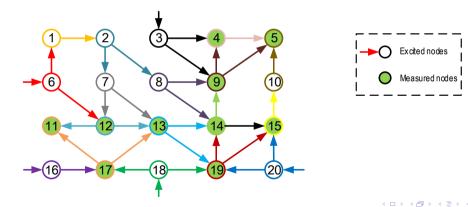

・ロト・雪・・ヨ・・ヨ・ つへぐ

ECC2021

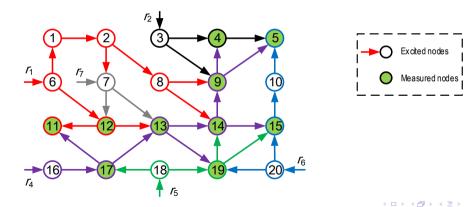
18/22


Initialization:

- All the sources are excited, and all the sinks are measured;
- Nodes having more than one in-neighbors are measured (implied by Condition 1).


Initialization:

- All the sources are excited, and all the sinks are measured;
- Nodes having more than one in-neighbors are measured (implied by Condition 1).


A greedy tree merging procedure:

- Partition the graph into a set of smallest trees (i.e. a node with its out-going edges)
- Merge two trees if their union is still a tree

A greedy tree merging procedure:

- Partition the graph into a set of smallest trees (i.e. a node with its out-going edges)
- Merge two trees if their union is still a tree

2 Previous Works

3 Main Results

Conclusion and Outlook

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで

- A sufficient condition to characterize the generic identifiability in acyclic networks with partial excitation/measurement
- Extensions: cyclic networks contain known modules and correlated noise signals

- A sufficient condition to characterize the generic identifiability in acyclic networks with partial excitation/measurement
- Extensions: cyclic networks contain known modules and correlated noise signals

Thank you for your attention!